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Abstract 

Background: Amino acid substitutions can perturb protein activity in multiple 
ways. Understanding their mechanistic basis may pinpoint how residues contribute 
to protein function. Here, we characterize the mechanisms underlying variant effects 
in human glucokinase (GCK) variants, building on our previous comprehensive study 
on GCK variant activity.

Results: Using a yeast growth‑based assay, we score the abundance of 95% of GCK 
missense and nonsense variants. When combining the abundance scores with our 
previously determined activity scores, we find that 43% of hypoactive variants 
also decrease cellular protein abundance. The low‑abundance variants are enriched 
in the large domain, while residues in the small domain are tolerant to mutations 
with respect to abundance. Instead, many variants in the small domain perturb GCK 
conformational dynamics which are essential for appropriate activity.

Conclusions: In this study, we identify residues important for GCK metabolic stabil‑
ity and conformational dynamics. These residues could be targeted to modulate GCK 
activity, and thereby affect glucose homeostasis.
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Background
Protein function is crucial for cellular and organismal homeostasis, but can be perturbed 
by missense variants through various mechanisms. For instance, amino acid substitu-
tions in active site residues can directly affect protein activity, but in general such resi-
dues only constitute a small fraction of a protein. Conversely, many residues affect the 
thermodynamic folding stability of a protein. As most proteins need to fold into their 
native conformation to be functional, a widespread consequence of missense variants is 
decreased protein stability, leading to protein unfolding, degradation, and a decreased 
protein abundance in the cell [1–5]. In addition, variants may affect other functional 
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sites than catalytic residues, such as interaction interfaces and allosteric sites. Mis-
sense variants may therefore result in the same phenotype through multiple independ-
ent mechanisms that may be hard to disambiguate [6, 7]. Understanding the molecular 
mechanisms of protein variants not only improves our general understanding of protein 
function but is also important for interpreting and interfering with the effects of disease-
causing variants.

Pathogenic variants in the glucokinase gene (GCK) are linked to at least three dis-
eases. Heterozygous variants that increase activity lead to hyperinsulinemic hypoglyce-
mia (HH, MIM# 601820), where insulin is secreted at low blood glucose levels [8, 9]. 
Conversely, variants that decrease activity are linked to diabetes: GCK-maturity-onset 
diabetes of the young (GCK-MODY, MIM# 125851) when heterozygous [10, 11] and 
permanent neonatal diabetes mellitus (PNDM, MIM# 606176) if homozygous or com-
pound heterozygous [12, 13]. These glucose homeostasis diseases arise due to improper 
insulin secretion, which in pancreatic β-cells is regulated by the rate of glucose phospho-
rylation, catalyzed by GCK [14–16].

GCK is a 465-residue monomeric protein that folds into a small and a large domain 
[17]. Between the two domains is the single active site where glucose binds and becomes 
phosphorylated to form glucose-6-phosphate. Binding of glucose to GCK modulates the 
enzyme’s conformational landscape which includes multiple stable conformations [18, 
19]. In the absence of glucose, GCK primarily populates the inactive super-open state, 
characterized by a large opening angle between the two domains and intrinsical disor-
der of an active site loop (residues 150–179) [17]. Upon glucose binding, GCK shifts 
towards a more compact active state, known as the closed state [17]. Here, the distance 
between the two domains is reduced, the small domain is structurally re-organized, and 
the 150–179 loop folds into a β-hairpin, collectively resulting in a catalytically active 
conformation. The conformational dynamics between inactive and active states occur 
on a millisecond timescale that is comparable to kcat [20], which enables the dynamics 
to modulate GCK activity. Therefore, GCK has a sigmoidal response to glucose, which is 
essential for appropriate GCK activity [17, 21].

Previously, using functional complementation in yeast, we characterized the activity 
of 9003 out of 9280 possible (97%) GCK missense and nonsense variants [22]. Accord-
ingly, we now know the functional impact of most variants. However, the mechanisms 
leading to altered enzyme activity remain largely unknown. Prior mechanistic analyses 
of a few hyperactive variants found that some altered the dynamics and/or structure of 
the 150–179 loop [23], while others lead to a more compact conformation in the absence 
of glucose, similar to the closed state [24–26]. Building on this, we found that a confor-
mational shift towards the active state could be a widespread mechanism for hyperactive 
variants [22]. The mechanisms of hypoactive variants include reduced structural stability 
and cellular abundance [27, 28], which was found to be a major determinant of the phe-
notypic severity in PNDM patients [29]. In addition, a conformational shift towards the 
inactive state has been predicted to be the mechanism of five hypoactive variants using 
molecular dynamics (MD) simulations [30]. However, the mechanistic basis of especially 
hypoactive variants remains to be examined more broadly.

Here, we use a yeast-based growth assay to determine the abundance of 8822 (95%) 
GCK missense and nonsense variants. Abundance was decreased by amino acid 
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substitutions in buried regions of the large domain. Conversely, in the small domain, var-
iants in general had little effect on abundance and instead affected the conformational 
dynamics of GCK. Collectively, our results expand the knowledge on the mechanisms 
of GCK disease-causing variants and illuminate the interplay between protein dynamics 
and abundance in determining GCK function.

Results and discussion
Measuring glucokinase variant abundance using the DHFR‑PCA

In order to assay GCK variant abundance, we used the Dihydrofolate Reductase Pro-
tein-Fragment Complementation Assay (DHFR-PCA) [31–34]. In this system, a 
methotrexate-resistant mutant of mouse DHFR is split into two fragments. One frag-
ment (DHFR[F3]) is fused to the protein of interest, here GCK, while the other frag-
ment (DHFR [F1,2]) is over-expressed freely. Both the fusion protein and fragment are 
expressed in wild-type yeast cells, which are grown on media containing methotrexate 
to inhibit the endogenous DHFR. If the fusion protein is abundant in the cell, the two 
DHFR fragments will reconstitute to form functional DHFR, thus enabling the cell to 
grow on methotrexate medium. However, if the fusion protein has a low abundance in 
the cell, less of the functional DHFR will form, leading to slower growth. In this way, 
yeast growth reports on protein abundance (Fig. 1A).

