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Abstract 

Recent innovations in single‑cell RNA‑sequencing (scRNA‑seq) provide the technol‑
ogy to investigate biological questions at cellular resolution. Pooling cells from mul‑
tiple individuals has become a common strategy, and droplets can subsequently 
be assigned to a specific individual by leveraging their inherent genetic differences. 
An implicit challenge with scRNA‑seq is the occurrence of doublets—droplets contain‑
ing two or more cells. We develop Demuxafy, a framework to enhance donor assign‑
ment and doublet removal through the consensus intersection of multiple demul‑
tiplexing and doublet detecting methods. Demuxafy significantly improves droplet 
assignment by separating singlets from doublets and classifying the correct individual.
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Background
Droplet-based single-cell RNA sequencing (scRNA-seq) technologies have provided the 
tools to profile tens of thousands of single-cell transcriptomes simultaneously [1]. With 
these technological advances, combining cells from multiple samples in a single capture 
is common, increasing the sample size while simultaneously reducing batch effects, cost, 
and time. In addition, following cell capture and sequencing, the droplets can be demul-
tiplexed—each droplet accurately assigned to each individual in the pool [2–7].

Many scRNA-seq experiments now capture upwards of 20,000 droplets, resulting 
in ~16% (3,200) doublets [8]. Current demultiplexing methods can also identify dou-
blets—droplets containing two or more cells—from different individuals (heterogenic 
doublets). These doublets can significantly alter scientific conclusions if they are not 
effectively removed. Therefore, it is essential to remove doublets from droplet-based sin-
gle-cell captures.
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However, demultiplexing methods cannot identify droplets containing multiple cells 
from the same individual (homogenic doublets) and, therefore, cannot identify all dou-
blets in a single capture. If left in the dataset, those doublets could appear as transi-
tional cells between two distinct cell types or a completely new cell type. Accordingly, 
additional methods have been developed to identify heterotypic doublets (droplets that 
contain two cells from different cell types) by comparing the transcriptional profile of 
each droplet to doublets simulated from the dataset [9–15]. It is important to recognise 
that demultiplexing methods achieve two functions—segregation of cells from differ-
ent donors and separation of singlets from doublets—while doublet detecting methods 
solely classify singlets versus doublets.

Therefore, demultiplexing and transcription-based doublet detecting methods provide 
complementary information to improve doublet detection, providing a cleaner dataset 
and more robust scientific results. There are currently five genetic-based demultiplex-
ing [2–7, 16] and seven transcription-based doublet-detecting methods implemented in 
various languages [9–15]. Under different scenarios, each method is subject to varying 
performance and, in some instances, biases in their ability to accurately assign cells or 
detect doublets from certain conditions. The best combination of methods is currently 
unclear but will undoubtedly depend on the dataset and research question.

Therefore, we set out to identify the best combination of genetic-based demultiplex-
ing and transcription-based doublet-detecting methods to remove doublets and parti-
tion singlets from different donors correctly. In addition, we have developed a software 
platform (Demuxafy) that performs these intersectional methods and provides addi-
tional commands to simplify the execution and interpretation of results for each method 
(Fig. 1a).

To compare the demultiplexing and doublet detecting methods, we utilised two large, 
multiplexed datasets—one that contained ~1.4 million peripheral blood mononuclear 
cells (PBMCs) from 1,034 donors [17] and one with ~94,000 fibroblasts from 81 donors 
[18]. We used the true singlets from the PBMC dataset to generate new in silico pools to 
assess the performance of each method and the multi-method intersectional combina-
tions (Fig. 1b).

Fig. 1 Study design and qualitative method classifications. a Demuxafy is a platform to perform 
demultiplexing and doublet detecting with consistent documentation. Demuxafy also provides wrapper 
scripts to quickly summarize the results from each method and assign clusters to each individual with 
reference genotypes when a reference‑free demultiplexing method is used. Finally, Demuxafy provides a 
script to easily combine the results from multiple different methods into a single data frame and it provides 
a final assignment for each droplet based on the combination of multiple methods. In addition, Demuxafy 
provides summaries of the number of droplets classified as singlets or doublets by each method and a 
summary of the number of droplets assigned to each individual by each of the demultiplexing methods. 
b Two datasets are included in this analysis ‑ a PBMC dataset and a fibroblast dataset. The PBMC dataset 
contains 74 pools that captured approximately 20,000 droplets each with 12‑16 donor cells multiplexed per 
pool. The fibroblast dataset contains 11 pools of roughly 7,000 droplets per pool with sizes ranging from six 
to eight donors per pool. All pools were processed by all demultiplexing and doublet detecting methods and 
the droplet and donor classifications were compared between the methods and between the PBMCs and 
fibroblasts. Then the PBMC droplets that were classified as singlets by all methods were taken as ‘true singlets’ 
and used to generate new pools in silico. Those pools were then processed by each of the demultiplexing 
and doublet detecting methods and intersectional combinations of demultiplexing and doublet detecting 
methods were tested for different experimental designs

(See figure on next page.)
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Fig. 1 (See legend on previous page.)
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Here, we compare 14 demultiplexing and doublet detecting methods with differ-
ent methodological approaches, capabilities, and intersectional combinations. Seven 
of those are demultiplexing methods (Demuxalot [6], Demuxlet [3], Dropulation [5], 
Freemuxlet [16], ScSplit [7], Souporcell [4], and Vireo [2]) which leverage the common 
genetic variation between individuals to identify cells that came from each individual 
and to identify heterogenic doublets. The seven remaining methods (DoubletDecon [9], 
DoubletDetection [14], DoubletFinder [10], ScDblFinder [11], Scds [12], Scrublet [13], 
and Solo [15]) identify doublets based on their similarity to simulated doublets gener-
ated by adding the transcriptional profiles of two randomly selected droplets in the data-
set. These methods assume that the proportion of real doublets in the dataset is low, so 
combining any two droplets will likely represent the combination of two singlets.

