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Abstract 

Background: Although the human bladder is reported to harbor unique microbiota, 
our understanding of how these microbial communities interact with their human 
hosts is limited, mostly owing to the lack of isolates to test mechanistic hypotheses. 
Niche‑specific bacterial collections and associated reference genome databases have 
been instrumental in expanding knowledge of the microbiota of other anatomical 
sites, such as the gut and oral cavity.

Results: To facilitate genomic, functional, and experimental analyses of the human 
bladder microbiota, we present a bladder‑specific bacterial isolate reference collection 
comprising 1134 genomes, primarily from adult females. These genomes were culled 
from bacterial isolates obtained by a metaculturomic method from bladder urine col‑
lected by transurethral catheterization. This bladder‑specific bacterial isolate reference 
collection includes 196 different species, including representatives of major aerobes 
and facultative anaerobes, as well as some anaerobes. It captures 72.2% of the genera 
found when re‑examining previously published 16S rRNA gene sequencing of 392 
adult female bladder urine samples. Comparative genomic analysis finds that the tax‑
onomies and functions of the bladder microbiota share more similarities with the vagi‑
nal microbiota than the gut microbiota. Whole‑genome phylogenetic and functional 
analyses of 186 bladder Escherichia coli isolates and 387 gut Escherichia coli isolates 
support the hypothesis that phylogroup distribution and functions of Escherichia coli 
strains differ dramatically between these two very different niches.

Conclusions: This bladder‑specific bacterial isolate reference collection is a unique 
resource that will enable bladder microbiota research and comparison to isolates 
from other anatomical sites.
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Background
High-throughput DNA sequencing and enhanced culture-based investigations have 
found bacterial DNA and live bacteria, respectively, in catheterized (bladder) urine 
deemed culture-negative by the standard urine culture method [1–13]. The expanded 
quantitative urine culture (EQUC) protocol and similar enhanced (metaculturomic) 
methods have enabled researchers to isolate species detected by 16S rRNA gene 
sequencing in both individuals with and without urinary tract symptoms [7, 8, 11, 
13–15]. While the genetic diversity of some species has been extensively investigated, 
e.g., Escherichia coli [16, 17], many species have few or no genomic sequences. Fur-
thermore, new urinary species are still being discovered, e.g., Lactobacillus mulieris 
[18], while others are being reclassified in light of new genomic data, e.g., Gardnerella 
vaginalis [19] and Aerococcus urinae [20].

Previously, we published an analysis of 149 genomes of 78 different species isolated 
from the female bladder [14]. Several of the taxa found within the bladder microbiota 
are also inhabitants of the vaginal microbiota [14, 21, 22]. This led us to posit that the 
bacterial communities of these two anatomical sites may be connected [14]. A recent 
16S rRNA gene sequencing survey of paired bladder and vaginal samples identified 
more bacterial genera within the bladder than within the vagina, suggesting a greater 
bacterial diversity within the urinary tract [22]. In contrast, little overlap in species 
was reported between the microbiota of the urinary and gastrointestinal tracts [14], 
despite prior evidence that the gastrointestinal tract is the source of E. coli that cause 
urinary tract infections (UTIs) [23–26]. Furthermore, our prior work found that key 
metabolic pathways specific to the female urogenital environment are not found in 
bacterial genomes isolated from the gastrointestinal tract, suggesting that these two 
microbiotas are not tightly connected [14].

Capturing the species present, and the strain diversity of those species, is fun-
damental for the success of gene marker surveys, as well as shotgun metagenomic 
studies. In contrast to the gastrointestinal tract and oral cavity, very few shotgun 
metagenomic sequencing studies of the urinary microbiota have been conducted, and 
then only relatively recently [27–34]. Most of these studies analyzed voided urine, 
which often contains both urinary and genital microbes and thus cannot report on 
the bladder microbiota. Available genomes representative of the genetic and spe-
cies diversity within the urinary bladder are essential for understanding the bladder 
microbiota and their association with symptoms and response to treatment.

