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Abstract 

Background:  Although sequencing technologies have boosted the measurement 
of the genomic diversity of plant crops, it remains challenging to accurately genotype 
millions of genetic variants, especially structural variations, with only short reads. In 
recent years, many graph-based variation genotyping methods have been devel‑
oped to address this issue and tested for human genomes. However, their perfor‑
mance in plant genomes remains largely elusive. Furthermore, pipelines integrating 
the advantages of current genotyping methods might be required, considering the dif‑
ferent complexity of plant genomes.

Results:  Here we comprehensively evaluate eight such genotypers in different 
scenarios in terms of variant type and size, sequencing parameters, genomic context, 
and complexity, as well as graph size, using both simulated and real data sets from rep‑
resentative plant genomes. Our evaluation reveals that there are still great challenges 
to applying existing methods to plants, such as excessive repeats and variants or high 
resource consumption. Therefore, we propose a pipeline called Ensemble Variant 
Genotyper (EVG) that can achieve better genotyping performance in almost all experi‑
mental scenarios and comparably higher genotyping recall and precision even using 
5× reads. Furthermore, we demonstrate that EVG is more robust with an increasing 
number of graphed genomes, especially for insertions and deletions.

Conclusions:  Our study will provide new insights into the development and applica‑
tion of graph-based genotyping algorithms. We conclude that EVG provides an accu‑
rate, unbiased, and cost-effective way for genotyping both small and large variations 
and will be potentially used in population-scale genotyping for large, repetitive, 
and heterozygous plant genomes.
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Background
Genetic variants are typically divided into single nucleotide polymorphism (SNP), 
insertion or deletion (indels, 1–49 bp), and structural variation (SV, ≥ 50 bp, includ-
ing insertion, deletion, inversion, duplication, translocation, and complex rearrange-
ments) based on their size and type [1, 2]. With the advances of high-throughput 
sequencing technologies, studies such as the 1000 Genomes Project and the Rice 3K 
Genomes Project have released large amounts of genetic variations, which contrib-
ute to the studies of pan-genomes, genome-wide associations, population genetics, 
and domestication [3–6]. One of the essential requirements for these studies is the 
rapid and correct genotyping (determination of genotypes) of millions of genetic 
variations for hundreds or thousands of individuals [3–6]. Conventional genotyping 
strategies usually rely on short-read mapping against a linear reference genome [2, 
7–9]. However, these methods often introduce alignment errors due to reference bias, 
leading to erroneous genotypes for some variants, particularly those from regions 
highly divergent from the reference [10, 11]. In particular, genotyping SVs remains 
extremely challenging in population-scale studies where many individual genomes are 
sequenced solely using short-read sequencing technologies [3, 5, 11].

Recent advancements in pangenome graph-based genotyping algorithms are 
expected to mitigate reference bias and enhance the accuracy of genotyping across 
all types of genetic variations [12–15]. In such a graph, nodes typically represent the 
sequences, and edges indicate the connections between the sequences. Variations 
manifest as “bubbles”, and a path through the graph can be transformed into a hap-
lotype sequence that represents a combination of different sequence variations [15]. 
By incorporating the reference genome as well as non-reference alleles into sequence 
or variation graphs, these algorithms can precisely genotype variations for individual 
genomes based on short-read data. They use either read (e.g., vg and GraphTyper2) 
or k-mer (e.g., BayesTyper and PanGenie) alignments against the graphs to achieve 
high accuracy [16–19]. However, the complex pangenome graph also expands the 
search space for read mapping. For instance, the original vg algorithm (vg map) maps 
short reads to arbitrary variation graphs using generalized compressed suffix arrays 
to remove reference bias and improve alignment accuracy. Nevertheless, it is at least 
an order of magnitude slower than linear genome mappers, making it challenging 
to apply to large genomes or complex graphs [16]. A more recent version, vg giraffe, 
based on the seed-and-extend algorithm, can accelerate mapping [20]. Unlike vg map 
and vg giraffe, which map reads to the whole-genome graph, only aligning reads to 
variant breakpoints (such as GraphTyper2) or comparing read k-mer coverages at 
k-mer represented variants (such as BayesTyper and PanGenie) can also reduce runt-
ime [17–19]. Besides, the mapping accuracy of reads may decrease as the number of 
nodes (variants) in the graph increases [21].

Remarkably, most of these algorithms were initially developed and tested for human 
genomes [16–18, 20, 22–24]. Although some graph-based genotypers such as vg have 
been applied to variation genotyping for crop genomes like rice [25], soybean [26], 
tomato [27], etc., the detailed performance of these tools remains elusive for plants as the 
complexity of plant genomes varies greatly in terms of genome size, repeat content, het-
erozygosity, and polyploidy. For example, repeat-enriched SVs can introduce inaccurate 
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coverages of k-mers or reads at variant sites, thereby affecting the performance of graph-
based genotyping methods that rely on such coverages for genotyping [18, 19, 23].

To address these issues, we first investigate the impact of read length and depth, num-
ber of variants, repeat density, heterozygous rate, etc. on existing graph-based geno-
typers in plant genomes [16–20, 24, 28]. Our findings suggest that there are still some 
challenges in applying existing methods to plants, such as worse performance with 
excessive repeats and variants or high resource consumption. To overcome these chal-
lenges, we present an Ensemble Variant Graph-based tool, EVG, which can accurately 
genotype SNPs, indels, and SVs using short reads. Compared to other graph-based gen-
otypers, EVG achieves higher genotyping accuracy and recall with only 5× sequencing 
data. Furthermore, the genotyping of EVG remains robust even as the number of nodes 
in the pangenome graph increases.

Results
Graph‑based variant genotyper selection

To our knowledge, there are currently twelve graph-based genotyping tools available 
(Additional file 1: Table S1). For this study, we selected eight open-source graph-based 
genotyping tools that broadly fall into two categories: read alignment based (includ-
ing vg map [16], vg giraffe [20], Paragraph [24], GraphTyper2 [17] and Gramtools [29]) 
and k-mers alignment based (including BayesTyper [18] and PanGenie [19]) (Additional 
file 1: Table S1). We also conducted experiments to assess the performance of GraphA-
ligner [28], a graph-based aligner that can utilize graphs constructed by vg to do align-
ment. Other tools were excluded from this study either because they are currently 
unsuitable for plant genomes (such as HISAT [30] and Minos [31]) or because they can-
not genotype all types of genetic variations (like KAGE [32]). Among them, Minos is 
designed for bacterial genomes, while HISAT-genotype requires reconstruction of a typ-
ing database and complex conversion for plants in the algorithm.