To test the dynamic range of the DHFR-PCA for GCK missense variants, we assayed 
the wild-type protein and seven selected variants in low-throughput. Yeast expressing 
wild-type GCK grew on methotrexate medium, while an empty vector control showed 
no growth (Fig. 1B). The common variant D217N [35] and a catalytically inactive vari-
ant D205H [17, 36] grew similar to wild-type GCK (Fig. 1B), suggesting a wild-type-like 
abundance as expected. The five remaining variants (G44S, G261R, G299R, E300K, and 
L315H) are disease-linked [37–39] and were previously predicted by thermodynamic 
stability calculations ( ��G ) to be destabilized [22]. In addition, E300K is a well-stud-
ied unstable GCK variant [27, 28]. Accordingly, all five variants showed reduced growth 
compared to wild-type GCK (Fig. 1B), albeit for the G44S and G299R variants this effect 
was less pronounced. In conclusion, the DHFR-PCA detected the low-abundance vari-
ants and can therefore assess GCK variant abundance.

Next, we multiplexed the DHFR-PCA to widely assess the abundance of GCK mis-
sense variants (Fig.  1C). Previously, we generated a library of GCK variants [22]. This 
library was cloned into the DHFR-PCA vector to generate an abundance variant library, 
which was transformed into wild-type yeast. Following outgrowth, the yeast library was 
grown at 37 ◦ C on methotrexate medium for 4 days to select for abundance. Then, vari-
ants were sequenced before and after selection, and sequencing data were analyzed to 
obtain abundance scores.

A map of glucokinase variant abundance

We scored the abundance of 8822 missense and nonsense variants (95%) (Fig.  2A). 
The abundance scores are scaled such that nonsense variants have a median score of 
zero while synonymous variants have a median score of one. As an initial quality con-
trol check of the abundance scores, we found that the variants tested in low-through-
put scored as expected (Additional file  1: Fig.  S1A). In addition, the distributions of 



Page 4 of 22Gersing et al. Genome Biology           (2024) 25:98 

Fi
g.

 1
 M

ea
su

rin
g 

gl
uc

ok
in

as
e 

va
ria

nt
 a

bu
nd

an
ce

 b
y 

D
H

FR
‑P

C
A

. A
 O

ve
rv

ie
w

 o
f t

he
 D

ih
yd

ro
fo

la
te

 R
ed

uc
ta

se
 P

ro
te

in
‑F

ra
gm

en
t C

om
pl

em
en

ta
tio

n 
A

ss
ay

 (D
H

FR
‑P

C
A

). 
B 

Lo
w

‑t
hr

ou
gh

pu
t t

es
t o

f 
th

e 
D

H
FR

‑P
C

A
. S

el
ec

te
d 

gl
uc

ok
in

as
e 

va
ria

nt
s 

ex
pr

es
se

d 
in

 w
ild

‑t
yp

e 
ye

as
t c

el
ls

 w
er

e 
gr

ow
n 

on
 m

ed
iu

m
 w

ith
ou

t (
D

M
SO

) o
r w

ith
 m

et
ho

tr
ex

at
e 

(M
TX

) t
o 

as
se

ss
 th

ei
r i

m
pa

ct
 o

n 
ce

llu
la

r p
ro

te
in

 
ab

un
da

nc
e.

 T
he

 v
ec

to
r c

on
tr

ol
 d

id
 n

ot
 c

on
ta

in
 th

e 
D

H
FR

‑P
C

A
 s

eq
ue

nc
es

. C
 O

ve
rv

ie
w

 o
f t

he
 m

ul
tip

le
xe

d 
as

sa
y 

fo
r g

lu
co

ki
na

se
 v

ar
ia

nt
 a

bu
nd

an
ce



Page 5 of 22Gersing et al. Genome Biology           (2024) 25:98  

nonsense and synonymous variants were separated, while the scores of missense vari-
ants spanned from synonymous-like to nonsense-like (Fig. 2B). Consistent with expecta-
tions, nonsense mutations at most positions were not tolerated except for at the extreme 
C-terminal region (Fig. 2A). To further validate the abundance scores, we examined the 
cellular protein levels of 11 GCK variants expressed with an N-terminal GFP-tag, using 
western blotting. The protein levels quantified from western blots correlated with abun-
dance scores (Pearson’s r =  0.80, p-value = 2e−08) (Additional file 1: Fig. S1BC). We 
note that variants with an abundance score below 0.5 all showed low cellular protein 
abundance and that differences in scores below 0.5 may not translate to changes in cel-
lular protein levels. Despite this limitation, the abundance scores reflect cellular protein 
abundance of the GCK variants.

Having validated the abundance scores, we examined variant effects structurally, map-
ping the median abundance score at each position onto the structure of glucose-bound 

Fig. 2 Map of glucokinase variant abundance. A Heatmap showing the abundance scores of 8822 missense 
and nonsense (*) glucokinase variants, as well as the median score at each position (MED). The wild‑type 
amino acid at each position is shown in yellow. Missing variants are shown in gray. Above the heatmap, 
the regions forming the hinge region (gray) and the large (light blue) and small (light orange) domains 
are represented as a bar. In addition, the relative solvent accessible surface area (rASA) of each residue 
in the closed and super‑open conformations is shown. B Abundance score distributions of glucokinase 
missense, synonymous, and nonsense variants. Dashed lines indicate the scores of three variants tested in 
low‑throughput to be unstable (E300K) or wild‑type‑like (D205H and D217N). C The closed active state of 
glucokinase colored by median abundance scores. The coloring scheme is the same as in panel A. Glucose is 
shown in orange. PDB: 1V4S
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GCK. This revealed that the small domain tolerated mutations at most positions 
(Fig.  2C), potentially due to the domain’s conformational heterogeneity and dynamic 
nature [17, 24]. In contrast, the large domain is more static [17, 24], and while surface-
exposed residues seemed mutation-tolerant, most buried residues in the large domain 
appeared to destabilize GCK when mutated (Fig. 2C, Additional file 1: Fig. S2). Accord-
ingly, 33% of residues in the large domain had a low median abundance score (< 0.58, 
Additional file 1: Fig. S3), compared to 10% of small-domain residues (Additional file 1: 
Fig. S4). The ratios of low abundance residues to buried residues were 57% (55%) and 
31% (17%) for the large and small domain, respectively, when evaluated on the super-
open (closed) structure. Thus, low abundance variants were still enriched in the large 
domain when the difference in the number of buried residues in the two domains was 
taken into account. Hence, for loss-of-function variants in the large domain, a general 
mechanism may be to decrease protein abundance.