We identify critical differences in the performance of demultiplexing and doublet 
detecting methods to classify droplets correctly. In the case of the demultiplexing tech-
niques, their performance depends on their ability to identify singlets from doublets 
and assign a singlet to the correct individual. For doublet detecting methods, the per-
formance is based solely on their ability to differentiate a singlet from a doublet. We 
identify limitations in identifying specific doublet types and cell types by some methods. 
In addition, we compare the intersectional combinations of these methods for multiple 
experimental designs and demonstrate that intersectional approaches significantly out-
perform all individual techniques. Thus, the intersectional methods provide enhanced 
singlet classification and doublet removal—a critical but often under-valued step of 
droplet-based scRNA-seq processing. Our results demonstrate that intersectional com-
binations of demultiplexing and doublet detecting software provide significant advan-
tages in droplet-based scRNA-seq preprocessing that can alter results and conclusions 
drawn from the data. Finally, to provide easy implementation of our intersectional 
approach, we provide Demuxafy (https:// demul tiple xing- doubl et- detec ting- docs. readt 
hedocs. io/ en/ latest/ index. html) a complete platform to perform demultiplexing and 
doublet detecting intersectional methods (Fig. 1a).

Results
Study design

To evaluate demultiplexing and doublet detecting methods, we developed an experimen-
tal design that applies the different techniques to empirical pools and pools generated 
in silico from the combination of true singlets—droplets identified as singlets by every 
method (Fig.  1a). For the first phase of this study, we used two empirical multiplexed 
datasets—the peripheral blood mononuclear cell (PBMC) dataset containing ~1.4 mil-
lion cells from 1034 donors and a fibroblast dataset of ~94,000 cells from 81 individuals 
(Additional file 1: Table S1). We chose these two cell systems to assess the methods in 
heterogeneous (PBMC) and homogeneous (fibroblast) cell types.

Demultiplexing and doublet detecting methods perform similarly for heterogeneous 

and homogeneous cell types

We applied the demultiplexing methods (Demuxalot, Demuxlet, Dropulation, Freemux-
let, ScSplit, Souporcell, and Vireo) and doublet detecting methods (DoubletDecon, Dou-
bletDetection, DoubletFinder, ScDblFinder, Scds, Scrublet, and Solo) to the two datasets 

https://demultiplexing-doublet-detecting-docs.readthedocs.io/en/latest/index.html
https://demultiplexing-doublet-detecting-docs.readthedocs.io/en/latest/index.html
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and assessed the results from each method. We first compared the droplet assignments 
by identifying the number of singlets and doublets identified by a given method that 
were consistently annotated by all methods (Fig. 2a–d). We also identified the percent-
age of droplets that were annotated consistently between pairs of methods (Additional 
file 2: Fig S1). In the cases where two demultiplexing methods were compared to one 
another, both the droplet type (singlet or doublet) and the assignment of the droplet to 
an individual had to match to be considered in agreement. In all other comparisons (i.e. 
demultiplexing versus doublet detecting and doublet detecting versus doublet  detect-
ing), only the droplet type (singlet or doublet) was considered for agreement since 
doublet detecting methods cannot annotate donor assignment. We found that the two 
method types were more similar to other methods of the same type (i.e., demultiplex-
ing versus demultiplexing and doublet detecting versus doublet detecting) than they 
were to methods from a different type (demultiplexing methods versus doublet detecting 
methods; Supplementary Fig 1). We found that the similarity of the demultiplexing and 
doublet detecting methods was consistent in the PBMC and fibroblast datasets (Pearson 
correlation R = 0.78, P-value < 2×10−16; Fig S1a-c). In addition, demultiplexing methods 
were more similar than doublet detecting methods for both the PBMC and fibroblast 
datasets (Wilcoxon rank-sum test: P < 0.01; Fig. 2a–b and Additional file 2: Fig S1).

The number of unique molecular identifiers (UMIs) and genes decreased in droplets 
that were classified as singlets by a larger number of methods while the mitochondrial 
percentage increased in both PBMCs and fibroblasts (Additional file 2: Fig S2).

We next interrogated the performance of each method using the Matthew’s correlation 
coefficient (MCC) to calculate the consistency between Demuxify and true droplet clas-
sification. We identified consistent trends in the MCC scores for each method between 
the PBMCs (Fig. 2e) and fibroblasts (Fig. 2f ). These data indicate that the methods behave 
similarly, relative to one another, for heterogeneous and homogeneous datasets.

Next, we sought to identify the droplets concordantly classified by all demultiplexing and 
doublet detecting methods in the PBMC and fibroblast datasets. On average, 732 singlets 
were identified for each individual by all the methods in the PBMC dataset. Likewise, 494 
droplets were identified as singlets for each individual by all the methods in the fibroblast 
pools. However, the concordance of doublets identified by all methods was very low for 
both datasets (Fig. 2e–f). Notably, the consistency of classifying a droplet as a doublet by 
all methods was relatively low (Fig. 2b,d,g, and h). This suggests that doublet identification 
is not consistent between all the methods. Therefore, further investigation is required to 
identify the reasons for these inconsistencies between methods. It also suggests that com-
bining multiple methods for doublet classification may be necessary for more complete 
doublet removal. Further, some methods could not identify all the individuals in each pool 
(Fig.  2i–j). The non-concordance between different methods demonstrates the need to 
effectively test each method on a dataset where the droplet types are known.

Computational resources vary for demultiplexing and doublet detecting methods

We recorded each method’s computational resources for the PBMC pools, with ~20,000 
cells captured per pool (Additional file  1: Table  S1). Of the demultiplexing methods, 
ScSplit took the most time (multiple days) and required the most steps, but Demuxalot, 
Demuxlet, and Freemuxlet used the most memory. Solo took the longest time (median 
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Fig. 2 Demultiplexing and Doublet Detecting Method Performance Comparison. a The proportion of 
droplets classified as singlets and doublets by each method in the PBMCs. b The number of other methods 
that classified the singlets and doublets identified by each method in the PBMCs. c The proportion of 
droplets classified as singlets and doublets by each method in the fibroblasts. d The number of other 
methods that classified the singlets and doublets identified by each method in the fibroblasts. e‑f 
The performance of each method when the majority classification of each droplet is considered the 
correct annotation in the PBMCs (e) and fibroblasts (f). g‑h The number of droplets classified as singlets 
(box plots) and doublets (bar plots) by all methods in the PBMC (g) and fibroblast (h) pools. i‑j The number 
of donors that were not identified by each method in each pool for PBMCs (i) and fibroblasts (j). PBMC: 
peripheral blood mononuclear cell. MCC: Matthew’s correlationcoefficient
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13 h) and most memory to run for the doublet detecting methods but is the only method 
built to be run directly from the command line, making it easy to implement (Additional 
file 2: Fig S3).