These tools utilize different graph indexing approaches to improve alignment effi-
ciency and/or support multiple graph manipulations (Additional file 1: Table S1). Spe-
cifically, vg employs GBWT [33], GCSA2 [34], and Minimizers [35] for graph storage 
and searching, whereas BayesTyper relies on k-mer-based graph indexing. To avoid 
potential memory overload, BayesTyper leverages Bloom filters to screen read k-mers, 
storing only those present in the haplotype [18]. Similarly, PanGenie adopts k-mer-based 
graph indexing using De Bruijn graphs. Subsequently, the software either aligns reads to 
nodes or directly counts k-mer coverage at nodes [19]. The genotyping results are then 
probabilistically scored based on statistical distribution modeling of observed and noise 
read/k-mer coverages.

Overall performance on simulated data

To evaluate the performance of the tools, we first constructed a comprehensive simula-
tion panel. Considering that plant genomes vary widely in size and repeats [36, 37], a 
series of data sets of paired-end shorted reads were simulated for each of five represent-
ative plant genomes (Arabidopsis thaliana, Oryza sativa, Glycine max, Zea mays, and 
Brassica napus) with different genome sizes (135–2300 Mb) and repeat contents (21.42–
88.9%) (Additional file 1: Table S2). To generate simulated short reads from alternative 
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(no-reference) genomes, we introduced different types (SNP, indels (< 50 bp), and SVs (≥ 
50 bp)) and numbers of variants into the reference genome of each plant species [5, 26, 
38–40] (see Methods for details). We repeat such a simulation of paired-end short reads 
with varying read lengths (100 bp, 150 bp, 250 bp), insert sizes (300 bp, 400 bp, 500 bp, 
600 bp), and sequencing depths (5×, 10×, 20×, 30×, 50×) (Additional file 1: Table S3). 
Precision and recall were used to assess the genotyping performance of different soft-
ware, and receiver operating characteristic (ROC) curves were drawn according to the 
genotype quality (GQ) or read depth (DP).

As graph-based genotyping tools can leverage sequence information from multi-
ple genomes, we first determined the overall performance of these tools based on the 
genome graph from eight A. thaliana genomes (one reference genome assembly, and 
all variants from the other seven genomes) (Fig.  1a–c; Additional file  1: Fig. S1a). For 
one genome to be genotyped, we simulated 467,512 SNPs, 38,207 indels, 4572 inser-
tions, 4364 deletions, 232 inversions, and 100 duplications (Additional file 1: Table S4). 
Note that all these variants are incorporated into the genome graph. To genotype this 
genome using each tool, we simulated 30× paired-end (2 × 150 bp) short reads. For SNP 
genotyping, all tools demonstrate high precision (> 0.97), while only BayesTyper (0.99), 
Paragraph (0.98), and GraphTyper2 (0.93) have a recall rate greater than 0.90 (Additional 
file 1: Fig. S1a). Similarly, nearly all tools show high precision rates (0.80–0.99) and rel-
atively lower recall rates (0.81–0.98) for indels genotyping. However, only BayesTyper 
(0.98), PanGenie (0.99), Gramtools (0.98), and Paragraph (0.97) maintain precision 
above 0.95 (Fig. 1a). The performance of genotyping large insertions and deletions (≥ 50 
bp) varies greatly among the tools. Despite different recall rates, all tools except Gram-
tools present genotyping precision above 0.8 (Fig.  1b, c). Overall, Paragraph, Graph-
Typer2, and BayesTyper outperformed other tools in terms of genotyping performance 
(Fig. 1b, c).

We also evaluated these tools using the simulated data from rice, soybean, maize, 
and Brassica napus genomes (Additional file 1: Tables S2, S3). Note that Gramtools is 
excluded from the assessment for other plant genomes due to potential issues related 
to excessive chromosome length. For the large maize genomes, we conducted our 
evaluation on chromosome 10 instead of the entire genome to reduce testing time. We 
observed a similar recall of genotyping all types of variants in rice genomes as in A. thal-
iana, but with slightly decreased precision. (Fig. 1d–f; Additional file 1: Fig. S1c). The 
genotyping performance in soybean genomes was better than that of maize, but worse 
than A. thaliana and rice genomes (Fig. 1g–i; Additional file 1: Fig. S1e). For genotyp-
ing in the maize genome, vg map and vg giraffe are the only tools that maintain high 
precision (0.93–0.98) and recall (0.72–0.80) in SV genotyping, while BayesTyper and 
Paragraph present high precision (0.87, 0.83) and recall (0.85, 0.83) for indel genotyp-
ing (Fig. 1j–l; Additional file 1: Fig. S1f ). When genotyping in the allotetraploid Brassica 
napus, the performance is even worse, especially for SNPs and indels (Additional file 1: 
Fig. S2). This may be due to the inference of homoeologous alleles between the two sub-
genomes of Brassica napus.

When genotyping complex SVs like inversions and duplications, the performance 
differences between the software are obvious. Although all software can detect inver-
sion, vg map, vg giraffe, GraphAligner, and Gramtools only worked effectively when 
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the number of genomes was one. On the other hand, Paragraph and BayesTyper dem-
onstrated superior performance with F-scores over or around 0.8 when genotyping 
inversion and duplications in graphs containing multiple A. thaliana or rice genomes 
(Additional file 1: Fig. S3a, b). Apparently, these tools presented lower F-scores for geno-
typing heterozygous SVs, especially the duplications (Additional file 1: Fig. S3).

As a comparison, we also employed three linear reference-based genotypers including 
GATK [41] and DeepVariant [42] (for both SNPs and indels), and Delly [43] (for SV) to 
do genotyping using the same simulated short reads dataset. Both GATK and DeepVari-
ant had a F-score above 0.9 for SNP genotyping in all plant genomes except the maize, 

Fig. 1  Overall genotyping performance of different graph-based tools based on simulated data. The 
genome graphs of Arabidopsis thaliana (a, b, c), Oryza sativa (d, e, f), Glycine max, (g, h, i), and Zea mays (j, k, 
l), are constructed based on one reference genome and seven alternative genomes derived by introducing 
known variants into the reference genome. Paired-end (2 × 150 bp) short reads with 30× depth are 
simulated for genotyping. For each genotyper, precision is plotted against recall as the genotyping quality 
threshold varies. Read Depth on variant sites is used as a substitution score when genotype quality is not 
available. Arrows indicate the circles hidden by other circles in the plot due to identical or nearly identical 
precision values. Detailed results are also provided in Additional file 2: Table S5



Page 6 of 24Du et al. Genome Biology           (2024) 25:91 

but a relatively lower F-score in indel genotyping for the same plant genomes (Addi-
tional file 1: Fig. S4a, b). We found that some graph-based tools have higher or very close 
F-scores compared to GATK and DeepVariant, although other tools presented relatively 
lower F-scores. However, the graph-based tools exhibited much better performance 
compared to the tool Delly, especially for the large insertions (Additional file 1: Fig. S4c, 
d).

Performance on plant genomes with different complexity

Moreover, tests conducted across various plant genomes revealed that certain tools, 
such as GraphAligner and GraphTyper2, exhibited relatively poor performance when 
dealing with larger genomes. Conversely, BayesTyper were able to retain high precision 
and recall even when working with more complex genomes (Fig. 1; Additional file 1: Fig. 
S1; Additional file 2: Table S5).