Mechanistic analyses of hypo‑ and hyperactive glucokinase variants

As decreased protein stability is a major cause of loss-of-function variants [1, 40], we 
next examined the relation between GCK variant abundance and activity. We used 
GCK variant activity scores previously determined using yeast complementation [22]. 
An activity score of zero corresponds to the activity of nonsense variants, while a score 
of one corresponds to the activity of synonymous variants. As expected, activity scores 
show a greater correlation with evolutionary distance scores (Additional file 1: Figs. S5 
and S6) while abundance scores correlate with predictions of changes in protein ther-
modynamic stability ( ��G , Additional file  1: Figs.  S7 and S8). Using the activity and 
abundance scores of 9019 variants (including missense, synonymous, and nonsense vari-
ants), we examined how many hypoactive variants were associated with decreased abun-
dance. We used a threshold of 0.58 for low abundance (Additional file 1: Fig. S3) and 0.66 
for low activity [22]. Using these thresholds, 43% of the low-activity variants decreased 
abundance (Fig. 3A), in line with prior analyses [2, 7, 41] and similar to what is found 
using ��G values with a threshold of 2 kcal/mol [41] (43% using the super-open struc-
ture and 53% using the closed structure). The fraction of variants with decreased activity 
showing low abundance was similar for pathogenic variants causing GCK-MODY [42] 
(41%, Additional file 1: Fig. S9), suggesting that loss of abundance is a prevalent mecha-
nism for GCK disease-associated mutations. The remaining 57% low-activity variants 
were not associated with low abundance and appeared to lose activity through other 
mechanisms, including a predicted decreased ligand binding affinity (Additional file 1: 
Fig. S10).

Surprisingly, 25% of the low-abundance variants scored as wild-type-like or hyperac-
tive in the activity assay (Fig. 3A). This apparent discrepancy might stem from different 
assay conditions, such as expression level or temperature (activity was assayed at 30 ◦ C, 
while abundance was assayed at 37  ◦C), e.g., some low-abundance but active variants 
might be temperature-sensitive or compensated for by high expression. Alternatively, 
some variants might reduce abundance but increase specific activity, resulting in a wild-
type-like or increased activity score, as the activity assay also to some extent reflects var-
iant abundance. In conclusion, decreased abundance appears to be a major mechanism 
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for GCK variants with decreased activity, in particular in the large domain, although the 
association between abundance and activity is not simple.

In order to identify the regions of GCK where changes in activity upon mutation are 
not explained by abundance, we compared the median activity and abundance scores 
along the GCK sequence (Fig.  3B). In some regions, the two medians showed a good 
correlation (Fig. 3B and C right panel), suggesting that loss-of-activity variants at these 
positions are caused by decreased abundance. In contrast, some regions showed large 
deviations between the two scores (Fig.  3B and C left panel). In general, regions with 

Fig. 3 Changes in glucokinase activity explained by decreased abundance and conformational shifts. A 
Abundance and activity scores of 9019 missense, nonsense, and synonymous glucokinase variants shown 
as a 2D histogram. The thresholds for low abundance (0.58) and low activity (0.66) are indicated as red 
dashed lines. The number and percentage of variants falling within each quadrant are reported. B The 
median abundance and activity of variants at each position of the glucokinase sequence is shown as a 
line plot. The regions forming the hinge region (gray) and the large (light blue) and small (light orange) 
domains are represented as a bar at the bottom. C Plots zooming in on regions 145–190 (left) and 330–400 
(right) from panel B. D Barcode plots showing the median abundance score, predicted change in protein 
thermodynamic stability ( ��G , kcal/mol) using the closed active state or the super‑open inactive state, and 
the difference (�(��G)) between the two ��G predictions. For the bottom plot, red indicates that variants 
at these positions are predicted to destabilize the closed state more, while at blue positions variants are 
predicted to destabilize the super‑open state more. PDBs: 1V4S (closed) and 1V4T (super‑open). The ��G 
data were obtained from [22] except for the 157–179 region in the super‑open state. For all panels, the data 
on glucokinase variant activities were obtained from [22]
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increased activity appeared unaffected in the abundance assay (Fig. 3B), suggesting that 
a changed abundance is not a common mechanism for hyperactive variants. Notably, 
nearly all regions where variants increased or decreased activity without affecting abun-
dance are part of the small domain (Fig. 3B).

The small domain attains several conformations during GCK’s catalytic cycle [17, 
24]. Consequently, small-domain variants might affect GCK activity by altering GCK 
dynamics. Such a mechanism is well-established for hyperactive variants [22–26]. For 
hypoactive variants, MD simulations have predicted five small-domain variants to shift 
GCK towards inactive conformations [30]. In addition, we previously used predictions 
of protein thermodynamic stability ( ��G ) for the structures of super-open and closed 
GCK to examine a conformational shift mechanism [22]. Although we mostly focused 
on hyperactive variants, we found two regions around residues 150 and 450 where hypo-
active variants were predicted to shift GCK towards the inactive state. Accordingly, the 
region around residue 450, corresponding to helix 13, was previously found to modulate 
the allosteric properties of GCK [43].

Our prior mechanistic analysis of hypoactive variants was limited by residues 157–179 
missing from the crystal structure of super-open GCK. To examine this region further, 
we created five different structural models of the super-open state that included the 157–
179 loop region, assuming that the region is disordered, as previously seen for all promi-
nent substates of unliganded GCK [20]. For all five models, we predicted the change in 
protein thermodynamic stability using Rosetta [44] and used the average ��G s from 
the five models for the missing loop residues to supplement our previous predictions 
[22]. As previously, we calculated the difference between the ��G s in the closed and 
super-open state ( ��Gsuper-open −��Gclosed ). Variants with a high negative score are 
predicted to shift GCK towards the inactive (super-open) state, given that they do not 
severely destabilize the super-open conformation, which would likely lead to decreased 
cellular abundance. Many residues were on average predicted to shift GCK towards the 
super-open conformation upon mutation, and these spanned the entire 150–179 region 
(Fig. 3D). Variants in the 150–179 region might therefore severely decrease activity with-
out affecting abundance by shifting GCK into an inactive state.