In this study, we combined EQUC of urine obtained primarily from adult females 
by transurethral catheterization with large-scale whole-genome sequencing to gen-
erate a comprehensive bladder-specific bacterial isolate genome reference collection. 
To assess the completeness of this catalog, we compared the taxa found here to those 
identified in a reexamination of previously published shotgun metagenomic and high-
throughput 16S rRNA gene sequencing surveys of bladder urine. We compared the 
genomes of this new culture collection to previously sequenced gut and vaginal iso-
lates and identified taxonomies and functional similarities between the bladder and 
vagina but not the gut. Finally, we identified phylogenetic and functional differences 
between E. coli strains isolated from the bladder and gut.
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Results
Demographics

In an effort to assemble a genomic reference collection representative of the phyloge-
netic diversity of the bladder, participants of this study were recruited as part of previ-
ous and ongoing IRB-approved studies. Out of a total of 5619 bladder isolates in our 
urinary bacteria collection, we selected 1050 strains for whole-genome sequencing. 
Some isolates came from the same participant; in such cases, the isolates were always 
from different species. Our objective was to sequence at least one genome for each spe-
cies identified by matrix-assisted laser desorption/ionization-time of flight (MALDI-
TOF) mass spectrometry (MS). For species commonly found in either symptomatic or 
asymptomatic individuals, we sequenced more than 20 isolates. These species include 
Escherichia coli, Klebsiella pneumoniae, Enterococcus faecalis, Streptococcus anginosus, 
Streptococcus agalactiae, Aerococcus urinae, Lactobacillus crispatus, and Lactobacillus 
jensenii.

Using a metaculturomic method called expanded quantitative urine culture (EQUC) 
[7, 8], we isolated these bladder strains from the urine obtained by transurethral cath-
eterization of 96 asymptomatic controls and 377 symptomatic individuals. The symp-
tomatic individuals had been diagnosed with urinary tract infection (UTI, n = 212), 
recurrent urinary tract infection (RUTI, n = 54), overactive bladder (OAB, n = 76), stress 
urinary incontinence (SUI, n = 10), bladder cancer (n = 12), bladder and bowel dysfunc-
tion (BBD, n = 3), kidney stone (n = 1), interstitial cystitis/bladder pain syndrome (IC/
BPS, n = 1), pelvic organ prolapse (POP, n = 5), or unknown urinary tract symptoms 
(n = 3). Participants were from 6 self-reported races: White/Caucasian (n = 340), Black 
(n = 57), Hispanic (n = 41), Asian (n = 5), Native American (n = 3), Middle Eastern 
(n = 2), and no reply (n = 25). Most participants were females (n = 454); only 19 were 
males. Participants ranged in age from 4  weeks to 99  years old (Table  1). Participant 
metadata for each genome are listed in Additional file 2: Table S1.

The bladder‑specific isolate genomes are diverse

Despite best efforts, many clinical isolates cannot be completely purified. Besides the 
primary, originally identified species, some isolates contained one or more secondary, 
minority species; in another system, these minority species have been called hitchhikers 
[35]. Of our 1050 isolates, 218 consisted of more than 1 species. In total, we obtained 
1134 high-quality genomes (> 90% completeness, < 5% contamination), including 781 
genomes produced as part of this current effort and 353 genomes from our collection 
that were previously deposited (Additional file 1: Fig. S1, Additional file 2: Table S1). The 
overall qualities of these genome assemblies were high: the median completeness level 
was 99.39%, and the median estimated contamination was 0.86%. The median positional 
coverage was 160 × , and the median contigs L50 (the number of contigs needed to cover 
50% of the genome assembly) was 14.24 (Fig. 1A–D).

Most genomes (n = 1096) were from females; only 38 were from males (Additional 
file 2: Table S1). This collection of genomes represented 8 phyla, 10 classes, 21 orders, 
39 families, 89 genera, and 196 species, of which 12 species are unique to males (Fig. 1E). 
This includes 7 genomes for which neither the NCBI taxonomy database nor the Genome 
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Taxonomy Database (GTDB) could assign a species (Additional file 2: Table S1). These 
7 genomes (from UMB1203, UMB1308A, UMB1298, UMB7805-LC452B, UMB4589-
SE434, UMB1308B, and UMB10442) represent isolates of the genera Brevibacterium, 
Corynebacterium, Paenibacillus_B, Sphingomonas, and Streptococcus.

Pairwise whole-genome average nucleotide identity (ANI) comparison of the 196 
species met a 95–96% threshold (Additional file  1: Fig. S2), the generally accepted 
ANI threshold (94–96%) [36, 37] for distinguishing between two bacterial species. 
More species were isolated from symptomatic participants (n = 169, Additional file 1: 
Fig. S3) than from asymptomatic participants (n = 76, Additional file 1: Fig. S4). This 
skew likely resulted from the simple fact that 79% of the genomes were from sympto-
matic participants.