As numerous plant genomes are heterozygous, we also simulated heterozygous A. 
thaliana and rice for the same test. Among the tools we evaluated, Paragraph, Bayes-
Typer, and GraphTyper2 were less affected by heterozygosity, whereas other software 
experienced a decrease in recall for all variants (Additional file 1: Fig. S1, S5). We also 
explored the influence of heterozygosity on genotyping by testing on synthetic diploid 
genomes with varying levels of heterozygosity (Fig.  2; Additional file  1: Fig. S6; Addi-
tional file 2: Table S6). The results showed that the damage to genotyping was propor-
tional to the level of heterozygosity, especially for deletions and inversions. Paragraph 
and BayesTyper proved to be the most stable tools, both with high precision (0.75–0.97) 

Fig. 2  The effect of heterozygous rate on the performance of different graph-based genotyping methods. 
The six ROC curve plots correspond to the genotyping results for synthetic heterozygous A. thaliana 
genomes with different heterozygous rates (0%, 0.27%, 0.52%, 1.03%, 2.07%, and 2.35%). The genome graph 
for genotyping is constructed from the A. thaliana reference genome and seven alternative genomes. 
Paired-end (2 × 150 bp) short reads with 30× depth are simulated for genotyping. For each genotyper, 
precision is plotted against recall as the genotyping quality threshold varies. Read Depth on variant sites is 
used as a substitution score when genotype quality is not available. Arrows indicate the circles hidden by 
other circles in the plot due to identical or nearly identical precision values. Detailed results are also provided 
in Additional file 2: Table S6
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and recall (0.79–0.96) for small and large indel genotyping (Fig. 2; Additional file 1: Fig. 
S6). However, tools such as vg map, vg giraffe, GraphAligner, and Gramtools were rela-
tively more influenced by heterozygosity (Fig. 2; Additional file 1: Fig. S6), especially for 
genotyping in repetitive regions (Additional file 1: Fig. S7b).

Influence of sequencing parameters

Next, we conducted a comparison of each genotyper’s performance across datasets of 
paired-end reads with a range of read lengths (100 bp, 150 bp, 250 bp), fragment size 
(300 bp, 400 bp, 500 bp, 600 bp), and sequencing depths (5×, 10×, 20×, 30×, 50×). 
When the read length was shorter, such as 100 bp, only Paragraph showed a similarly 
high F-score for both small and large variants compared to testing with longer reads 
(Additional file  1: Fig. S8). Other tools, such as vg map and PanGenie, also had close 
F-scores with shorter (100 bp) or longer reads (150 bp, 250 bp) for variants except inver-
sions. Additionally, a marginal effect could be observed when increasing the read length 
from 150 to 250 bp (Additional file 1: Fig. S8). Apparently, various types of variants had 
similar requirements for sequencing length (Additional file 1: Fig. S8). The performance 
on rice and heterozygous Arabidopsis genomes followed the same trend as A. thaliana, 
suggesting that genome size and complexity may not affect the read length requirement 
by software (Additional file  1: Fig. S9, S10). In addition to using short reads, we also 
tested GraphAligner to map third-generation data against the genome graph, using long 
reads of 20 kb and 75 kb. The genotyping accuracy of 20 kb reads was superior to that of 
75 kb reads, likely due to the former’s higher accuracy (0.96 vs. 0.85) (Additional file 1: 
Fig. S8, S10). Furthermore, when the read length was 150 bp, fragment sizes (300–600 
bp) had no obvious effect on the genotyping accuracy of these genotypers (Additional 
file 1: Fig. S11).

Overall, when the sequencing depth was around 5–10×, Paragraph was able to 
achieve relatively high performance (precision > 0.81, recall > 0.91), whereas other soft-
ware required more than 10× reads (Additional file 1: Fig. S12). Besides, increasing the 
sequencing depth beyond 20×, only brought marginal improvements in genotyping per-
formance across all variant types. With 30× data, all tested software almost reached the 
upper limit of genotyping precision and recall (Additional file 1: Fig. S12). These findings 
were consistent across different genomes, including the rice and heterozygous A. thali-
ana genomes, suggesting that genome size and complexity may not affect the sequenc-
ing depth requirements of these genotypers (Additional file  1: Fig. S13, S14). Besides, 
genotyping SVs requires more sequencing data than SNPs and indels (Additional file 1: 
Fig. S12, S14).

Effects of genome number in the graph

As the search space of alignment may expand exponentially when more variants or 
genomes are graphed, we next evaluated how the number of graphed genomes affects 
variant genotyping. We reconstructed genome graphs for A. thaliana with a range (1, 
7, 15, 30, 50) of individual genomes. From our evaluation, only tools Paragraph, Bayes-
Typer, and GraphTyper2 demonstrated relatively stable precision and recall for SNP, 
indel, and insertion genotyping when graphed genomes increased (Fig. 3a, c; Additional 
file 1: Fig. S15a). When only seven alternative genomes’ variants were graphed, existing 
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methods could still achieve a good genotyping F-score (0.85–0.99 for SNPs, 0.81–0.97 
for indels, 0.73–0.93 for deletions, 0.79–0.98 for insertions, 0.01–0.89 for inversions). 
However, when 50 alternative genomes were incorporated into the genome graph, the 
F-scores of deletion genotyping decreased to only 0.4–0.74. The recall of genotyping for 
vg map, vg giraffe, and GraphAligner decreased as more genomes were incorporated. 
For example, as the number of graphed genomes increased from 1 to 50, the recall rate 
of vg giraffe decreased considerably (0.97 vs. 0.61 for SNPs, 0.99 vs. 0.66 for indels, 0.99 
vs. 0.48 for deletions, and 0.92 vs. 0.53 for insertions, 0.55 vs. 0.23 for inversions), while 
the precision did not change much (Fig.  3a; Additional file  1: Fig. S15). In contrast, 
Paragraph, BayesTyper, and GraphTyper2 showed greater robustness in terms of recall 
(Fig.  3a; Additional file  1: Fig. S15). For example, BayesTyper’s recall rates remained 
above 0.95 for all types of variants except duplication (0.78), but the genotyping preci-
sion of deletions and inversions decreased by 0.52 (1.0 vs. 0.48) and 0.49 (1.0 vs. 0.51), 
respectively. Notably, the insertions precision of PanGenie was higher than that of dele-
tions, possibly because PanGenie needs to count the number of k-mers for each haplo-
type at nodes. However, as only breakpoint sequences can be used for deletions, this will 
result in reduced genotyping precision.