Variants in the 150–179 region affect glucokinase conformational dynamics

To substantiate a conformational shift mechanism for hypoactive variants experimen-
tally, we focused on the 150–179 region. If the region’s disorder in the super-open 
state results in mutational tolerance with respect to abundance, then any disordered 
sequence should be tolerated without perturbing GCK protein abundance. To test 
this, we replaced the region spanning residues 150–179 with a GS-repeat sequence of 
either 30 or 6 residues (Fig. 4A). The resulting mutants retained no detectable activity 
(Fig. 4B), as expected, but did not affect the cellular protein level of GCK compared to 
wild-type (Fig. 4C). When we further examined abundance using the DHFR-PCA, the 
mutants grew similar to wild-type GCK (Fig. 4D), again supporting that abundance was 
not affected. In conclusion, the region spanning residues 150–179 can be replaced by 
six residues (GSGSGS) or a 30-residue GS repeat without affecting GCK cellular abun-
dance. This is consistent with the region being highly tolerant towards mutations in the 
super-open state.
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If the super-open state is less destabilized than the closed state by mutations in the 
150–179 region, variants are expected to shift the conformational equilibrium towards 
the super-open state, in turn resulting in decreased activity. Accordingly, re-stabilizing 
the closed state should increase activity. To test this, we focused on two residues in the 
150–179 region, E157 and K161, that in the crystal structure of the closed state form an 
ion pair (Fig. 4E). Single mutants at these positions that reverse the charges, E157K and 
K161E, decrease activity but not abundance, based on their high-throughput assay scores 
(E157K activity = − 0.13, abundance = 0.96; K161E activity = 0.56, abundance= 0.92). 
A likely explanation is a conformational shift to an inactive state due to charge repulsion 
in the closed state. In turn, the closed state should become favorable again when revers-
ing both charges using the double mutant E157K K161E, leading to increased activity 

Fig. 4 A conformational shift towards the super‑open state as a mechanism for variants in the 150–179 
region. A Left, protein structures of wild‑type glucokinase in the closed and super‑open states with the 
150–179 region marked in orange. Right, overview of glucokinase in the super‑open state with the 150–179 
region substituted by 30 (15xGS) or 6 residues of GS (3xGS) shown in red. B Yeast growth assay scoring the 
activity of wild‑type glucokinase (WT) and the two mutants. The growth on galactose is used as a control 
while growth on 0.2% glucose reflects glucokinase activity. C Western blot showing the protein levels of the 
indicated constructs expressed in the hxk1� hxk2� glk1� yeast strain from panel B. D DHFR‑PCA probing the 
abundance of wild‑type glucokinase (WT) and the two mutants by growing yeast cells on control medium 
(DMSO) and medium with methotrexate (MTX) to select for abundance. E Structure of glucokinase in the 
closed state with the 150–179 region marked in black, E157 in dark blue and K161 in red. F Yeast growth assay 
scoring the activity of wild‑type glucokinase (WT) and the indicated single and double mutants. PDBs: 1V4S 
(closed) and 1V4T (super‑open)
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relative to the single mutants. When we examined the activity of the mutants, the double 
mutant rescued the decreased activity of the single mutants (Fig. 4F), consistent with an 
increased population of the closed state.

Finally, inspired by previous work [30], we explored whether unbiased MD simulations 
could be used to gain further insight into how variants affect the conformational dynam-
ics of GCK. We performed all-atom MD simulations of wild-type GCK and five GCK 
variants, four of which sit in the 150–179 region, starting from both closed and super-
open conformations of the proteins (Additional file 1: Figs. S11 and S12). The simulations 
of wild-type GCK indicated that the small domain is more dynamic in the super-open 
conformation of the protein than in the closed conformation (Additional file 1: Figs. S13 
and  S14). However, we did not observe any substantial differences between the wild-
type and variant dynamics for any of the simulated variants, at least not when evaluating 
variant effects on local fluctuations (Additional file 1: Figs. S15 and S16) and on devia-
tions from wild-type crystal structures (Additional file 1: Fig. S14). Given the simulation 
time of 1 µs, we did not expect to observe an influence of variants on the slow structural 
transition between the closed and super-open states (Additional file 1: Fig. S17), since 
these transitions occur on a millisecond timescale [24]. However, our results show that 
even for very structurally destabilized variants and for variants with highly increased or 
decreased cellular activities, 1 µs of simulation is not enough to reveal how such variants 
might affect dynamics within the closed and super-open states, if those dynamics are 
actually affected.

Collectively, the above experiments support that variants in the 150–179 region 
decrease GCK activity by shifting the conformational ensemble towards inactive states. 
We cannot exclude that mutations in the region may cause local unfolding without 
affecting the global protein conformation. However, a prior study found that the 150–
179 region folded in the absence of glucose when mutating the C-terminal helix 13 
[24]. As other structural elements in the small domain affect the folding of the 150–179 
region, it seems reasonable that variants causing the region to unfold would affect the 
entire domain’s conformation.

Conclusions
Missense variants may perturb protein function through various mechanisms. Dissect-
ing variant mechanisms allows us to gain insights into protein function and potentially 
to interfere with disease-causing variants. The development of multiplexed assays of 
variant effects (MAVEs) (also known as deep mutational scanning (DMS)) [45, 46] has 
enabled us to disentangle variant mechanisms on a massive scale by probing the effects 
of variants using multiple read-outs [7, 41, 47–51].

Building on our prior study on GCK variant activity [22], we here explored GCK vari-
ant mechanisms using a multiplexed assay reporting on cellular protein abundance. 
Our abundance scores included 95% of the possible nonsense and missense variants. 
Amino acid substitutions that decreased abundance were enriched in buried residues 
of the large domain. For this domain, loss of abundance therefore appears to be a gen-
eral mechanism for loss-of-function variants. Accordingly, we find that 43% of variants 
that decrease activity do so together with abundance. The remaining 57% low-activity 
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variants may instead perturb functional sites, such as catalytic residues, allosteric resi-
dues, or residues modulating GCK conformational dynamics.