Generate pools with known singlets and doublets

However, there is no gold standard to identify which droplets are singlets or doublets. 
Therefore, in the second phase of our experimental design (Fig. 1b), we used the PBMC 
droplets classified as singlets by all methods to generate new pools in silico. We chose 
to use the PBMC dataset since our first analyses indicated that method performance is 
similar for homogeneous (fibroblast) and heterogeneous (PBMC) cell types (Fig. 2 and 
Additional file 2: Fig S1) and because we had many more individuals available to gener-
ate in silico pools from the PBMC dataset (Additional file 1: Table S1).

We generated 70 pools—10 each of pools that included 2, 4, 8, 16, 32, 64, or 128 indi-
viduals (Additional file  1: Table  S2). We assume a maximum 20% doublet rate as it is 
unlikely researchers would use a technology that has a higher doublet rate (Fig. 3a).

We used azimuth to classify the PBMC cell types for each droplet used to generate 
the in silico pools [19] (Additional file 2: Fig S4). As these pools have been generated in 
silico using empirical singlets that have been well annotated, we next identified the pro-
portion of doublets in each pool that were heterogenic, heterotypic, both, and neither. 
This approach demonstrates that a significant percentage of doublets are only detectable 
by doublet detecting methods (homogenic and heterotypic) for pools with 16 or fewer 
donors multiplexed (Fig. 3b).

While the total number of doublets that would be missed if only using demultiplexing 
methods appears small for fewer multiplexed individuals (Fig. 3b), it is important to rec-
ognise that this is partly a function of the ~732 singlet cells per individual used to gener-
ate these pools. Hence, the in silico pools with fewer individuals also have fewer cells. 
Therefore, to obtain numbers of doublets that are directly comparable to one another, we 
calculated the number of each doublet type that would be expected to be captured with 
20,000 cells when 2, 4, 8, 16, or 32 individuals were multiplexed (Additional file 2: Fig S5). 
These results demonstrate that many doublets would be falsely classified as singlets since 
they are homogenic when just using demultiplexing methods for a pool of 20,000 cells 
captured with a 16% doublet rate (Additional file 2: Fig S5). However, as more individu-
als are multiplexed, the number of droplets that would not be detectable by demultiplex-
ing methods (homogenic) decreases. This suggests that typical workflows that use only 
one demultiplexing method to remove doublets from pools that capture 20,000 drop-
lets with 16 or fewer multiplexed individuals fail to adequately remove between 173 (16 
multiplexed individuals) and 1,325 (2 multiplexed individuals) doublets that are homog-
enic and heterotypic which could be detected by doublet detecting methods (Additional 
file 2: Fig S5). Therefore, a technique that uses both demultiplexing and doublet detect-
ing methods in parallel will complement more complete doublet removal methods. 
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Fig. 3 In silico Pool Doublet Annotation and Method Performance. a The percent of singlets and doublets 
in the in ‑silico pools ‑ separated by the number of multiplexed individuals per pool. b The percentage 
and number of doublets that are heterogenic (detectable by demultiplexing methods), heterotypic 
(detectable by doublet detecting methods), both (detectable by either method category) and neither (not 
detectable with current methods) for each multiplexed pool size. c Percent of droplets that each of the 
demultiplexing and doublet detecting methods classified correctly for singlets and doublet subtypes for 
different multiplexed pool sizes. d Matthew’s Correlation Coefficient (MCC) for each of the methods for each 
of the multiplexed pool sizes. e Balanced accuracy for each of the methods for each of the multiplexed pool 
sizes
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Consequently, we next set out to identify the demultiplexing and doublet detecting 
methods that perform the best on their own and in concert with other methods.

Doublet and singlet droplet classification effectiveness varies for demultiplexing 

and doublet detecting methods

Demultiplexing methods fail to classify homogenic doublets

We next investigated the percentage of the droplets that were correctly classified by each 
demultiplexing and doublet detecting method. In addition to the seven demultiplexing 
methods, we also included Demuxalot with the additional steps to refine the genotypes 
that can then be used for demultiplexing—Demuxalot (refined). Demultiplexing meth-
ods correctly classify a large portion of the singlets and heterogenic doublets (Fig. 3c). 
This pattern is highly consistent across different cell types, with the notable exceptions 
being decreased correct classifications for erythrocytes and platelets when greater than 
16 individuals are multiplexed (Additional file 2: Fig S6).

However, Demuxalot consistently demonstrates the highest correct heterogenic dou-
blet classification. Further, the percentage of the heterogenic doublets classified cor-
rectly by Souporcell decreases when large numbers of donors are multiplexed. ScSplit is 
not as effective as the other demultiplexing methods at classifying heterogenic doublets, 
partly due to the unique doublet classification method, which assumes that the doublets 
will generate a single cluster separate from the donors (Table 1). Importantly, the demul-
tiplexing methods identify almost none of the homogenic doublets for any multiplexed 
pool size—demonstrating the need to include doublet detecting methods to supplement 
the demultiplexing method doublet detection.

Doublet detecting method classification performances vary greatly

In addition to assessing each of the methods with default settings, we also evaluated 
ScDblFinder with ‘known doublets’ provided. This method can take already known dou-
blets and use them when detecting doublets. For these cases, we used the droplets that 
were classified as doublets by all the demultiplexing methods as ‘known doublets’.

Most of the methods classified a similarly high percentage of singlets correctly, with 
the exceptions of DoubletDecon and DoubletFinder for all pool sizes (Fig. 3c). However, 

Table 1 Demultiplexing and doublet detecting method characteristics, requirements and doublet 
detection methodologies
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unlike the demultiplexing methods, there are explicit cell-type-specific biases for many 
of the doublet detecting methods (Additional file 2: Fig S7). These differences are most 
notable for cell types with fewer cells (i.e. ASDC and cDC2) and proliferating cells (i.e. 
CD4 Proliferating, CD8 Proliferating, and NK Proliferating). Further, all of the softwares 
demonstrate high correct percentages for some cell types including CD4 Naïve and CD8 
Naïve (Additional file 2: Fig S7).