Influence of breakpoint errors on SVs genotyping

The breakpoints of SVs often have some deviation to the true coordinates. To evaluate 
the tolerance of graph-based genotypers for such SV breakpoint errors, we introduced 

Fig. 3  The effect of genome number on the performance of different graph-based genotyping methods. 
The five ROC curve plots correspond to genotyping results with different numbers (1, 7, 15, 30, 50) of 
graphed genomes. The genome graph for genotyping is constructed from the A. thaliana reference genome 
and different numbers of alternative genomes. Paired-end (2 × 150 bp) short reads with 30× depth are 
simulated for genotyping. For each genotyper, precision is plotted against recall as the genotyping quality 
threshold varies. Read depth on variant sites is used as a substitution score when genotype quality is not 
available. Arrows indicate the circles hidden by other circles in the plot due to identical or nearly identical 
precision values. Detailed results are also provided in Additional file 2: Tables S7–S8
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a 1–20-bp deviation to the true breakpoint coordinates of SVs. For almost all tools, a 
negative correlation was observed between F-scores and breakpoint deviations (Fig. 4a; 
Additional file  1: Fig. S16). Consistent with the previous report, BayesTyper, which is 
based on exact k-mer alignments, was more susceptible to breakpoint deviations. How-
ever, another k-mer alignment-based genotyper, PanGenie, performed much better than 
BayesTyper. This may be because PanGenie can also leverage already known haplotypes 
to infer genotypes [19].

Overall, the performance on genotyping deletions was better than that of insertions, 
inversions, and duplications. For genotyping deletions, PanGenie, vg map, vg giraffe, 
Paragraph, and GraphAligner displayed consistent performance with breakpoint devia-
tions smaller than 10 bp (Fig.  4a). For genotyping insertions, the F-scores of vg map, 
GraphAligner, Paragraph, and Gramtools still had 50% to 90% of that of 0 bp when the 
breakpoint error reached 5 bp, while the F-scores of other software at 1 bp deviation 
were reduced by more than 50% (Fig. 4a). Further, only Paragraph and vg giraffe main-
tained performance within a 10 bp error on the genotyping of inversions (Additional 
file 1: Fig. S16a). However, none of the software was able to tolerate breakpoint errors in 
duplications (Additional file 1: Fig. S16b).

Impact of event size and sequence context on SV genotyping

In addition, we stratified SVs based on event size, number of SNPs and indels within 
breakpoints of 100 bp, and families of repetitive sequences around to estimate the effect 
of sequence context on SV genotyping. Overall, Paragraph and BayesTyper demon-
strated the best genotyping performance across different size ranges of SVs. Although 
the F-scores of both Paragraph and BayesTyper were lower (ranging from 0.17 to 0.81) 
for deletions larger than 5 kb, they still maintained high F-scores (≥ 0.95) for inser-
tions (Fig. 4b). Previous studies have reported that small variants near the breakpoints 
could affect the accuracy of SV calling [11]. However, our experiment showed that small 
variants had no serious damage on SV genotyping for these graph-based tools (Fig. 4c), 
which might be attributed to the improved alignment accuracy as alternative alleles 
(small variants) are introduced into the graphs.

The genotyping performance of all methods was reduced in the repetitive regions 
compared to the non-repetitive regions (Fig. 4d, e; Additional file 1: Fig. S7). For exam-
ple, the GraphAligner F-score was even 47% lower in deletions than in non-repetitive 
regions (Additional file 1: Fig. S7). Compared to other software, Paragraph and Bayes-
Typer demonstrated comparatively stable performance in repetitive regions (Additional 
file 1: Fig. S7). Repeat sequences had a more severe influence on the genotyping of dele-
tions (17%) than SNPs (9%), indels (11%) and insertions (8%) (Fig. 4d, e; Additional file 1: 
Fig. S7). Similar to the linear reference-based SV genotyping [11], LTRs had the greatest 
impact on genotyping. For example, the recalls of deletion genotyping for vg map, vg 
giraffe, and GraphAligner were reduced by 0.31, 0.31, and 0.36, respectively (Figs. 4d, e).

Development of an ensemble genotyper

In summary, these graph-based genotypers performed differentially for small and large 
variants in terms of precision and recall. Further analysis on the overlap of true variant 
genotyping among the eight genotypers revealed that many variants were not correctly 
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Fig. 4  The impact of sequence context and event size on different graph-based genotyping methods. a 
Impact of breakpoint errors on genotyping (0 bp, 1 bp, 3 bp, 5 bp, 10 bp, 20 bp). b Impact of variant length 
(alternative allele length minus reference allele length) on genotyping. c Impact of number of SNPs and 
indels around breakpoints on genotyping. d, e Effects of repeat sequence types around breakpoints on 
genotype, partitioned by variant type: d deletions and e insertions. Different types of repeat sequences are 
annotated by RepeatMasker. The genome graph for genotyping is constructed from the A. thaliana reference 
genome and seven alternative genomes. Paired-end (2 × 150 bp) short reads with 30× depth are simulated 
for genotyping. For each genotyper, precision is plotted against recall as the genotyping quality threshold 
varies. Read depth on variant sites is used as a substitution score when genotype quality is not available. 
Detailed results are also provided in Additional file 2: Tables S9–S12
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genotyped by some genotypers but were correctly genotyped by others (Additional file 1: 
Fig. S17, an example shown in Additional file 1: Fig. S18), suggesting an ensemble geno-
typing strategy may improve genotyping performance.

Here, we developed an Ensemble Variant Genotyper (EVG) by integrating various 
graph-based genotyping methods (Fig.  5a). Before running the genotyping pipeline, 
EVG modifies VCF-formatted variants input files provided by users to a common for-
mat that can be used for downstream analysis (EVG convert). For instance, graph geno-
typing tools normally require sequence information from input files but not containing 
any special characters. Additionally, EVG could filter variants based on minor allele fre-
quency (MAF) and missing rate, if indicated. The EVG pipeline starts with the selection 
of the most suitable software according to the reference genome size, sequencing data 
quality, type of variants, and software running requirements (Additional file 1: Fig. S19, 
see the “Methods” section for details).

To address the issue caused by inconsistent coordinates of the same variants from dif-
ferent software, EVG then clusters the outputs based on the size and position of variants 
and constructs a variant graph (EVG merge) (Additional file 1: Fig. S20, see the “Meth-
ods” section for details). Finally, the most probable combination of genotypes is deter-
mined as the genotype with the most support by different genotyping tools at each node 
(Fig.  5a). To accelerate genotyping, EVG can randomly downsample reads to default 
depth (15×) when sequencing data is high enough. For oversized genome graphs with 
numerous variants, EVG offers an optional fast mode where Paragraph is only used for 
SVs genotyping. These allow EVG to significantly accelerate genotyping while sacrificing 
very little precision and recall (Fig. 5b).

To assess the performance of EVG, we tested it on all simulated datasets from this 
study. Firstly, unlike other graph-based genotypers, EVG achieved the highest F-score 
for both small and large variants with just 5 × 150 bp paired-end short-reads (Fig. 5b; 
Additional file 1: Fig. S21). Secondly, EVG’s performance was more robust when more 
genomes were graphed. Specifically, for genome graphs with 50 genomes, EVG achieved 
a F-score above 0.95 for SVs with only 5× short reads, while other best genotypers only 
reached 0.79 (Fig. 5b; Additional file 1: Fig. S21). In terms of SNP genotyping, the fast 
mode of EVG performed slightly lower than the best-performing software, as Paragraph 
is only used for SV genotyping in order to reduce CPU time consumption (Fig. 5b).