Accordingly, in the dynamic small domain variants often perturbed activity but not 
abundance. This domain attains multiple conformations in GCK’s catalytic cycles [17], 
and these dynamics are crucial for appropriate GCK activity and regulation. Prior 
studies have focused mainly on hyperactive variants that affect the conformations and 
dynamics of GCK [22, 24–26]. For hypoactive variants, MD simulations have predicted 
five variants to shift GCK into the super-open inactive state [30]. Using predictions of 
changes in protein thermodynamic stability, we found that variants predicted to shift 
GCK into the inactive state are enriched in the 150–200 and 450 regions. In contrast to 
the prior molecular dynamics simulations and kinetic studies, however, using protein 
stability predictions allowed us to examine the conformational shift mechanism widely.

While computational predictions allowed us to broadly examine the conformational 
shift mechanism, we experimentally supported our findings focusing on the 150–179 
region. We replaced the region by a small linker sequence without perturbing GCK’s 
cellular protein abundance, supporting that variants in the region are tolerated due to 
the region’s disorder in the super-open state. In turn, activity was rescued in a double 
mutant expected to stabilize the closed active state. Collectively, our results support that 
hypoactive variants may act by a relative destabilization of the closed state causing a 
conformational shift to the super-open inactive state.

In summary, we used a multiplexed abundance assay to identify variants that affect 
GCK protein stability and conformational dynamics. By identifying the mechanistic 
bases of hypoactive variants, we pinpointed the residues regulating stability and dynam-
ics to ensure appropriate GCK activity. In turn, sites where such residues concentrate 
may be targeted to modulate GCK activity.

Methods
Buffers

SDS sample buffer (4×): 250 mM Tris/HCl, 40% glycerol, 8% SDS, 0.05% pyronin G, 
0.05% bromophenol blue, pH 6.8. SDS sample buffer was diluted to 1.5× in water before 
use and 2% β-mercaptoethanol was added. TE buffer: 10 mM Tris/HCl, 1 mM EDTA, 
pH 8.0. PBS: 6.5 mM Na2HPO4 , 1.5 mM KH2PO4 , 137 mM NaCl, 2.7 mM KCl, pH 7.4. 
Wash buffer: 50 mM Tris/HCl, 150 mM NaCl, 0.01% Tween-20, pH 7.4.

Plasmids

The DNA sequence of pancreatic human GCK (Ensembl ENST00000403799.8) was 
codon optimized for yeast and cloned into pDONR221 (Genscript). Selected mis-
sense variants were generated by Genscript. To generate a destination vector for the 
DHFR-PCA, a Gateway cassette was inserted 3′  to DHFR[F3] and a linker in pGJJ045 
[34] (Genscript). GCK was cloned into the pDEST-DHFR-PCA destination vector 
using Gateway cloning (Invitrogen), such that the N-terminus of GCK was fused to 
DHFR[F3] (Additional file  1: Fig.  S18). For the GCK activity assay, GCK was cloned 
into pAG416GPD-EGFP-ccdB (Addgene plasmid 14316; http:// n2t. net/ addge ne: 14316; 
RRID:Addgene_14316) [52] using Gateway cloning (Invitrogen).

http://n2t.net/addgene:14316
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Yeast strains

BY4741 was used as the wild-type strain. The hxk1� hxk2� glk1� strain used for the 
GCK yeast complementation assay was generated previously [22]. Wild-type yeast cells 
were cultured in synthetic complete (SC) medium (2% D-glucose, 0.67% yeast nitro-
gen base without amino acids, 0.2% drop out (USBiological), (76 mg/L uracil, 76 mg/L 
methionine, 380 mg/L leucine, 76 mg/L histidine, 2% agar)) and Yeast extract-Peptone-
Dextrose (YPD) medium (2% D-glucose 2% tryptone, 1% yeast extract). hxk1� hxk2� 
glk1� yeast cells were cultured in SC and YP medium containing D-galactose instead of 
D-glucose. Yeast transformations were performed as described before [53].

Yeast growth assays

For growth assays, yeast cells were grown overnight and were harvested in the exponen-
tial phase (1200 g, 5 min, RT). Cell pellets were washed in sterile water (1200 g, 5 min, 
RT) and were resuspended in sterile water. The cultures were adjusted to an OD600nm of 
0.4 and were diluted using water in a fivefold serial dilution. The cultures were spotted in 
drops of 5 µ L onto agar plates. The plates were briefly air dried and were incubated at 
30 ◦ C (activity assay) or 37 ◦ C (DHFR-PCA) for 2 to 4 days.

DHFR‑PCA

To assay for GCK variant abundance, the DHFR-PCA was used [31–34]. For plates, SC 
medium with leucine, methionine, and histidine was used. For selection, a final concen-
tration of 100 µg/mL methotrexate (Sigma-Aldrich, 100 mM stock in DMSO) and 1 mM 
sulfanilamide (Sigma-Aldrich, 1 M stock in acetone) were used. For control plates, a cor-
responding volume of DMSO was used. Plates were incubated for 4 days at 37 ◦ C. As a 
vector control for DHFR-PCAs, pAG416GPD-EGFP-ccdB was used.

GCK activity assay

To assay for GCK activity, yeast cells were grown on SC medium without uracil contain-
ing 0.2 % D-glucose for 3 days at 30 ◦C.

Protein extraction

Yeast protein extraction was performed as described before [54]. Accordingly, 1.5–3 
OD600nm units of exponential yeast cells were harvested in Eppendorf tubes (17,000 g, 
1 min, RT). Proteins were extracted by shaking cells with 100 µ L of 0.1 M NaOH (1400 
rpm, 5 min, RT). Then, cells were spun down (17,000 g, 1 min, RT), the supernatant was 
removed, and pellets were dissolved in 100 µ L 1.5×  SDS sample buffer (1400 rpm, 5 
min, RT). Samples were boiled for 5 min prior to SDS-PAGE.