As expected, all doublet detecting methods identified heterotypic doublets more effec-
tively than homotypic doublets (Fig. 3c). However, ScDblFinder and Scrublet classified 
the most doublets correctly across all doublet types for pools containing 16 individuals 
or fewer. Solo was more effective at identifying doublets than Scds for pools containing 
more than 16 individuals. It is also important to note that it was not feasible to run Dou-
bletDecon for the largest pools containing 128 multiplexed individuals and an average 
of 115,802 droplets (range: 113,594–119,126 droplets). ScDblFinder performed similarly 
when executed with and without known doublets (Pearson correlation P = 2.5 ×  10-40). 
This suggests that providing known doublets to ScDblFinder does not offer an added 
benefit.

Performances vary between demultiplexing and doublet detecting method and across the 

number of multiplexed individuals

We assessed the overall performance of each method with two metrics: the balanced 
accuracy and the MCC. We chose to use balanced accuracy since, with unbalanced 
group sizes, it is a better measure of performance than accuracy itself. Further, the MCC 
has been demonstrated as a more reliable statistical measure of performance since it 
considers all possible categories—true singlets (true positives), false singlets (false posi-
tives), true doublets (true negatives), and false doublets (false negatives). Therefore, a 
high score on the MCC scale indicates high performance in each metric. However, we 
provide additional performance metrics for each method (Additional file 1: Table  S3). 
For demultiplexing methods, both the droplet type (singlet or doublet) and the individ-
ual assignment were required to be considered a ‘true singlet’. In contrast, only the drop-
let type (singlet or doublet) was needed for doublet detection methods.

The MCC and balanced accuracy metrics are similar (Spearman’s ⍴ = 0.87; P < 2.2 × 
 10-308). Further, the performance of Souporcell decreases for pools with more than 32 
individuals multiplexed for both metrics (Student’s t-test for MCC: P < 1.1 ×  10-9 and 
balanced accuracy: P < 8.1 ×  10-11). Scds, ScDblFinder, and Scrublet are among the top-
performing doublet detecting methods Fig. 3d–e).

Overall, between 0.4 and 78.8% of droplets were incorrectly classified by the demul-
tiplexing or doublet detecting methods depending on the technique and the multi-
plexed pool size (Additional file  2: Fig S8). Demuxalot (refined) and DoubletDetection 
demonstrated the lowest percentage of incorrect droplets with about 1% wrong in the 
smaller pools (two multiplexed individuals) and about 3% incorrect in pools with at least 
16 multiplexed individuals. Since some transitional states and cell types are present in 
low percentages in total cell populations (i.e. ASDCs at 0.02%), incorrect classification 
of droplets could alter scientific interpretations of the data, and it is, therefore, ideal for 
decreasing the number of erroneous assignments as much as possible.
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False singlets and doublets demonstrate different metrics than correctly classified droplets

We next asked whether specific cell metrics might contribute to false singlet and dou-
blet classifications for different methods. Therefore, we compared the number of genes, 
number of UMIs, mitochondrial percentage and ribosomal percentage of the false sin-
glets and doublets to equal numbers of correctly classified cells for each demultiplexing 
and doublet detecting method.

The number of UMIs (Additional file  2: Fig S9 and Additional file  1: Table  S4) and 
genes (Additional file 2: Fig S10 and Additional file 1: Table S5) demonstrated very sim-
ilar distributions for all comparisons and all methods (Spearman ⍴ = 0.99, P < 2.2 × 
 10-308). The number of UMIs and genes were consistently higher in false singlets and 
lower in false doublets for most demultiplexing methods except some smaller pool sizes 
(Additional file 2: Fig S9a and Additional file 2: Fig S10a; Additional file 1: Table S4 and 
Additional file 1: Table S5). The number of UMIs and genes was consistently higher in 
droplets falsely classified as singlets by the doublet detecting methods than the correctly 
identified droplets (Additional file 2: Fig S9b and Additional file 2: Fig S10b; Additional 
file 1: Table S4 and Additional file 1: Table S5). However, there was less consistency in 
the number of UMIs and genes detected in false singlets than correctly classified drop-
lets between the different doublet detecting methods (Additional file  2: Fig S9b and 
Additional file 2: Fig S10b; Additional file 1: Table S4 and Additional file 1: Table S5).

The ribosomal percentage of the droplets falsely classified as singlets or doublets is 
similar to the correctly classified droplets for most methods—although they are statis-
tically different for larger pool sizes (Additional file  2: Fig S11a and Additional file  1: 
Table  S6). However, the false doublets classified by some demultiplexing methods 
(Demuxalot, Demuxalot (refined), Demuxlet, ScSplit, Souporcell, and Vireo) demon-
strated higher ribosomal percentages. Some doublet detecting methods (ScDblFinder, 
ScDblFinder with known doublets and Solo) demonstrated higher ribosomal percentages 
for the false doublets while other demonstrated lower ribosomal percentages (Doublet-
Decon, DoubletDetection, and DoubletFinder; Additional file 2: Fig S11b and Additional 
file 1: Table S6).

Like the ribosomal percentage, the mitochondrial percentage in false singlets is also 
relatively similar to correctly classified droplets for both demultiplexing (Additional 
file 2: Fig S12a and Additional file 1: Table S7) and doublet detecting methods (Addi-
tional file  2: Fig S12b). The mitochondrial percentage for false doublets is statistically 
lower than the correctly classified droplets for a few larger pools for Freemuxlet, ScSplit, 
and Souporcell. The doublet detecting method Solo also demonstrates a small but sig-
nificant decrease in mitochondrial percentage in the false doublets compared to the 
correctly annotated droplets. However, other doublet detecting methods including 
DoubletFinder and the larger pools of most other methods demonstrated a significant 
increase in mitochondrial percent in the false doublets compared to the correctly anno-
tated droplets (Additional file 2: Fig S12b).

Overall, these results demonstrate a strong relationship between the number of genes 
and UMIs and limited influence of ribosomal or mitochondrial percentage in a droplet 
and false classification, suggesting that the number of genes and UMIs can significantly 
bias singlet and doublet classification by demultiplexing and doublet detecting methods.
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Ambient RNA, number of reads per cell, and uneven pooling impact method performance

To further quantify the variables that impact the performance of each method, we 
simulated four conditions that could occur with single-cell RNA-seq experiments: (1) 
decreased number of reads (reduced 50%), (2) increased ambient RNA (10%, 20% and 
50%), (3) increased mitochondrial RNA (5%, 10% and 25%) and 4) uneven donor pool-
ing from single donor spiking (0.5 or 0.75 proportion of pool from one donor). We chose 
these scenarios because they are common technical effects that can occur.