Performance on real data

Finally, we carried out testing on real data consisting of 30× Illumina short reads 
from three diploid homozygous genomes (A. thaliana, rice, and maize) [5, 38, 40, 44, 
45] as well as one diploid heterozygous genome of Apricot (Prunus armeniaca) [46, 
47]. Testing was also performed on a genome graph of seven genomes for all gen-
otypers. (Additional file  1: Table  S14). Notably, Gramtools was also excluded from 
the real data testing. The evaluation of maize was also limited to chromosome 10 
to reduce resource consumption. In comparison to the simulated data, the F-score 
across genotypers in the real data was lower (Fig. 6). Such a reduction was even worse 
(< 0.65) for the maize genome, probably because of the high percent of repetitive 
sequences (Fig. 6; Additional file 1: Fig. S22). For the heterozygous apricot genome, 
Paragraph had the highest average F-score in all types of variants compared to the 
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Fig. 5  The workflow and performance of the ensemble variant genotyping method EVG. a The variant 
genotyping workflow of EVG mainly consists of three steps: (1) subsample sequencing reads, filter variants, 
and reformat the input variant VCF file; (2) select one or multiple suitable graph-based genotypers (shown 
as colored dots) and do genotyping with each of them in parallel; (3) merge the genotype results from step 
2 and determine the final genotype for each variant. b Genotyping performance of SNPs, indels, ins & del 
(insertions and deletions), inversions, and duplications on simulated A. thaliana genomes under different 
sequencing depths (5×, 10×, 20×, 30×, 50×) and genome numbers (1, 15, 50). The genome graph for 
genotyping is constructed from the A. thaliana reference genome and different numbers of simulated 
alternative genomes. Paired-end short-reads (read length: 2 × 150 bp) are simulated for variant genotyping. 
For each genotyping scenario, the F-measure values of the other two best-performing genotypers are 
shown here. Transparent and solid bars represent the ability to predict variant “presence” (detection of variant 
regardless of the genotype) and exact “genotype” (requires both the detection of the variant and agreement 
between its called genotype and the true genotype). Detailed results are also provided in Additional file 2: 
Table S13
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other six graph-based genotypers, while BayesTyper was hardly able to genotype the 
SVs, perhaps due to inaccurate breakpoints (Fig. 6).

We also tested EVG’s performance on all real data sets and found that for all four 
genomes, EVG achieved the best genotyping performance across all types of vari-
ants. Notably, for the largest genome, maize, EVG (precise model) reached the high-
est F-score (0.67 for SNPs, 0.72 for indels, 0.84 for deletions, and 0.81 for insertions) 
(Fig.  6). Similarly, for the heterozygous genome, EVG showed a comparably higher 
F-score ranging from 0.72 to 0.86 for genotyping small and large variants. More 
importantly, EVG’s performance in repeated regions was also better than other soft-
ware, especially for deletion (F-score, 0.82) and insertion (F-score, 0.83) (Additional 
file  1: Fig. S22). In summary, our pipeline can be applied to plant genomes with a 
range of genome sizes or repeat contents compared to the currently available graph-
based variant genotypers.

Runtime and memory usage

The runtime and memory usage of all the methods were measured with the same num-
ber of CPUs. As expected, read alignment-based methods such as vg map and Paragraph 
require relatively more time compared to k-mer alignment-based methods, which were 
faster despite having larger memory consumption (Additional file  1: Fig. S23a–c, Fig. 
S24a–c). Additionally, runtime and/or memory increase significantly when graphing 
more or larger genomes. For instance, the runtime of vg map in maize was more than 
14.3 times longer compared to that in A. thaliana (Additional file 1: Fig. S23). Compared 
to other tested tools, GraphTyper2 required the lowest runtime and memory usage for 
smaller genomes like A. thaliana and rice, because it only implemented local alignment 
in a streamlined sliding window of variants. When tested under the same conditions, 
EVG’s fast mode required only 6.8 CPU hours in A. thaliana and 28.6 CPU hours in rice, 
and its genotyping was more robust than that of existing methods. The precise mode of 
EVG further improved the genotyping performance, but it took 27.8 and 118 CPU hours 
in A. thaliana and rice. However, EVG could achieve very close genotyping performance 
only with 16.7 and 63.8 CPU hours for A. thaliana and rice when only 15× short reads 
were sampled (Additional file 1: Fig. S23, S24).

Fig. 6  Overall genotyping performance of different graph-based methods based on real short-read data. The 
read lengths of rice (Oryza Sativa), maize (Zea mays), and apricot (Prunus armeniaca) are all 2 × 150 bp, except 
for A. thaliana (2 × 100 bp). For each plant genome to be genotyped, 30× short reads were used. Each plant 
graph was constructed from a reference genome and seven alternative genomes
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Discussion
In this study, we have conducted a comprehensive evaluation of the performance of eight 
popular graph-based genotypers on multiple representative plant genomes, which are 
mostly designed and tested only on human genomes. By conducting tests on 25 simula-
tions and 10 real datasets, we have revealed the differences in precision and recall among 
these tools under different sequencing schemes, genomic context and complexity, and 
graph size for a spectrum of genetic variants. More importantly, the EVG pipeline devel-
oped here can achieve comparably higher genotyping recall and precision even when 
using 5× short reads and remain stable with an increased number of genomes, fitting 
the trend requiring population-level millions of variant genotyping.

Graph‑based genotyping variants in plant genomes is challenging

Plant genomes frequently have a large genome size, enriched repetitive sequences, and 
high sequence diversity or heterozygosity [36, 37]. However, it should be noted that the 
performance of graph-based genotypers in plants is lower compared to human genomes, 
particularly when the genome contains high levels of repetitive sequences. The plant 
genomes have relatively higher repetitiveness (estimated by the percentage of non-
unique k-mers of all k-mers in genome) compared to their size-close animal genomes 
[48]. For example, the 2.3 GB maize genome has 68% such non-unique k-mer compared 
to that of 18% in human genomes (Additional file  1: Fig. S25a). This poses significant 
challenges for existing genome graph software, such as those relying on minimizers 
(derived from k-mers) as seed, leading to imprecise read alignment during the alignment 
stage. Additionally, tools such as BayesTyper and PanGenie utilize k-mer frequencies for 
genotyping, but they rely on node-specific k-mers. This may limit the ability to genotype 
variants that lack enough region-specific k-mers. We also calculated the k-mer frequency 
at each node of genome graphs for plant and human genomes (Additional file  1: Fig. 
S25b). It is evident that the proportion of k-mer with node frequency of one is highest in 
the human genome graph (0.62), while it is lowest in maize (0.17) (Additional file 1: Fig. 
S25b). This means that if only such specific k-mers are used for genotyping, much few 
informative k-mers can be utilized in plant genome graphs. Besides, alignment-based 
software is also affected by repetitive sequences because current graph-based genotyp-
ing tools, whether based on the GBWT [33], GCSA2 [34], minimizer (from k-mers) 
[35], or other indexing algorithms, they followed a similar seed-and-extend alignment 
strategy. Therefore, the utilization of genome graphs in plants still poses significant chal-
lenges, requiring the development of efficient indexing methods tailored for plants.