To determine how well our genome collection represents the bacterial diversity cap-
tured by culture-independent methods, we re-analyzed 16S rRNA gene sequencing data 
previously obtained from 392 female bladder urine samples [3, 5, 38–40] (Additional 
file 2: Table S2). We found that our sequenced genomes represented 72.2% (26/36) of the 
most abundant genera (> 0.1% relative abundance) captured by 16S sequence analysis 
(Fig. 1F). We also analyzed publicly available metagenomes from 42 urine samples col-
lected using catheters across two studies [28, 31]. Our sequenced genomes represented 
77.8% (21/27) of the bacterial genera and 52.8% (28/53) of the bacterial species (Addi-
tional file 2: Table S3).

Table 1 Demographics of participants in this study

Symptomatic individuals 
(n = 377)

Asymptomatic 
controls 
(n = 96)

Sex Female 366 88

Male 11 8

Age < 18 2 5

18–40 28 23

40–65 109 45

> 65 227 15

Disease states UTI 212 N/A

RUTI 54 N/A

OAB 76 N/A

SUI 10 N/A

Bladder cancer 12 N/A

BBD 3 N/A

Kidney stone 1 N/A

IC/BPS 1 N/A

POP 5 N/A

With symptoms 3 N/A

Self‑reported race White 282 58

Black 41 16

Hispanic 29 12

Asian 5 0

Native American 2 1

Middle Eastern 2 0
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Among the 50 genera detected by either 16S rRNA gene sequencing or metagenom-
ics sequencing, 12 genera lack strains within our genome collection: Agathobacter, 
Anaeroglobus, S5-A14a (a genus in Anaerovoracaceae family) Sneathia, Fannyhessea, 
Magasphaera, Mobiluncus, Porphyromonas, Ureaplasma, Ezakiella, Jonquetella, and 
Lawsonella. These genera are strictly anaerobic, particularly fastidious, or lack a cell 
wall.

For other abundant anaerobes detected by either 16S sequencing or metagenomics 
sequencing, such as Anaerococcus and Prevotella, we had only a few strains in our 
cultured isolate collection (Additional file 1: Fig. S1, Additional file 2: Table S1). For 
example, the average relative abundance of Anaerococcus and Prevotella is about 2.8% 
and 3.2%, respectively, among all 16S rRNA gene sequenced samples, but our collec-
tion of 5619 isolates only contains 3 Anaerococcus and 5 Prevotella strains. Moreover, 
our sequenced genomes represented only a few of the Anaerococcus and Prevotella 
species detected by metagenomic sequencing (Additional file 2: Table S3).

In contrast, we were able to isolate and thus sequence taxa that were simply 
missed by 16S rRNA gene or metagenomics sequencing or were present only as 
rare taxa (< 0.1% average relative abundances across all individuals); these included 
isolates from the genera Acinetobacter, Alcaligenes, Bacillus, Bacteroides, Citrico-
ccus, Citrobacter, Curtobacterium, Cytobacillus, Dermabacter, Dolosicoccus, 

Fig. 1 Overall information of the bladder microbiota culture collection. A–D Distribution of genome 
assembly, completeness, contamination, coverage (on a log10 scale), and L50 values, respectively. E 
Phylogenomic tree of the 196 bacterial species (assigned by GTDB) represented in the bladder genome 
collection. A single genome per species was selected out of the 1134 high‑quality isolated genomes (> 90% 
completeness, < 5% contamination) to reconstruct the multiple sequence alignment of 71 core bacterial 
genes. Bacterial species are colored by phylum. *The bacterial species only found in males. F The diversity 
of isolated genomes was compared with the total diversity observed in the 16S sequence data (as shown in 
genus level) obtained from 392 bladder urine samples
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Enterobacter, Gemella, Gleimia, Globicatella, Gordonia, Granulicatella, Haemophi-
lus, Helcobacillus, Kocuria, Kytococcus, Ligilactobacillus, Metabacillus, Microbacte-
rium, Moraxella_A, Morganella, Micrococcus, Neisseria, Niallia, Nosocomiicoccus, 
Paenibacillus, Pauljensenia, Peribacillus, Priestia, Rothia, Serratia, Slackia, Sphingo-
monas, Trueperella, Weeksella, and Oligella (Additional file 2: Tables S1, S2 and S3).