We observed a consistent decrease in the demultiplexing method performance when 
the number of reads were decreased by 50% but the degree of the effect varied for each 
method and was larger in pools containing more multiplexed donors (Additional file 2: 
Fig S13a and Additional file 1: Table S8). Decreasing the number of reads did not have a 
detectable impact on the performance of the doublet detecting methods.

Simulating additional ambient RNA (10%, 20%, or 50%) decreased the performance 
of  all the demultiplexing methods (Additional file  2: Fig S13b and Additional file  1: 
Table S9) but some were unimpacted in pools that had 16 or fewer individuals mul-
tiplexed (Souporcell and Vireo). The performance of some of the doublet detecting 
methods were impacted by the ambient RNA but the performance of most meth-
ods did not decrease. Scrublet and ScDblFinder were the doublet detecting methods 
most impacted by ambient RNA but only in pools with at least 32 multiplexed donors 
(Additional file 2: Fig S13b and Additional file 1: Table S9).

Increased mitochondrial percent did not impact the performance of demultiplexing or 
doublet detecting methods (Additional file 2: Fig S13c and Additional file 1: Table S10).

We also tested whether experimental designs that pooling uneven proportions of 
donors would alter performance. We tested scenarios where either half the pool was 
composed of a single donor (0.5 spiked donor proportion) or where three quarters 
of the pool was composed of a single donor. This experimental design significantly 
reduced the demultiplexing method performance (Additional file  2: Fig S13d and 
Additional file  1: Table  S11) with the smallest influence on Freemuxlet. The perfor-
mance of most of the doublet detecting methods were unimpacted except for Dou-
bletDetection that demonstrated significant decreases in performance in pools where 
at least 16 donors were multiplexed. Intriguingly, the performance of Solo increased 
with the spiked donor pools when the pools consisted of 16 donors or less.

Our results demonstrate significant differences in overall performance between differ-
ent demultiplexing and doublet detecting methods. We further noticed some differences 
in the use of the methods. Therefore, we have accumulated these results and each meth-
od’s unique characteristics and benefits in a heatmap for visual interpretation (Fig. 4).

Framework for improving singlet classifications via method combinations

After identifying the demultiplexing and doublet detecting methods that performed well 
individually, we next sought to test whether using intersectional combinations of multiple 
methods would enhance droplet classifications and provide a software platform—Demux-
afy—capable of supporting the execution of these intersectional combinations.

We recognise that different experimental designs will be required for each project. As 
such, we considered this when testing combinations of methods. We considered multiple 
experiment designs and two different intersectional methods: (1) more than half had to 
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classify a droplet as a singlet to be called a singlet and (2) at least half of the methods had 
to classify a droplet as a singlet to be called a singlet. Significantly, these two intersectional 
methods only differ when an even number of methods are being considered. For combi-
nations that include demultiplexing methods, the individual called by the majority of the 
methods is the individual used for that droplet. When ties occur, the individual is consid-
ered ‘unassigned’.

Combining multiple doublet detecting methods improve doublet removal for non‑multiplexed 

experimental designs

For the non-multiplexed experimental design, we considered all possible method combina-
tions (Additional file 1: Table S12). We identified important differences depending on the 
number of droplets captured and have provided recommendations accordingly. We identi-
fied that DoubletFinder, Scrublet, ScDblFinder and Scds is the ideal combination for bal-
anced droplet calling when less than 2,000 droplets are captured. Scds and ScDblFinder or 
Scrublet, Scds and ScDblFinder is the best combination when 2,000–10,000 droplets are 
captured. Scds, Scrublet, ScDblFinder and DoubletDetection is the best combination when 
10,000–20,000 droplets are captured and Scrublet, Scds, DoubletDetection and ScDblFinder. 
It is important to note that even a slight increase in the MCC significantly impacts the num-
ber of true singlets and true doublets classified with the degree of benefit highly dependent 
on the original method performance. The combined method increases the MCC compared 
to individual doublet detecting methods on average by 0.11 and up to 0.33—a significant 
improvement in the MCC (t-test FDR < 0.05 for 95% of comparisons). For all combinations, 
the intersectional droplet method requires more than half of the methods to consider the 
droplet a singlet to classify it as a singlet (Fig. 5).

Fig. 4 Assessment of each of the demultiplexing and doublet detecting methods. Assessments of a variety 
of metrics for each of the demultiplexing (top) and doublet detecting (bottom) methods
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Demuxafy performs better than Chord

Chord is an ensemble machine learning doublet detecting method that uses Scds and Dou-
bletFinder to identify doublets. We compared Demuxafy using Scds and DoubletFinder to 
Chord and identified that Demuxafy outperformed Chord in pools that contained at least 
eight donors and was equivalent in pools that contained less than eight donors (Additional 
file 2: Fig S14). This is because Chord classifies more droplets as false singlets and false dou-
blets than Demuxafy. In addition, Chord failed to complete for two of the pools that con-
tained 128 multiplexed donors.

Combining multiple demultiplexing and doublet detecting methods improve doublet removal 

for multiplexed experimental designs

For experiments where 16 or fewer individuals are multiplexed with reference SNP 
genotypes available, we considered all possible combinations between the demultiplex-
ing and doublet detecting methods except ScDblFinder with known doublets due to 
its highly similar performance to ScDblFinder (Fig 3; Additional file 1: Table S13). The 
best combinations are DoubletFinder, Scds, ScDblFinder, Vireo and Demuxalot (refined) 
(<~5 donors) and Scrublet, ScDblFinder, DoubletDetection, Dropulation and Demux-
alot (refined) (Fig. 5). These intersectional methods increase the MCC compared to the 
individual methods (t-test FDR < 0.05), generally resulting in increased true singlets and 
doublets compared to the individual methods. The improvement in MCC depends on 
every single method’s performance but, on average, increases by 0.22 and up to 0.71. For 
experiments where the reference SNP genotypes are unknown, the individuals multi-
plexed in the pool with 16 or fewer individuals multiplexed, DoubletFinder, ScDblFinder, 
Souporcell and Vireo (<~5 donors) and Scds, ScDblFinder, DoubletDetection, Souporcell 
and Vireo are the ideal methods (Fig. 5). These intersectional methods again significantly 
increase the MCC up to 0.87 compared to any of the individual techniques that could be 