Additionally, these plant genomic features seriously challenge the efficiency of con-
structing and indexing pangenome graphs and read alignments. For example, graphing 
seven maize (only chr10) genomes with vg map requires 90 GB memory (Additional 
file 1: Fig. S24c). To address these challenges, BayesTyper genotypes local haplotypes by 
constructing a Bloom filter for selecting which read k-mers should be loaded into mem-
ory (i.e., those k-mers stored in the Bloom filter) [18]. However, storing k-mer counts 
and variant graphs in memory may lead to significant memory consumption, particu-
larly when dealing with large amounts of sequencing data or reference genomes. Alter-
natively, implementing a Counting Bloom filter or Hierarchical Interleaved Bloom Filter 



Page 15 of 24Du et al. Genome Biology           (2024) 25:91 	

(HIBF) instead of storing k-mer counts in memory may help reduce memory consump-
tion while maintaining the desired level of accuracy [49, 50]. PanGenie, another software 
program employing k-mer counts, exhibits significant memory consumption despite 
only considering unique k-mers [19]. While its memory footprint exceeds that of Bayes-
Typer in A. thaliana, it is comparatively lower in rice (Additional file 1: Fig. S24a, b). 
This phenomenon may be attributed to the abundance of repeated k-mers in these plant 
species that are filtered out during the analysis process.

Unlike k-mer alignment-based genotypers, the vg tool utilizes less memory during 
genome graph construction and relies on global read alignments [16]. However, the ear-
lier version, vg map requires a significant amount of memory and CPU time for graph 
indexing, particularly when constructing GCSA2 indexes [34]. To address these issues, 
vg giraffe [20] (and GraphAligner [28]), use minimizers [35] for seeding to speed up the 
alignment and reduce memory consumption at the expense of the alignment rate for 
repeat sequences. In contrast to vg and GraphAligner, GraphTyper2 [17] and Paragraph 
[24] utilize a local variant realignment strategy based on pre-aligned reads, or solely 
mapping those around breakpoints. Although such an approach theoretically has the 
potential to markedly accelerate the genotyping process, our testing revealed that the 
runtime of Paragraph did not demonstrate significant improvement. This can be attrib-
uted primarily to the I/O overhead as three files are generated for each variant during 
the genotyping. Therefore, despite recent advances in genome graph software, the high 
variability of plant genomes remains a major challenge for current approaches.

Additionally, SV breakpoints often exhibit errors [10], particularly at repeat-enriched 
regions, which can affect some genotypers [24], especially those such as BayesTyper, 
that require long exact matches of k-mers or seeds for read mapping. However, another 
k-mer-based genotyper, PanGenie, performs much better than BayesTyper by integrat-
ing haplotype-resolved pan-genome references. The enriched heterozygous alleles and 
repetitive sequences will also affect the genotype effect of tools.

Most current graph-based genotypers require 10–20× of data to achieve satisfac-
tory genotyping performance. However, the sequencing depth of early or large genome 
population sequencing projects in plants is low [39, 51], even only 3–10× for wheat 
[52]. Future development should consider how to distinguish between sequence errors 
and real variants especially those in heterozygous loci and repetitive regions with low 
sequence depth of short reads. One potential approach similar to that implemented in 
PanGenie is to integrate the known haplotypes of more haplotype-resolved genome 
assemblies. Additionally, these tools lack stability for population-level pangenome 
graph-based genotyping. This study found that as the number of variants increased, 
the performance of some software for certain types of variants continuously decreased 
while the runtime and memory increased considerably. Taken together, existing meth-
ods either require excessive computational resources or sequencing costs or lack stable 
performance for plant genomes of different complexity, which may limit their applicabil-
ity in plants.

Our EVG pipeline helps to do efficient and correct genotyping

It should be noted that these graph-based genotyping tools have complementary advan-
tages (Additional file  1: Fig S17), although they did not exhibit stable and excellent 
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genotyping performance in all testing scenarios. To alleviate the problems of these 
tools, we have developed the EVG pipeline, which selects the most appropriate process 
based on reference genome size, sequencing read length, and read depth. EVG pipe-
line presents more robust genotyping performance compared to existing graph genome 
methods. More importantly, EVG can reach high F-scores of genotyping with only 5× 
reads, and achieve the peaks with 10× reads, which is normally the average depth of 
population-level resequencing in plants. Moreover, even with an increased number of 
nodes in the graph (up to 50 genomes), the genotyping F-score of EVG remains above 
0.9. (Fig. 5b). Most notably on maize (chr 10), the final genotyping results were better 
than those obtained using other software, requiring only 52.8 CPU hours (including the 
time of graph construction, graph indexing, read alignment, and genotyping, 111.3 CPU 
hours for vg map) (Additional file 1: Fig. S23c). EVG also performs exceptionally well in 
maize repetitive regions, achieving F-scores for deletions and insertions of 0.82 and 0.83, 
respectively, while the highest values of other software were 0.59 and 0.55 (Additional 
file 1: Fig. S22).

Although the EVG pipeline has several advantages compared to current graph-based 
genotypers, it can still be improved in terms of memory consumption and genotyping 
small variants in the future. The further application of graph-based genotyping in plants 
requires more consideration for complex regions with dense variants, highly similar 
regions due to whole genome duplication, and polyploidy genomes. As more high-qual-
ity genomes and variants are obtained by long-read sequencing technologies, popula-
tion-level, and type-full variant genotyping with short reads will be practicable by using 
graph-based methods, thus facilitating population analysis or trait association studies. 
By comprehensively testing multiple plant genomes, we reveal the performance level of 
these graph-based genotypers in different scenarios. Our EVG pipeline with higher per-
formance and stability can be applied to population-scale genotyping for millions of all 
types of genetic variations for genomes with lower sequencing costs. However, it should 
be noted that the utilization of genome graphs in plants will require the development of 
software specifically tailored for plant genomes.

Conclusions
This paper comprehensively evaluates multiple genome graph-based genotyping soft-
ware packages using both simulated and real data sets. The results reveal significant 
challenges in applying existing genome graph software to plants, including resource-
intensive computing, poor genotyping accuracy for repeat-related variants, and unstable 
genotyping performance. The EVG pipeline developed here delivers superior genotyp-
ing performance even in repeat regions with minimal increases in resource consumption 
when only 5× short reads are provided. Our EVG pipeline will be potentially used in 
population-scale variant genotyping and contribute to plant pan-genomic research.