Bladder isolates are functionally and taxonomically more similar to vaginal isolates 

than gut isolates

To assess the bladder microbiota relative to those of other well-studied anatomical 
sites, we compared the bladder strains that we had isolated from asymptomatic females 
to gastrointestinal and vaginal strains isolated by others from unrelated asymptomatic 
individuals. We compared the taxonomies of genomes of the 69 bladder bacterial spe-
cies isolated from females to genomes of 74 vaginal bacterial species (including 4 spe-
cies from our vaginal isolate collection) and genomes of 175 gut bacterial species, all 
cultivated from unrelated asymptomatic individuals (Additional file 2: Table S4). Only 5 
species (Bifidobacterium bifidum, Enterococcus faecalis, Escherichia coli, Lacticaseibacil-
lus rhamnosus, and Proteus mirabilis) were detected in all 3 niches, and only 9 species 
were found in both the bladder and gut microbiota. In contrast, 19 species were found 
in both the bladder and vaginal microbiota (Fig. 2A, Additional file 2: Table S4). Taken 
together, these results are consistent with the hypothesis that bacterial species from each 
niche are distinct and that the bladder shares more bacterial species with the vagina than 
the gut.

We next used the pangenomes to evaluate the functional differences in the micro-
biota by analyzing the protein functions encoded by the bacterial species in the three 
niches. Applying discriminant analysis of principal components (DAPC) and principal 
coordinates analysis (PCoA) using the Bray–Curtis Dissimilarity Index, we compared 
the Kyoto Encyclopedia of Genes and Genomes (KEGG, Fig.  2B, C, Additional file  2: 
Table  S5) and Clusters of Orthologous Groups (COG, Additional file  1: Fig. S5A-B, 
Additional file 2: Table S6) annotations of the 69 bladder, 74 vaginal, and 175 gut bacte-
rial species. Like the species analysis described above, this comparison identified more 
overlapping protein functions shared by the bladder and vaginal bacterial species that 
were largely distinct from protein functions found in the gut bacterial species. Volcano 
plots also revealed 321 KOfam functions differentially abundant between bladder and 
vaginal species (t-test, adjusted-p < 0.01, [logFD] > 0.3, Fig. 2D) and 1778 KOfam func-
tions differentially abundant between bladder and gut species (t-test, adjusted-p < 0.01, 
[logFD] > 0.3, Fig. 2E). We observed similar findings for COG functions. A total of 115 
COG functions were differentially abundant between the bladder and vaginal species. In 
contrast, 1611 COG functions were differentially abundant between the bladder and gut 
species (t-test, adjusted-p < 0.01, [logFD] > 0.3, Additional file 1: Fig. S5C-D). These data 
indicate the existence of many functions shared by the bladder and vaginal bacterial spe-
cies that are clearly distinct from those of gut bacterial species.

We identified Kegg Orthology (KO) modules that were significantly different between 
the three niches (Additional file 2: Table S7). Forty-one KO modules were enriched in the 
bladder (adjusted-p < 0.01 and > 10% prevalence in all bladder genomes) compared with 
the gut and/or vagina (Fig.  2F). For example, the mevalonate-dependent pathway for 
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isoprenoid biosynthesis was enriched in the bladder genomes (Fig. 2F, Additional file 2: 
Table  S7). All KOfam functions associated with the mevalonate-dependent pathway 
were enriched in the bladder genomes (Fig. 2G and Additional file 2: Table S8), including 
acetyl-CoA C-acetyltransferase, hydroxymethylglutaryl-CoA synthase, hydroxymethyl-
glutaryl-CoA reductase (NADPH), hydroxymethylglutaryl-CoA reductase, mevalonate 
kinase, phosphomevalonate kinase, diphosphomevalonate decarboxylase, and isopente-
nyl-diphosphate delta-isomerase. We also observed enriched KO modules in the bladder 
genomes related to acetyl-CoA, which is the precursor for the MEV pathway of isopre-
noid biosynthesis. These acetyl-CoA-related KO modules include beta-oxidation, acyl-
CoA synthesis, and pyruvate oxidation. Some bladder-enriched KO modules relate to 
lysine metabolism (i.e., lysine degradation and biosynthesis) or nitrogen metabolism (i.e., 
denitrification and nitrate assimilation), while others relate to iron utilization (e.g., aero-
bactin biosynthesis and heme biosynthesis) (Fig. 2F, Additional file 2: Table S7). Given 
the scarcity of iron in the bladder, we investigated specific functions involved in iron 
utilization/assimilation. Seventeen KOfam functions related to heme biosynthesis and 
degradation, as well as to iron utilization and transport, were enriched in the bladder 