Fig. 5 Recommended Method Combinations Dependent on Experimental Design. Method combinations 
are provided for different experimental designs, including those that are not multiplexed (left) and 
multiplexed (right), including experiments that have reference SNP genotypes available vs those that 
do not and finally, multiplexed experiments with different numbers of individuals multiplexed. The each 
bar represents either a single method (shown with the coloured icon above the bar) or a combination of 
methods (shown with the addition of the methods and an arrow indicating the bar). The proportion of 
true singlets, true doublets, false singlets and false doublets for each method or combination of methods 
is shown with the filled barplot and the MCC is shown with the black points overlaid on the barplot. MCC: 
Matthew’s Correlation Coefficient
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used for this experimental design (t-test FDR < 0.05 for 94.2% of comparisons). In both 
cases, singlets should only be called if more than half of the methods in the combination 
classify the droplet as a singlet.

Combining multiple demultiplexing methods improves doublet removal for large multiplexed 

experimental designs

For experiments that multiplex more than 16 individuals, we considered the combi-
nations between all demultiplexing methods (Additional file  1: Table  S14) since only 
a small proportion of the doublets would be undetectable by demultiplexing methods 
(droplets that are homogenic; Fig 3b). To balance doublet removal and maintain true sin-
glets, we recommend the combination of Demuxalot (refined) and Dropulation. These 
method combinations significantly increase the MCC by, on average, 0.09 compared to 
all the individual methods (t-test FDR < 0.05). This substantially increases true singlets 
and true doublets relative to the individual methods. If reference SNP genotypes are not 
available for the individuals multiplexed in the pools, Vireo performs the best (≥ 16 mul-
tiplexed individuals; Fig. 5). This is the only scenario in which executing a single method 
is advantageous to a combination of methods. This is likely due to the fact that most of 
the methods perform poorly for larger pool sizes (Fig. 3c).

These results collectively demonstrate that, regardless of the experimental design, 
demultiplexing and doublet detecting approaches that intersect multiple methods sig-
nificantly enhance droplet classification. This is consistent across different pool sizes and 
will improve singlet annotation.

Demuxafy improves doublet removal and improves usability

To make our intersectional approaches accessible to other researchers, we have devel-
oped Demuxafy (https:// demul tiple xing- doubl et- detec ting- docs. readt hedocs. io/ en/ 
latest/ index. html) - an easy-to-use software platform powered by Singularity. This plat-
form provides the requirements and instructions to execute each demultiplexing and 
doublet detecting methods. In addition, Demuxafy provides wrapper scripts that sim-
plify method execution and effectively summarise results. We also offer tools that help 
estimate expected  numbers of doublets and provide method combination recommen-
dations based on scRNA-seq pool characteristics. Demuxafy also combines the results 
from multiple different methods, provides classification combination summaries, and 
provides final integrated combination classifications based on the intersectional tech-
niques selected by the user. The significant advantages of Demuxafy include a central-
ised location to execute each of these methods, simplified ways to combine methods 
with an intersectional approach, and summary tables and figures that enable practical 
interpretation of multiplexed datasets (Fig. 1a).

Discussion
Demultiplexing and doublet detecting methods have made large-scale scRNA-seq 
experiments achievable. However, many demultiplexing and doublet detecting meth-
ods have been developed in the recent past, and it is unclear how their performances 

https://demultiplexing-doublet-detecting-docs.readthedocs.io/en/latest/index.html
https://demultiplexing-doublet-detecting-docs.readthedocs.io/en/latest/index.html
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compare. Further, the demultiplexing techniques best detect heterogenic doublets while 
doublet detecting methods identify heterotypic doublets. Therefore, we hypothesised 
that demultiplexing and doublet detecting methods would be complementary and be 
more effective at removing doublets than demultiplexing methods alone.

Indeed, we demonstrated the benefit of utilising a combination of demultiplexing and 
doublet detecting methods. The optimal intersectional combination of methods depends 
on the experimental design and capture characteristics. Our results suggest super loaded 
captures—where a high percentage of doublets is expected—will benefit from multiplex-
ing. Further, when many donors are multiplexed (>16), doublet detecting is not required 
as there are few doublets that are homogenic and heterotypic.

We have provided different method combination recommendations based on the 
experimental design. This decision is highly dependent on the research question.

Conclusions
Overall, our results provide researchers with important demultiplexing and doublet 
detecting performance assessments and combinatorial recommendations. Our software 
platform, Demuxafy (https:// demul tiple xing- doubl et- detec ting- docs. readt hedocs. io/ en/ 
latest/ index. html), provides a simple implementation of our methods in any research lab 
around the world, providing cleaner scRNA-seq datasets and enhancing interpretation 
of results.

Methods
Data

PBMC scRNA‑seq data

Blood samples were collected and processed as described previously [17]. Briefly, mono-
nuclear cells were isolated from whole blood samples and stored in liquid nitrogen until 
thawed for scRNA-seq capture. Equal numbers of cells from 12 to 16 samples were mul-
tiplexed per pool and single-cell suspensions were super loaded on a Chromium Sin-
gle Cell Chip A (10x Genomics) to capture 20,000 droplets per pool. Single-cell libraries 
were processed per manufacturer instructions and the 10× Genomics Cell Ranger Sin-
gle Cell Software Suite (v 2.2.0) was used to process the data and map it to GRCh38. 
Cellbender v0.1.0 was used to identify empty droplets. Almost all droplets reported by 
Cell Ranger were identified to contain cells by Cellbender (mean: 99.97%). The quality 
control metrics of each pool are demonstrated in Additional file 2: Fig S15.

PBMC DNA SNP genotyping

SNP genotype data were prepared as described previously [17]. Briefly, DNA was 
extracted from blood with the QIAamp Blood Mini kit and genotyped on the Illu-
mina Infinium Global Screening Array. SNP genotypes were processed with Plink and 
GCTA before imputing on the Michigan Imputation Server using Eagle v2.3 for phas-
ing and Minimac3 for imputation based on the Haplotype Reference Consortium panel 
(HRCr1.1). SNP genotypes were then lifted to hg38 and filtered for > 1% minor allele 
frequency (MAF) and an R2 > 0.3.

https://demultiplexing-doublet-detecting-docs.readthedocs.io/en/latest/index.html
https://demultiplexing-doublet-detecting-docs.readthedocs.io/en/latest/index.html
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Fibroblast scRNA‑seq data

The fibroblast scRNA-seq data has been described previously [18]. Briefly, human skin 
punch biopsies from donors over the age of 18 were cultured in DMEM high glucose 
supplemented with 10% fetal bovine serum (FBS), L-glutamine, 100 U/mL penicillin and 
100 μg/mL (Thermo Fisher Scientific, USA).