Methods
Selection of variant genotyper

The following graph-based genotypers were selected: vg v1.37.0, GraphAligner v1.0.13, 
Paragraph v2.3, BayesTyper v1.5, GraphTyper2 v2.7.2, PanGenie v2.0.0, and Gramtools 
v1.10.0. Both vg map and vg giraffe are used for read alignment in the vg package. The 
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EVG version 1.0.3 was tested in this study. There single reference-based genotyping tools 
were used including GATK [41] (version 4.2.6.0), DeepVariant [42] (version 1.5.0), and 
Delly [43] (version 1.1.7).

Simulated datasets

Overall, the simulated data include sequencing reads from different genomes (A. thali-
ana, rice, maize, Glycine max, Brassica napus, heterozygous A. thaliana, and heterozy-
gous rice) with different sequencing parameters (technologies, read length, fragment 
size, and sequencing depth) (Additional file 1: Tables S3, S4). The sequencing reads were 
used for genotyping variants from public variation databases and/or resulting from 
genome comparisons.

We used the ART [53] software (version 2.1.8) to generate Illumina paired-end short 
reads for each of the alternative genomes derived by introducing variants into the ref-
erence genomes using the VarSim [54] (version 0.8.6) simulator. For A. thaliana, vari-
ants from the 1001 Genomes Project and one from our previous study [5, 38] and the 
reference Col-0 from TAIR10 (https://​www.​arabi​dopsis.​org) [55] were used. For rice, 
all types of variations from the Rice SNP-Seek Database (https://​snp-​seek.​irri.​org/) [56] 
and the reference IRGSAP-1.0 (https://​rapdb.​dna.​affrc.​go.​jp/) [57] were used. For maize, 
variants are from whole genome comparisons between the reference B73 v5.0 (https://​
www.​maize​gdb.​org) [40, 45] and previously released assemblies of different accessions 
[40, 45]. These assemblies were aligned to the reference using Minimap2 [58]. Show-
snps from MUMmer4 [59] was used for calling SNPs and indels, and Assemblytics [60] 
was used for calling SVs. For Glycine max, variants from whole genome comparisons 
between the reference assembly ZH13 (https://​downl​oad.​cncb.​ac.​cn/​gwh/​Plants/) [26] 
and previously released assemblies of different accessions [26]. For Brassica napus, vari-
ants from whole genome comparisons between the reference assembly ZS11 (http://​cbi.​
hzau.​edu.​cn/​bnapus/) [61] and previously released assemblies of different accessions 
[61]. The method used for genome comparisons and variant callings was the same as in 
maize.

The number of introduced variants (Additional file 1: Table S4) is similar to the average 
number of variants found in real A. thaliana accessions [38]. The same control of variant 
numbers was done for other plant genomes. To evaluate the genotyping when multiple 
genomes are graphed, we also introduced more variants obtained from the databases 
described above to simulate multiple genomes (Additional file 1: Table S4).

To evaluate the genotypers’ performance on heterozygous genomes, we simulated het-
erozygous genomes for A. thaliana and rice. Because VarSim cannot specify the degree 
of heterozygosity, genome heterozygosity can only be controlled by adjusting the num-
ber of variants and the percentage of heterozygous variants (with parameters of “vc_
prop_het” and “--sv_prop_het”). Finally, five genomes with different heterozygosity rates 
(0.27%, 0.52%, 1.03%, 2.07%, and 2.35%) were simulated.

To evaluate the genotypers’ performance under different sequencing parameters, 
we used the ART simulator to simulate short paired-end reads with a range of read 
length (2×100 bp, 2 × 150 bp, and 2 × 250 bp), fragment size (300 bp, 400 bp, 500 
bp, 600 bp) and sequencing depth (5×, 10×, 20×, 30× and 50×). Simulated PacBio 
sequencing (P6C4 model) was generated using PBSIM [62] (version 2.0.1) with the 
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simulated A. thaliana genome serving as the reference. Varying read lengths (20 kb 
and 75kb bp) and accuracies (0.96 for 20 kb and 0.85 for 75 kb bp) were generated.

Real datasets

A. thaliana real datasets were from the 1001 Genomes Project [5] and one previ-
ous study (with NCBI project ID PRJEB31147 [38]), including genome sequences, 
PacBio, and Illumina sequencing reads (accessions: An-1, C24, and Cvi). Rice real 
datasets were from the study Zhang et  al. [44], downloaded from the CNCB (pro-
ject ID: PRJCA005926) and TGSrice databases, including genomes, ONT, and 
Illumina sequencing reads (accessions: TG19, TG28, and TG78). Maize real data-
sets were from the study Hufford et al [45], downloaded from the ENA (project ID: 
PRJEB31061) and MaizeGDB databases [40], including genomes, ONT, and Illumina 
sequencing reads accessions: B97, CML52, and CML69).

To construct the benchmark variant dataset, we first map short reads with bwa 
[63] (version 0.7.17-r1198-dirty) and call SNPs and indels with GATK [41] (version 
4.2.6.0) and BCFtools [64] (version 1.9). We kept variants shared by the two tools, 
quality score larger than 20 and a sequencing depth lower than 100. For the SV data-
set, we mapped long reads using NGMLR [65] (version 0.2.7) with default param-
eters and subsequently detected SVs using Sniffles [65] (version 2.0.3). In addition, 
we utilized the nucmer tool [59] (version 4.0.0rc1, parameters: “-c 100,” “-b 500,” 
and “-l 50”) to align the alternative genome against the reference genome and sub-
sequently identified SVs using Assemblytics [60] (version 1.2.1, parameters: unique 
sequence length of 10,000, minimum variant size of 50, and maximum variant size 
of 100,000). We identified those SV common between Sniffles and Assemblytics by 
filtering those with breakpoint differences of more than 200 bp or event size differ-
ences larger than 25% of the real event size. The resulting SVs shared by Sniffles and 
Assemblytics were used for genotyping.