Fig. 2 Comparison of bladder isolates with vaginal and gut isolates. A Venn diagram showing the number of 
bacterial species isolated from asymptomatic individuals shared among three different niches: bladder (blue; 
n = 68), vagina (red; n = 74), and gut (yellow; n = 175). Reference genomes of the vagina and gut isolated 
from asymptomatic donors were obtained from previous studies. Bladder isolates from female asymptomatic 
controls were used in the comparison. B, C DAPC and PCoA of KEGG functional diversity of bacterial species 
isolated from the asymptomatic individuals of different niches. D, E Volcano plots of t tests corrected by the 
Benjamini and Hochberg method for changes in KOfam functions between the bladder and the vagina and 
between the bladder and the gut. An FDR cutoff of 0.01 and [logFC] > 0.3 were used. Data points highlighted 
in red indicate the KOfam functions that were significantly enriched in the gut or vagina, while data points 
highlighted in blue indicate the KOfam functions that were significantly enriched in the bladder. F KO 
modules that were enriched in the bladder compared with the gut and/or vagina. An FDR cutoff of 0.01 
and more than 10% prevalence in all bladder genomes were used. G Selected KOfam functions that were 
enriched in the bladder as compared with the gut and/or vagina. Functions that had at least 10% prevalence 
in all bladder genomes with an FDR cutoff of 0.01 were used
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genomes, including iron-sulfur cluster assembly proteins, hemoglobin, heme o synthase, 
and iron uptake system component EfeO among others. Several bladder-enriched func-
tions were related to protoporphyrin/coproporphyrin utilization, including protopor-
phyrin/coproporphyrin ferrochelatase, which uses ferrous iron as one of its substrates 
(Fig. 2G and Additional file 2: Table S8). Analyses of COG functions also supported the 
enrichment of the mevalonate-dependent pathway, enterochelin transport, and pyruvate 
oxidation in the bladder genomes (Additional file 1: Fig. S5E, Fig. S6, Additional file 2: 
Table  S9). Enrichment of the mevalonate-dependent pathway over the more common 
methylerthritol 4-phosphate pathway and of functions involved in iron utilization and 
export may relate to iron availability within the bladder.

Genomes of Escherichia coli strains isolated from the bladder differ from the gut

Given the significant taxonomic and functional differences between the bladder and gut 
genomes in asymptomatic individuals, we next sought to evaluate whether isolates of 
the same species differed in these 2 niches. As the gut is generally considered to be the 
source of uropathogenic Escherichia coli (UPEC) strains [41, 42], we compared our 186 
bladder E. coli genomes with 387 publicly available gut E. coli isolates from unrelated 
healthy individuals [43].

From the genomes of these 186 bladder E. coli isolates, we constructed a phylogenomic 
tree based on 1084 single-copy core genes (Fig. 3). These genomes belonged to 2 distinct 
clades and 6 phylogroups. Phylogroup B2 and 1 unknown phylogroup belonged to clade 
1, whereas phylogroups G, F, A, B1, and D belonged to clade 2. Phylogroup B2 (58.6%, 
n = 109) predominated, followed by phylogroups D (19.4%, n = 36), B1 (9.7%, n = 18), A 
(8%, n = 15), F (3.2%, n = 6), G (0.5%, n = 1), and an unknown phylogroup (0.5%, n = 1) 
(Table 2, Additional file 2: Table S10). These genomes were from E. coli strains isolated 
from the bladders of 12 asymptomatic controls and 174 symptomatic individuals who 
were diagnosed with a urinary tract infection (UTI, n = 127), recurrent UTI (RUTI, 
n = 14), overactive bladder (OAB, n = 21), stress urinary incontinence (SUI, n = 2), blad-
der cancer (n = 5), bladder bowel disorder (BBD, n = 2), interstitial cystitis/painful blad-
der syndrome (IC/PBS, n = 1), or pelvic organ prolapse (POP, n = 2). However, symptom 
status was not associated with either clade or phylogroup (Fig. 3). The gut genomes also 
belonged to the same 6 phylogroups; however, the distribution differed. In contrast to 
the bladder isolates, only 3% of the gut genomes belonged to phylogroup B2 (n = 13) 
while 33.85% belonged to phylogroup D (n = 131), 37% to phylogroup F (n = 143), 
23.5% to A (n = 91), 1.8% to B1 (n = 7), 0.26% to phylogroup G (n = 1), and 0.26% to an 
unknown phylogroup (n = 1) (Table  2, Additional file  2: Table  S10). Thus, phylogroup 
distribution differed dramatically between these 2 niches.