Electrophoresis and blotting

To examine GCK protein levels, proteins in yeast extracts were separated by size on 
12.5% acrylamide gels by SDS-PAGE. Subsequently, proteins were transferred to 0.2 µ m 
nitrocellulose membranes. Following western blotting, membranes were blocked in 5% 
fat-free milk powder, 5 mM NaN3 , and 0.1% Tween-20 in PBS. Then, membranes were 
incubated overnight at 4 ◦ C with a primary antibody diluted 1:1000. Membranes were 
washed 3 times 10 min with Wash buffer prior to and following a 1-h incubation with a 
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peroxidase-conjugated secondary antibody. For detection, membranes were incubated 
for 2–3 min with ECL detection reagent (Amersham GE Healthcare) and were then 
developed using a ChemiDoc MP Imaging System (Bio-Rad). The primary antibody was 
anti-GFP (Chromotek, 3H9 3h9-100). The secondary antibody was HRP-anti-rat (Invit-
rogen, 31470).

Western blot quantification

To quantify protein levels from western blots, the Image Lab Software (Bio-Rad) was 
used. The software was used to measure the background-adjusted intensity of protein 
bands and the intensity of the Ponceau stain in the same lane. Then, a loading normaliza-
tion factor was calculated for all lanes by dividing the ponceau intensity of lane 1 with 
that of all other lanes. Band intensities were adjusted by multiplying with their corre-
sponding loading normalization factor. Finally, the loading-adjusted variant intensities 
were divided by the wild-type GCK intensity to obtain a normalized intensity that could 
be compared between replicates.

Glucokinase library

Cloning

Three regional pENTR221 libraries spanning aa 2–171 (region 1), 172–337 (region 3), 
and 338–465 (region 3) of the GCK sequence were previously generated [22]. To clone 
the entry libraries into the DHFR-PCA destination vector, each regional entry library 
was used for a large-scale Gateway LR reaction consisting of: 169.6 ng pENTR221-
GCK library, 450 ng pDEST-DHFR-PCA vector, 6 µ L Gateway LR Clonase II enzyme 
mix (ThermoFisher), TE buffer to 30 µ L. The LR reactions were incubated overnight 
(RT). The following day, each reaction was terminated by incubation with 3 µ L pro-
teinase K (37 ◦ C, 10 min). For each region, 4 µ L LR reaction was transformed into 100 
µ L NEB 10-beta electrocompetent E. coli cells. Following electroporation, cells were 
recovered in NEB 10-beta outgrowth medium (37 ◦ C, 1 h). Then, cells were plated on 
LB medium with ampicillin and incubated overnight at 37 ◦ C. If at least 500,000 colo-
nies were obtained, cells were scraped from plates using sterile water. Plasmid DNA was 
extracted from cells corresponding to 400 OD600nm units (Nucleobond Xtra Midiprep 
Kit, Macherey-Nagel).

Yeast transformation

To express the GCK variant libraries in yeast, each regional plasmid library was trans-
formed into the BY4741 yeast strain as described before [55] using the 30×  scale-up. 
Briefly, yeast cells were grown overnight at 30 ◦ C until late exponential phase. Cultures 
were then diluted with 30 ◦ C YPD medium to an OD600nm of 0.3 in a minimum volume 
of 150 mL and were incubated with shaking for 4–5 h until two divisions had occurred. 
Then, cells were harvested and washed two times in sterile water (1200 g, 5 min, RT). 
The cell pellet was resuspended in a transformation mix consisting of 7.2 mL 50% PEG, 
1.08 mL 1.0 M LiAc, 300 µ L 10 mg/mL single-stranded carrier DNA, 30 µ g plasmid 
library, and sterile water to 10.8 mL. The cell suspension was incubated in a 42 ◦ C water 
bath for 40 min with mixing by inversion every 5 min. Cells were harvested (3000 g, 5 
min, RT), the supernatant was removed, and cells were resuspended in 30 mL sterile 
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water. To assess the transformation efficiency, 5 µ L cells were plated in duplicate on SC-
uracil medium. The remaining cells were diluted in SC-uracil medium to an OD600nm of 
0.2, and the cultures were incubated at 30 ◦ C with shaking for 2 days until saturation.

If a minimum of 500,000 transformants were obtained, two cell pellets of 9 OD600nm 
units were harvested (17,000 g, 1 min, RT) and stored at −20 ◦ C prior to DNA extrac-
tion to serve as technical replicates of the pre-selection condition.

In parallel to the library transformations, pEXP-DHFR-PCA wild-type GCK was 
transformed into the BY4741 yeast strain using the small-scale transformation protocol 
[53].

Selection

To select for GCK variant abundance, the yeast libraries were grown in duplicate on 
medium containing 100 µg/mL methotrexate and 1 mM sulfanilamide. For each regional 
yeast library, 20 OD600nm units of cells were harvested in duplicate and were washed 
three times with sterile water (1200 g, 5 min, RT). The cells were resuspended in 500 
µ L sterile water and each replicate was plated on a BioAssay dish (245 mm × 245 mm) 
containing SC+leucine+methionine+histidine medium with 100 µg/mL methotrexate 
(Sigma-Aldrich) and 1 mM sulfanilamide (Sigma-Aldrich). The plates were incubated for 
4 days at 37 ◦ C. Following incubation, cells were scraped off each plate using 30 mL ster-
ile water. Cell pellets of 9 OD600nm units were harvested (17,000 g, 1 min, RT) and stored 
at − 20 ◦ C prior to DNA extraction.

In parallel, yeast cells expressing pEXP-DHFR-PCA wild-type GCK were also used for 
selection as described above but using 2.6 OD600nm units of yeast cells for each replicate, 
which were plated on petri dishes.

Plasmid DNA was extracted from yeast cells for two replicates pre- and post-selection, 
both for regional libraries and a wild-type GCK control. To extract plasmid DNA, the 
ChargeSwitch Plasmid Yeast Mini Kit (Invitrogen) was used.

Sequencing

In order to calculate the change in frequency of variants following selection, we 
sequenced the GCK ORF in plasmids extracted pre- and post-selection. Sequencing was 
done in 14 tiles spanning the GCK ORF, such that each regional library was covered by 
4 or 5 tiles: region 1 (tiles 1–5), region 2 (tiles 6–10), and region 3 (tiles 10–14). The 
short tiles enabled sequencing of both strands in each tile to reduce base-calling errors. 
Although a limitation of using direct sequencing as a read-out is the risk of introduc-
ing PCR errors, the tileseqMave package (https:// github. com/ jweile/ tiles eqMave) used 
for data analysis accounts for the potential errors in multiple ways. First, amplicons 
derived from a wild-type GCK template were sequenced along with the non-selective 
and selective conditions, and variant frequencies observed in the wild-type control were 
subtracted from those observed in the non-selective and selective conditions. Second, 
the package performs quality filtering based on disagreement between the two replicates 
and variant counts in the non-selective condition.