For genotyping evaluation on heterozygous genomes, we used one haplotype-
resolved and chromosome-level assembly of apricot (P. armeniaca; cultivar “Rojo 
Pasión”) from one previous study [46]. The Illumina short reads and PacBio long 
reads from this study were also used for building the variant dataset. The reference 
genome from the cultivar “Yinxiangbai” is used for the read mapping [47]. Vari-
ants shared by the two haplotypes are homozygous, and the specific ones are het-
erozygous. To obtain a high-quality variant dataset, we applied both read mapping 
and assembly comparison-based methods. Firstly, SNPs and indels were called by 
GATK and BCFtools based on short read mapping, and those common ones were 
retained, similar to what was described above. Secondly, SVs were called by Snif-
fles based on the PacBio read alignments resulting from NGMLR. Thirdly, the two 
haplotype assemblies were aligned to the reference by nucmer (parameters: “-c 100,” 
“-b 500,” and “-l 50”), followed by calling SNPs and indels with show-snps, and SV 
with Assemblytics (parameters: unique sequence length of 10,000, minimum vari-
ant size of 50, and maximum variant size of 100,000). Finally, variants shared by the 
read mapping method and the assembly comparison method were identified using 
the same criteria with other genomes as described above.
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Variant genotyping with simulated and real datasets

For genotyping with simulated homozygous A. thaliana and rice genomes, different 
numbers of genomes (1, 7, 15, 30, and 50) were graphed. Variants across multiple sam-
ples were merged to obtain a non-redundant variant input data for downstream analysis 
of genotyping using VCFtools with the default parameter settings [66]. For genotyping 
with simulated heterozygous A. thaliana and rice, graphs with one and seven genomes 
were used. For genotyping with simulated maize, Glycine max and Brassica napus, 
graphs with one and seven genomes were used. For genotyping with real datasets from 
A. thaliana, rice, maize, and apricot, graphs with one and seven genomes were used. 
For genotyping evaluation in a real dataset from A. thaliana, rice, and maize, variants 
from three different accessions were genotyped individually. The detailed information 
on genome graphs and variants is included in Additional file 1: Table S4, S14, S15 and 
Additional file 2: Table S16, S17.

As genotypers Paragraph, BayesTyper, and GraphTyper2 require linear-reference-
based read alignment BAM files, we used BWA to align paired-end short reads from 
each dataset and used SAMTools [8] (version 1.15) to sort and convert the alignment 
output into BAM format. vg map, vg giraffe, GraphAligner, PanGenie, and Gramtools 
all directly input read data, variant data, and reference genomes. For all software except 
GraphTyper2, we run the genotyping with the default parameters as recommended in 
their manuals. The detailed commands for running each genotyping tool on a Linux sys-
tem are uploaded to the GitHub website (https://​github.​com/​JiaoL​ab2021/​EVG/​wiki/​
EVG-​paper).

To measure the genotyping precision, recall, and F-score, we compared each variant 
called by each genotyper with the true variant dataset by using the script graphvcf in 
EVG developed in this study. For SVs, if both the start breakpoint and the end break-
point of one SV were within 200 bp of the true SV positions, and the SV sizes differed 
by at most 25% of the true size, such SV calling was considered correct presence. If the 
genotype of this SV calling also matched the true event, it is considered correct geno-
type. For an indel calling, the correct presence requires a position difference of less than 
10 bp, while for a SNP calling, an exact position match is necessary.

The EVG workflow

EVG software takes as input a variant VCF file of the population, the reference genome, 
and a configuration file containing the sequencing reads path. The whole EVG workflow 
mainly contains three steps. EVG can support restarting the task from the point of fail-
ure by using the “--restart” parameter. The details of each step are described as follows:

Step 1: preprocessing

This preprocessing step mainly involves the read data subsampling, variant filtering, 
and VCF file reformatting. Firstly, to speed up read mapping against genome graphs, 
EVG offers a solution by first extracting a subset (default: 15×) of read data for down-
stream genotyping. Based on this study, acceptable genotyping results can be achieved 
with as little as 5× data. Secondly, to reduce resource consumption, variants can be fil-
tered according to their Minor Allele Frequency (MAF) and missing rate using EVG. By 
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default, variants are not filtered. Thirdly, to avoid throwing errors due to incompatible 
input variants in the VCF file provided by users, EVG automatically checks the VCF file 
and reformats any variants to be compatible with the software’s different requirements 
accordingly.

Step 2: select genotypers and do genotyping

EVG automatically selects the optimal genotyping process based on factors including 
the size of the reference genome, the sequencing depth of the individual genome to be 
genotyped, and the read length of the sequencing data. In particular, if long-read data 
are used for genotyping, EVG will run GraphAligner for aligning reads to the graph 
and vg for the downstream genotyping. For short reads-based genotyping, two modes 
EVG-fast and EVG-precise, are provided. BayesTyper is used for SNP, indels, and SV 
genotyping in both modes. In the EVG-fast mode, the tool Paragraph is only used for SV 
genotyping, and other tools are selected for SNP, indel, and SV genotyping according to 
the reference genome size, sequencing read length and depth. Specifically, if the genome 
size is larger than 1 GB, EVG will include vg giraffe; otherwise, vg map will be added. 
Additionally, EVG will also run GraphTyper2 when the read length is greater than 130 
bp and the sequencing depth is greater than 5×. However, when the sequencing depth 
is less than 5× or read length is shorter than 130bp, EVG will employ PanGenie as well 
(Additional file 1: Fig. S19; Additional file 2: Table S18). In the EVG-precise mode, Para-
graph is used for SNP, indels, and SV genotyping. Like in EVG-fast mode, other tools 
are selected for SNP, indel, and SV genotyping according to the reference genome size, 
sequencing read length and depth. Notably, EVG offers the option to customize the soft-
ware for genotyping.

Remarkably, Paragraph generates three files for each variant during running, which 
will result in high disk I/O consumption if SNPs and indels are included. So, Paragraph is 
only used for SV genotyping in EVG-fast mode. After selecting, EVG submits all tasks in 
parallel. When all tasks are completed, EVG converts the output for subsequent merges.

Step 3: merge and finalize genotyping

For each sample, the input SVs to be genotyped are the same. But some graph-based 
programs may output different coordinates for some SVs. For example, variant coordi-
nates obtained from vg may have some changes. Here, our EVG merge process aims to 
determine the true coordinates of the output SVs which they should correspond to. EVG 
employs a clustering approach based on variant size and position to cluster the output 
(EVG merge) (Additional file 1: Fig. S20). For variants larger than 50 bp, EVG clusters 
them together if their positional differences are less than 200 bp. Similarly, for indels 
smaller than 50 bp, their positional differences should be less than 10 bp, while SNPs 
require precise positional matching. In addition to considering positional information, 
EVG also require that the length difference ratio of variants within the same cluster is 
less than 0.25.

EVG will first cluster all the variants to form a variant graph, with each node contain-
ing the variant’s location, length, variant type, genotyping, and depth information. The 
variants in the same position are put on the same branch. To keep the read depth of 
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different software on the same order of magnitude, we use the Z-score to normalize the 
read depth for each variant:

where D’ indicates the normalized read depth of a variant. D corresponds to this variant 
read depth calculated by genotypers and present in the genotyping output VCF file. μ 
and σ are the average and standard deviation of read depth for all variants genotyped by 
a genotyper. N is the number of variants.

EVG selects the most likely genotyping according to consistency across different geno-
typers and depth information. For small variants, including SNPs and indels, the gen-
otype is determined as the one supported by most genotypers. When no genotype is 
supported by more than one genotyper, EVG will skip this variant. For SV genotyping, 
EVG also chose the genotype supported by most genotypers. In cases where all genotype 
frequencies are equal to 1, the genotype is the one with the smallest normalized absolute 
depth.
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