We next assessed the functions. Applying PCoA using the Bray–Curtis Dissimilarity 
Index, we compared the annotated KEGG functions of the bladder (Additional file  2: 
Table S11) and gut E. coli genomes (Additional file 2: Table S12) and found that they dif-
fered significantly (Fig. 4A,  R2 = 0.11598, p < 0.001). This difference may be because the 
functions of different phylogroups significantly differed (Fig. 4B,  R2 = 0.58919, p < 0.001), 
especially between phylogroup B2 and the other phylogroups and that the distribution 
of the phylogroups in bladder and gut differed (Table 2).
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We next identified the functions that may facilitate E. coli adaptation and coloniza-
tion to these two environmentally different niches by evaluating the predicted functions 
encoded by the bladder and gut genomes that were both abundant and differentially 
present (Fig.  4C, Additional file  2: Table  S13). Bladder-enriched functions included 
those associated with iron metabolism (i.e., the siderophores salmochelin and entero-
bactin), bladder-relevant functions (i.e., hippuric hydrolase and a uric acid transporter), 
the general secretion pathway, both type VI and IV secretion systems, and intracellular 

Fig. 3 Phylogenetic analysis of 186 bladder‑specific Escherichia coli‑isolated genomes. Phylogenomic 
relationship of 186 E. coli isolates from the bladder derived using 201,624 single‑copy core genes from their 
genomes. Phylogroups are indicated by shaded colors. The symptom status of the host for each isolate is 
indicated by the color of the isolate name

Table 2 Number and percent of different E. coli phylogroups in bladder and gut genomes

B2 A B1 D F G Unknown

Bladder 109 (58.6%) 15 (8%) 18 (9.7%) 36 (19.4%) 6 (3.2%) 1 (0.5%) 1 (0.5%)

Gut 13 (3.4%) 91 (23.5%) 7 (1.8%) 131(33.9%) 143 (37%) 1 (0.26%) 1 (0.26%)
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multiplication and trafficking proteins. In contrast, gut-enriched functions related to 
hydrogenase components, methylasparate, phenylpropionate metabolism, putrescine 
metabolism, type III secretion system, and quorum sensing. Both sets of genomes har-
bored different enriched functions related to virulence, flagella, capsule, adhesion, and 
CRISPR.

To further evaluate the virulence and antibiotic susceptibility profiles of E. coli strains 
in these 2 niches, we mapped the E. coli genomes against the virulence factor database 
(VFDB) and Comprehensive Antibiotic Resistance Database (CARD). A total of 187 dif-
ferent virulence factors and 53 antibiotic resistance genes were detected in the 186 blad-
der genomes (Additional file 2: Tables S14 and S15), and 128 different virulence factors 
and 16 antibiotic resistance genes were detected in the 387 gut genomes (Additional 
file 2: Tables S16 and S17). The number of virulence and antibiotic-resistance genes was 
significantly greater in the bladder E. coli genomes (Fig. 5A). Again, this may result from 
the distribution of phylogroups, as phylogroup B2 (average counts per genome = 84.3) 
had slightly more virulence and antibiotic resistance genes than phylogroups D (average 
counts per genome = 79.6) and F (average counts per genome = 81.7) and much more 
than phylogroups A (average counts per genome = 67.65) and B1 (average counts per 
genome = 57.88) (Fig. 5B).