For scRNA-seq, viable cells were flow sorted and single cell suspensions were loaded 
onto a 10× Genomics Single Cell 3’ Chip and were processed per 10× instructions and 
the Cell Ranger Single Cell Software Suite from 10× Genomics was used to process the 
sequencing data into transcript count tables as previously described [18]. Cellbender 
v0.1.0 was used to identify empty droplets. Almost all droplets reported by Cell Ranger 
were identified to contain cells by Cellbender (mean: 99.65%). The quality control met-
rics of each pool are demonstrated in Additional file 2: Fig S16.

Fibroblast DNA SNP genotyping

The DNA SNP genotyping for fibroblast samples has been described previously [18]. 
Briefly, DNA from each donor was genotyped on an Infinium HumanCore-24 v1.1 Bead-
Chip (Illumina). GenomeStudioTM V2.0 (Illumina), Plink and GenomeStudio were 
used to process the SNP genotypes. Eagle V2.3.5 was used to phase the SNPs and it was 
imputed with the Michigan Imputation server using minimac3 and the 1000 genome 
phase 3 reference panel as described previously [18].

Demultiplexing methods

All the demultiplexing methods were built and run from a singularity image.

Demuxalot

Demuxalot [6] is a genotype reference-based single cell demultiplexing method. 
Demualot v0.2.0 was used in python v3.8.5 to annotate droplets. The likelihoods, 
posterior probabilities and most likely donor for each droplet were estimated using 
the Demuxalot Demultiplexer.predict_posteriors function. We also used Demuxalot 
Demultiplexer.learn_genotypes function to refine the genotypes before estimating the 
likelihoods, posterior probabilities and likely donor of each droplet with the refined gen-
otypes as well.

Popscle

The Popscle v0.1-beta suite [16] for population genomics in single cell data was used 
for Demuxlet and Freemuxlet demultiplexing methods. The popscle dsc-pileup function 
was used to create a pileup of variant calls at known genomic locations from aligned 
sequence reads in each droplet with default arguments.

Demuxlet

Demuxlet [3] is a SNP genotype reference-based single cell demultiplexing method. 
Demuxlet was run with a genotype error coefficient of 1 and genotype error offset rate of 
0.05 and the other default parameters using the popscle demuxlet command from Pop-
scle (v0.1-beta).
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Freemuxlet

Freemuxlet [16] is a SNP genotype reference-free single cell demultiplexing method. 
Freemuxlet was run with default parameters including the number of samples included 
in the pool using the popscle freemuxlet command from Popscle (v0.1-beta).

Dropulation

Dropulation [5] is a SNP genotype reference-based single cell demultiplexing method 
that is part of the Drop-seq software. Dropulation from Drop-seq v2.5.1 was imple-
mented for this manuscript. In addition, the method for calling singlets and doublets 
was provided by the Dropulation developer and implemented in a custom R script avail-
able on Github and Zenodo (see “Availability of data and materials”).

ScSplit

ScSplit v1.0.7 [7] was downloaded from the ScSplit github and the recommended steps 
for data filtering quality control prior to running ScSplit were followed. Briefly, reads 
that had read quality lower than 10, were unmapped, were secondary alignments, did 
not pass filters, were optical PCR duplicates or were duplicate reads were removed. The 
resulting bam file was then sorted and indexed followed by freebayes to identify single 
nucleotide variants (SNVs) in the dataset. The resulting SNVs were filtered for quality 
scores greater than 30 and for variants present in the reference SNP genotype vcf. The 
resulting filtered bam and vcf files were used as input for the scSplit count command 
with default settings to count the number of reference and alternative alleles in each 
droplet. Next the allele matrices were used to demultiplex the pool and assign cells to 
different clusters using the scSplit run command including the number of individuals 
(-n) option and all other options set to default. Finally, the individual genotypes were 
predicted for each cluster using the scSplit genotype command with default parameters.

Souporcell

Souporcell [4] is a SNP genotype reference-free single cell demultiplexing method. The 
Souporcell v1.0 singularity image was downloaded via instructions from the gihtub page. 
The Souporcell pipeline was run using the souporcell_pipeline.py script with default 
options and the option to include known variant locations (--common_variants).

Vireo

Vireo [2] is a single cell demultiplexing method that can be used with reference SNP 
genotypes or without them. For this assessment, Vireo was used with reference SNP gen-
otypes. Per Vireo recommendations, we used model 1 of the cellSNP [20] version 0.3.2 to 
make a pileup of SNPs for each droplet with the recommended options using the geno-
typed reference genotype file as the list of common known SNP and filtered with SNP 
locations that were covered by at least 20 UMIs and had at least 10% minor allele fre-
quency across all droplets. Vireo version 0.4.2 was then used to demultiplex using refer-
ence SNP genotypes and indicating the number of individuals in the pools.
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Doublet detecting methods

All doublet detecting methods were built and run from a singularity image.

DoubletDecon

DoubletDecon [9] is a transcription-based deconvolution method for identifying dou-
blets. DoubletDecon version 1.1.6 analysis was run in R version 3.6.3. SCTransform [21] 
from Seurat [22] version 3.2.2 was used to preprocess the scRNA-seq data and then the 
Improved_Seurat_Pre_Process function was used to process the SCTransformed scRNA-
seq data. Clusters were identified using Seurat function FindClusters with resolution 0.2 
and 30 principal components (PCs). Then the Main_Doublet_Decon function was used 
to deconvolute doublets from singlets for six different rhops—0.6, 0.7, 0.8, 0.9, 1.0 and 
1.1. We used a range of rhop values since the doublet annotation by DoubletDecon is 
dependent on the rhop parameter which is selected by the user. The rhop that resulted 
in the closest number of doublets to the expected number of doublets was selected on a 
per-pool basis and used for all subsequent analysis. Expected number of doublets were 
estimated with the following equation:

where N is the number of droplets captured and D is the number of expected doublets.