First, the plasmid DNA extracted from yeast cells was adjusted to equal concentrations 
and was used for a PCR to amplify each tile. Each PCR consisted of 20 µ L Phusion High-
Fidelity PCR Master Mix with HF Buffer (NEB), 1 µ L 10 µ M forward primer, 1 µ L 10 µ M 

https://github.com/jweile/tileseqMave
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reverse primer, 18 µ L plasmid library template. The following PCR program was used: 98 
◦ C 30 s, 21 cycles of 98 ◦ C 10 s, 63 ◦ C 30 s, 72 ◦ C 60 s, followed by 72 ◦ C 7 min and 4 ◦ C 
hold. Primer sequences can be found in the supplementary data (SKG_tilenumber_fw/
rev).

Following tile amplification, Illumina index adapters were added to allow for multi-
plexing. For each indexing PCR, the following was mixed: 20 µ L Phusion High-Fidelity 
PCR Master Mix with HF Buffer (NEB), 2 µ L 10 µ M i5 indexing adapter, 2 µ L 10 µ M i7 
indexing adapter, 1 µ L 1:10 diluted PCR product, 15 µ L nuclease-free water. The follow-
ing PCR program was used: 98 ◦ C 30 s, 7 cycles of 98 ◦ C 15 s, 65 ◦ C 30 s, 72 ◦ C 120 s, 
followed by 72 ◦ C 7 min and hold at 4 ◦C.

Following the indexing PCR, the indexed DNA fragments were pooled using equal 
volumes, and 100 µ L were run on a 4% E-gel EX Agarose Gel (Invitrogen) prior to gel 
extraction. Then, the quality and fragment size of the extracted DNA were examined 
using a 2100 Bioanalyzer system (Agilent), and the DNA concentration was adjusted 
using Qubit (ThermoFisher), before paired-end sequencing of the libraries using an Illu-
mina NextSeq 550.

Data analysis

The TileSeqMave (https:// github. com/ jweile/ tiles eqMave, version 1.1.0) and TileSeq 
mutation count (https:// github. com/ Ryoga Li/ tiles eq_ mutco unt, version 0.5.9) pipelines 
were used to calculate variant abundance scores from sequencing data.

Error calculation

Standard errors of abundance scores were calculated and refined using TileSeqMave 
(https:// github. com/ jweile/ tiles eqMave, version 1.1.0). In this pipeline, Bayesian refine-
ment or regularization [56] is used to obtain more robust estimates of the standard 
errors. Briefly, linear regression of the fitness score and read counts from the pre-selec-
tion condition are used to obtain the prior estimate of the standard error. The empiri-
cal standard error is combined with the prior using Baldi and Long’s original formula, 
where σ0 represents the prior estimate of the standard error, v0 is the degrees of freedom 
given to the prior estimate, n represents the number of experimental replicates, and s is 
the empirical standard error:

Computational analyses

Defining low‑abundance threshold

To set a threshold for the abundance scores, we fitted the abundance score distribution 
using three Gaussians. These Gaussians represent the score distributions of variants 
with an abundance score comparable to nonsense variants, intermediate variants, and 
synonymous variants, respectively. To define a cutoff for variants with decreased abun-
dance, we used the intersection of the second and last Gaussian.
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https://github.com/jweile/tileseqMave
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Structure modeling and visualization

Protein structures were visualized and rendered using UCSF ChimeraX (v1.4), devel-
oped by the Resource for Biocomputing, Visualization, and Informatics at the Univer-
sity of California, San Francisco [57, 58]. The region spanning residues 157–179 missing 
from the crystal structure of the GCK super-open conformation (PDB: 1V4T) is shown 
in dashed lines in Fig. 4, but was modeled using Modeller [59] to be able to obtain ��G 
estimates for variants in the region. Five structural models were generated with the 
Model Loops interface for Modeller available in ChimeraX (v1.3) using the super-open 
GCK structure (PDB: 1V4T) and the canonical GCK sequence (UniProt: P35557-1) as 
inputs. HETATM records and non-native terminal residues were removed from the PDB 
file using pdb-tools v2.4.3 [60] prior to the loop structure generation. Model Loops was 
run using the standard protocol, modeling only internally missing structure, and without 
allowing for any remodeling of residues adjacent to the missing segment.

Calculation of thermodynamic stability changes

Changes in protein thermodynamic stability ( ��G = �Gvariant −�Gwildtype ) caused 
by single-residue substitutions were predicted with Rosetta (GitHub sha1 c7009b3115 
c22daa9efe2805d9d1ebba08-426a54) using the Cartesian ddG protocol [44]. Structure 
preparation and relaxation and the following ��G calculations were performed using 
an in-house pipeline (https:// github. com/ KULL- Centre/ PRISM/ tree/ main/ softw are/ 
roset ta_ ddG_ pipel ine, v0.2.1). Rosetta ��G output values were divided by 2.9 to convert 
from Rosetta energy units to kcal/mol [41, 44]. ��G predictions for all possible point 
mutations in the segment spanning residues 157–179 were calculated for the super-open 
conformation of GCK based on the structural models created as described above. Pre-
dictions were performed for each of the five different structural models individually and 
subsequently averaged. For all analyses using ��G predictions in this study, the values 
for the 157–179 region in the super-open conformation were used to supplement our 
previously reported ��G values [22].

We performed additional ��G calculations for this work using as input the structure 
of the closed GCK conformation bound to the glucose substrate, with glucose kept in 
the position observed in the crystal structure (PDB: 1V4S). ��G value changes asso-
ciated with the presence of the ligand were analyzed by comparing the results to our 
previous ��G calculations, which were based on the closed conformation without sub-
strate bound [22]. For the analysis, glucose binding site residues were defined as resi-
dues positioned less than 4 Å away from glucose, with the distance between each protein 
residue and glucose defined as the shortest distance between any heavy atom in glucose 
and the residue. Variants were defined as decreasing substrate binding affinity when the 
calculated variant ��G was at least 2 kcal/mol larger in the glucose-bound structure 
than in the glucose-free structure.