Fig. 4 Bladder‑specific Escherichia coli reference genomes are different from the gut reference genomes. A 
The KOfam functions of E. coli genomes annotated by KEGG are separated by niches (bladder and gut). B The 
KOfam functions of E. coli genomes annotated by KEGG are separated by phylogroups. C Overrepresented 
KOfam functions associated with bladder‑specific or gut‑specific genes
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Seventy-seven virulence and antibiotic resistance genes were enriched in the blad-
der genomes (Fig. 5C, Additional file 2: Table S18), whereas 35 were enriched in the gut 
genomes (Wilcoxon rank sum test, adj-p < 0.01, Fig.  5D, Additional file  2: Table  S18). 
For example, the virulence factor hemoglobin protease (vat) and the antibiotic resist-
ance gene cephalosporin-hydrolyzing class C beta-lactamase EC-5 (blaEC-5) were pre-
sent in 44% and 55% of bladder genomes, respectively, but only in 0.5% and 0.3% of gut 
genomes, respectively. Other virulence genes enriched in the bladder genomes included 
those that are predicted to encode adhesins (e.g., afaE-V, focA, C-D, F–H, papA-F, H, 
and sfaB-H, S, X–Y), heme/iron-related virulence (e.g., chuA, S-T, X–Y, iroB-E, N, irp1-
2, and ybtA, E, P-Q, S-U, X), toxins (e.g., cnf1, hlyA-D, ibeA, and tcpC), and resistance 
to several antibiotics (e.g., aminoglycosides, beta-lactamases, macrolides, tetracycline, 
and trimethoprim). In contrast, the gut strains were highly enriched for genes associated 
with type III secretion and enriched for multiple other virulence factors, including adhe-
sion genes (e.g., faeC-J, fdeC, and ecpC-E), heme/iron-related metabolism (i.e., iucA-D 
and shuA, T, X), toxins (i.e., sat and astA), and 3 class C beta-lactamase genes. Taken 
together, these results suggest that bladder E. coli strains from asymptomatic individuals 
harbor more virulence and antibiotic resistance genes than commensal gut E. coli strains 
and that E. coli strains use different virulence genes to adapt to different niches.

Fig. 5 Comparison of virulence and antibiotic resistance genes between Escherichia coli reference genomes 
isolated from the bladder and gut. A Boxplots analysis showing the comparison of counts of virulence and 
antibiotic resistance genes in the bladder and gut E. coli genomes. Each data point represents the counts of 
virulence and antibiotic resistance genes in each E. coli genome. B Boxplot analysis showing the comparison 
of counts of virulence and antibiotic resistance genes in different E. coli phylogroups. Phylogroup G was 
not shown here due to the low sample size. *, **, ***, **** indicated FDR < 0.05, 0.01, 0.001, and 0.0001, 
respectively. C Virulence and antibiotic resistance genes that were enriched in bladder E. coli genomes. D 
Virulence and antibiotic resistance genes that were enriched in gut E. coli genomes. Virulence and antibiotic 
resistance genes with an FDR of < 0.01 were displayed here
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Discussion
Here, we have presented the largest collection of bladder-specific bacterial isolates 
paired with whole-genome sequences, providing a valuable resource for hypothesis-
driven and data-driven bladder microbiome research. This extensive, genome-sequenced 
culture collection represents more than 70% of bacterial genera detected by previously 
reported 16S rRNA gene sequencing of bladder urine samples collected by transurethral 
catheterization [3, 5, 38–40]. The missing genera are primarily strict anaerobes that are 
not aerotolerant but also include a few that are particularly fastidious or lack a cell wall. 
For example, per 16S rRNA gene [4, 21, 38, 44–48] or shotgun metagenomic sequencing 
[14], the bacterial genera Rothia, Dialister, Bacteroides, Peptoniphilus, Prevotella, and 
Anaerococcus are abundant and prevalent in catheterized urine samples; however, we 
have few or no isolates from these genera in our collection. Efforts to obtain more aero-
tolerant anaerobes should be encouraged. Methods for the culture of non-aerotolerant 
anaerobes in urine samples also should be developed; this would require a method that 
does not expose the urine sample to air during collection.

The catalog reported here is a substantial extension of a previously published study 
[14]. In that previous study, we analyzed 149 bladder genomes from 78 different 
species. In the current study, we analyzed 1134 genomes from 196 species (Fig.  1E, 
Additional file 1: Fig. S1), including 7 species without representative genomes in the 
GTDB taxonomy database. With more comprehensive collections of genomes from 
the bladder, vagina, and gut, we found the functions and taxonomies of bladder iso-
lates to be more like vaginal isolates than of gut isolates (Fig. 2), consistent with the 
previous report [14]. For example, both studies observed enrichment in the bladder 
of the mevalonate-dependent pathway for isoprenoid biosynthesis over the more com-
mon methylerthritol 4-phosphate pathway. This enrichment primarily results from the 
presence of certain bladder-specific species in the genera Aerococcus, Actinotignum, 
Bifidobacterium, Corynebacterium, Enterococcus, Lacticaseibacillus, Lactobacillus, 
Limosilactobacillus, Staphylococcus, and Streptococcus. Other bladder-enriched func-
tions include several related to acetyl-CoA, the precursor to the mevalonate-depend-
ent pathway, and several involved in iron utilization and export. The latter is likely 
related to the scarcity of iron in the bladder. The reason for the enrichment of func-
tions related to lysine metabolism is less obvious.