DoubletDetection

DoubletDetection [14] is a transcription-based method for identifying doublets. Dou-
bletDetection version 2.5.2 analysis was run in python version 3.6.8. Droplets without 
any UMIs were removed before analysis with DoubletDetection. Then the doubletde-
tection.BoostClassifier function was run with 50 iterations with use_phenograph set to 
False and standard_scaling set to True. The predicted number of doublets per itera-
tion was visualised across all iterations and any pool that did not converge after 50 
iterations, it was run again with increasing numbers of iterations until they reached 
convergence.

DoubletFinder

DoubletFinder [10] is a transcription-based doublet detecting method. DoubletFinder 
version 2.0.3 was implemented in R version 3.6.3. First, droplets that were more than 
3 median absolute deviations (mad) away from the median for mitochondrial per cent, 
ribosomal per cent, number of UMIs or number of genes were removed per developer 
recommendations. Then the data was normalised with SCTransform followed by cluster 
identification using FindClusters with resolution 0.3 and 30 principal components (PCs). 
Then, pKs were selected by the pK that resulted in the largest  BCMVN as recommended 
by DoubletFinder. The pK vs  BCMVN relationship was visually inspected for each pool 
to ensure an effective  BCMVN was selected for each pool. Finally, the homotypic doublet 
proportions were calculated and the number of expected doublets with the highest dou-
blet proportion were classified as doublets per the following equation:

D =

N
2
× 0.008

1000
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where N is the number of droplets captured and D is the number of expected doublets.

ScDblFinder

ScDblFinder [11] is a transcription-based method for detecting doublets from scRNA-
seq data. ScDblFinder 1.3.25 was implemented in R version 4.0.3. ScDblFinder was 
implemented with two sets of options. The first included implementation with the 
expected doublet rate as calculated by:

where N is the number of droplets captured and R is the expected doublet rate. The sec-
ond condition included the same expected number of doublets and included the dou-
blets that had already been identified by all the demultiplexing methods.

Scds

Scds [12] is a transcription-based doublet detecting method. Scds version 1.1.2 analy-
sis was completed in R version 3.6.3. Scds was implemented with the cxds function and 
bcds functions with default options followed by the cxds_bcds_hybrid with estNdbl set 
to TRUE so that doublets will be estimated based on the values from the cxds and bcds 
functions.

Scrublet

Scrublet [13] is a transcription-based doublet detecting method for single-cell RNA-seq 
data. Scrublet was implemented in python version 3.6.3. Scrublet was implemented per 
developer recommendations with at least 3 counts per droplet, 3 cells expressing a given 
gene, 30 PCs and a doublet rate based on the following equation:

where N is the number of droplets captured and R is the expected doublet rate. Four dif-
ferent minimum number of variable gene percentiles: 80, 85, 90 and 95. Then, the best 
variable gene percentile was selected based on the distribution of the simulated doublet 
scores and the location of the doublet threshold selection. In the case that the selected 
threshold does not fall between a bimodal distribution, those pools were run again with 
a manual threshold set.

Solo

Solo [15] is a transcription-based method for detecting doublets in scRNA-seq data. Solo 
was implemented with default parameters and an expected number of doublets based on 
the following equation:

D =

N
2
× 0.008

1000

R =

N × 0.008

1000

R =

N × 0.008

1000
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where N is the number of droplets captured and D is the number of expected doublets. 
Solo was additionally implemented in a second run for each pool with the doublets that 
were identified by all the demultiplexing methods as known doublets to initialize the 
model.

In silico pool generation

Cells that were identified as singlets by all methods were used to simulate pools. Ten 
pools containing 2, 4, 8, 16, 32, 64 and 128 individuals were simulated assuming a maxi-
mum 20% doublet rate as it is unlikely researchers would use a technology that has a 
higher doublet rate. The donors for each simulated pool were randomly selected using 
a custom R script which is available on Github and Zenodo (see ‘Availability of data and 
materials’). A separate bam for the cell barcodes for each donor was generated using 
the filterbarcodes function from the sinto package (v0.8.4). Then, the GenerateSynthetic-
Doublets function provided by the Drop-seq [5] package was used to simulate new pools 
containing droplets with known singlets and doublets.

Twenty-one total pools—three pools from each of the different simulated pool sizes (2, 
4, 8, 16, 32, 64 and 128 individuals) —were used to simulate different experimental sce-
narios that may be more challenging for demultiplexing and doublet detecting methods. 
These include simulating higher ambient RNA, higher mitochondrial percent, decreased 
read coverage and imbalanced donor proportions as described subsequently.

High ambient RNA simulations

Ambient RNA was simulated by changing the barcodes and UMIs on a random selection 
of reads for 10, 20 or 50% of the total UMIs. This was executed with a custom R script 
that is available in Github and Zenodo (see ‘Availability of data and materials’).

High mitochondrial percent simulations

High mitochondrial percent simulations were produced by replacing reads in 5, 10 or 
25% of the randomly selected cells with mitochondrial reads. The number of reads to 
replace was derived from a normal distribution with an average of 30 and a standard 
deviation of 3. This was executed with a custom R script available in Github and Zenodo 
(see ‘Availability of data and materials’).

Imbalanced donor simulations

We simulated pools that contained uneven proportions of the donors in the pools to 
identify if some methods are better at demultiplexing pools containing uneven propor-
tions of each donor in the pool. We simulated pools where 50, 75 or 95% of the pool 
contained cells from a single donor and the remainder of the pool was even proportions 
of the remaining donors in the pool. This was executed with a custom R script available 
in Github and Zenodo (see ‘Availability of data and materials’).

D =

N
2
× 0.008

1000
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Decrease read coverage simulations

Decreased read coverage of pools was simulated by down-sampling the reads by two-
thirds of the original coverage.

Classification annotation

Demultiplexing methods

Demultiplexing methods classifications were considered correct if the droplet annota-
tion (singlet or doublet) and the individual annotation was correct. If the droplet type 
was correct but the individual annotation was incorrect (i.e. classified as a singlet but 
annotated as the wrong individual), then the droplet was incorrectly classified.

Doublet detecting methods

Doublet detecting methods were considered to have correct classifications if the droplet 
annotation matched the known droplet type.

Analyses

All downstream analyses were completed in R version 4.0.2.
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