Calculation of solvent accessible surface area and weighted contact number

The absolute solvent accessible surface area of every residue in both the closed (PDB: 
1V4S) and super-open (PDB: 1V4T, with residues 157–179 added as described under the 
“Structure modeling and visualization” section) crystal structure conformations of GCK 

https://github.com/KULL-Centre/PRISM/tree/main/software/rosetta_ddG_pipeline
https://github.com/KULL-Centre/PRISM/tree/main/software/rosetta_ddG_pipeline
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was calculated using DSSP [61] and normalized to a relative value (rASA) using a theo-
retically derived maximum accessibility per residue [62]. Residues with rASA ≤ 0.2 were 
categorized as structurally buried, while residues with rASA > 0.2 were categorized as 
solvent-exposed. Moreover, a weighted contact number (WCN) was calculated for every 
residue i in the structures using the expression

where ri,j is the distance between residues i and j, and r0 = 7 Å. Interresidue distances 
were evaluated using the MDTraj (v1.9.7, [63]) function compute_contacts. Distances 
were measured as the shortest distance between any interresidue pair of atoms for resi-
due pairs involving glycine and as the shortest distance between any two sidechain heavy 
atoms for all other residue pairs.

Molecular dynamics simulations

Preparation of starting structures

We performed atomistic molecular dynamics simulations of wild-type GCK and five 
GCK single substitution variants (D158A, G162Q, A173F, G175E, V455M) starting 
from both closed and super-open conformations of each variant. The simulation start-
ing structures were prepared using the closed conformation crystal structure (PDB: 
1V4S) and the super-open conformation crystal structure (PDB: 1V4T) with residues 
157–179 added to the structure using Modeller [59], as described under the “Structure 
modeling and visualization” section. Mutations were introduced to the structures using 
the PyMOL (v2.5.2) Mutagenesis Wizard [64] by always selecting the mutant side chain 
rotamer with the smallest structural “strain.” In all structures, terminal charges were 
neutralized by capping with an acetyl group in the N-terminus and an amino group in 
the C-terminus, and non-native N-terminal residues present in the crystal structures 
were mutated to match the canonical GCK sequence (UniProt: P35557-1).

Simulation setup

All simulations were performed with Gromacs (v2021.1) [65] using the a99SB-disp force 
field in combination with the a99SBdisp water model [66]. Each system was prepared by 
placing the protein structure in the center of a dodecahedral box at least 1.1 nm from the 
box boundary. The protonation states of functional groups were set to match a pH value 
of 7.4 after evaluating the effective pKa values of all groups using ProPKA [67, 68]. The 
protonation site in singly protonated histidine residues was assigned automatically by 
Gromacs. After solvation with water molecules, counter ions were added to neutralize 
the system and additional ions (Na+ and Cl− ) were added to reach an ion concentration 
of 0.15 M. Na+ ions originally present in the crystal structures were kept.

System preparation was followed by energy minimization by steepest descent with 
an initial minimization step size of 0.01 nm and until the maximum system force was 
smaller than 1000 kJ mol−1 nm−1 . A four-step equilibration protocol was then applied to 
make sure that all protein structures were stable in the simulations. First, the thermostat 
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target temperature was linearly increased from 10 to 200 K during a 5-ns NVT simu-
lation in which position restraints with a force constant of 1000  kJ  mol−1  nm−2 were 
applied to all protein heavy atoms. Second, the target temperature was further line-
arly increased from 200 to 310  K during another 5-ns NVT simulation with position 
restraints only on the protein C α atoms. Third, all position restraints were dropped, 
and pressure was equilibrated to 1 bar using the Berendsen barostat [69] in a 3-ns NPT 
simulation. Fourth, equilibration was finalized by switching to the Parrinello-Rahman 
barostat [70] and extending the simulation time with 3 ns. Following equilibration, pro-
duction simulations were run for 1 µs at 310 K and 1 bar, saving the system conformation 
every 100 ps. All simulations were run in replicas of three (different random velocities 
were used to initialize each replica) producing three trajectories for every GCK variant 
in each GCK starting conformation.

In all simulations, covalent bonds involving hydrogen atoms were constrained with the 
LINCS algorithm [71]. Van der Waals interactions and short-range electrostatic interac-
tions were evaluated with a 1.2-nm cutoff [66]. For van der Waals interactions, the force 
was shifted and smoothly switched to zero between 1 and 1.2 nm. The neighbor list was 
updated at least every 10th step. Long-range electrostatic interactions were calculated 
with the smooth particle mesh Ewald method [72] with a grid spacing of 0.16 nm and 
an interpolation order of four. The leap-frog algorithm was used for integration with a 
timestep of 2 fs. For both equilibration and production, temperature was controlled with 
the velocity-rescaling thermostat [73], treating protein and non-protein atoms as sepa-
rate coupling groups, and with a coupling time constant of 1 ps. Pressure coupling was 
applied with a time constant of 2  ps and setting compressibility to 4.5·10−5 bar−1 for 
both the Berendsen and Parrinello-Rahman barostats.

Trajectory analysis

Production trajectories were analyzed with Gromacs (v2021.1) [65] and MDTraj (v1.9.7) 
[63]. Raw trajectory files were processed with the Gromacs tool trjconv to center the pro-
tein in the simulation box and to remove non-protein species prior to further analysis. 
MDTraj was used to calculate the backbone heavy atom RMSD between all simulated 
structures and the wild-type GCK crystal structures. The RMSD calculations were car-
ried out separately for each protein domain, with domain definitions used for the simula-
tion analysis specified in Additional file 2. RMSF values were similarly evaluated for each 
domain with MDTraj from the fluctuations of C α atoms around the average simulation 
structures. Angles and distances between atoms were also calculated with MDTraj tools. 
The cleft angle between the small and large domains of GCK was monitored by calculat-
ing the angle between the C α atoms of residues 109, 233, and 229, while the movement 
of helix 13 was studied by calculating the distance between the C α atoms of residues 159 
and 452. The cleft angle definition was inspired by previous work in which the 159–452 
distance was also introduced and monitored [30].
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