Since the genomes of all the isolates from the bladder and gut differed substantially, we 
wondered whether the same might be true of a single species found in both niches. We 
chose E. coli for three reasons: (1) it is the most common cause of UTI, (2) it is the most 
fully characterized bacterial species, and (3) it was the species with the largest number 
of sequenced genomes from the bladder. Our analysis identified both phylogenetic and 
functional differences. For example, the bladder and gut genomes belonged to the same 
6 phylogroups; however, their distribution differed with phylogroup B2 most common in 
the bladder, but A, D, and F were most common in the gut. In fact, phylogroup B2 was 
relatively rare (3%) in the asymptomatic gut samples examined here. Previous investi-
gation of E. coli phylogroup diversity in the gut found the presence of B2 strains most 
prevalent in individuals with inflammatory bowel disease [49]. Prior studies suggested 
that most E. coli strains causing UTI and other extraintestinal infections belong to phy-
logroup B2, presumably due to its greater pathogenetic capacity relative to the other 
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phylogroups [50–53]. However, we did not find an association between symptom status 
and phylogroup, which concurs with prior observations in the literature [54]. It is impor-
tant to note that most (74%) bladder E. coli isolates were collected from participants 
diagnosed with UTI or RUTI; future work isolating E. coli from the bladders of individu-
als with the other symptom statuses considered here is needed. Although most blad-
der E. coli isolates collected from participants diagnosed with UTI or RUTI belonged to 
phylogroup B2, this also was true for bladder isolates from asymptomatic controls. Fur-
ther sequencing of E. coli strains from asymptomatic controls, however, is needed as our 
study only included 12 strains. Nevertheless, these results support the hypothesis that 
UTI symptoms most likely result from multiple factors, including the composition of the 
rest of the bladder microbiome and the host response [55–59].

The difference in phylogroup distribution suggests that only a subset of gut E. coli 
strains are adapted for life in the bladder. From enrichment analysis, it appears that E. 
coli uses different strategies to adapt to and colonize these two environmentally different 
niches (Fig. 4). Bladder-enriched functions included those associated with iron metabo-
lism, hippuric acid hydrolase, and a uric acid transporter. Given the scarcity of iron and 
the presence of hippuric and uric acids in the bladder [60], this makes sense. In contrast, 
gut-enriched functions related to hydrogenase components, the methylasparate cycle, 
phenylpropionate metabolism, putrescine metabolism, and quorum sensing. These are 
functions expected of strains adapted for survival in the highly crowded, anaerobic envi-
ronment of the gut. The observation that the bladder genomes were enriched for type IV 
and VI secretion systems, as well as intracellular multiplication and trafficking proteins, 
whereas the gut genomes were enriched for type III secretion systems also suggests very 
different lifestyles.

Strengths and limitations

This study has several strengths. First, we sequenced and analyzed only isolates from 
urine obtained by transurethral catheterization, which is known to sample urine from 
the bladder [10, 61]. In contrast, most studies attempting to inventory bacterial species 
of the urinary tract have been performed on voided urine. A prime example is a recent 
study by Dubourg and colleagues [62], who used their own enhanced culture method 
to detect microbes in voided urine. These authors claimed to have increased the micro-
bial repertoire of the urinary tract and concluded that many urinary species originate 
from the gut; however, they should have restricted their conclusions to urine and not 
the urinary tract. This is because voided urine is often contaminated with post-urethral 
microbes, and thus, the origin of each bacterial isolate from a voided urine sample can-
not be determined [56]. In contrast, because we sequenced only isolates from cath-
eterized urine, our collection can be considered a bladder-specific bacterial genome 
reference catalog. Second, while our collection is limited by our ability to culture, EQUC 
detects the vast majority of relatively prevalent bladder bacterial species detected by 
either 16S rRNA gene sequencing [3, 44] or shotgun metagenomic sequencing [14, 28]. 
Third, whole-genome sequencing provides a collection of high-quality genomes for the 
phylogenetic diversity found within the bladder, permitting exploration beyond what 
can be achieved by 16S rRNA gene sequencing. For example, we used some of these 
genomes to determine that the species Aerococcus urinae is actually a complex of at least 
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four species and two groups [20, 63]. Future metagenomic studies of the bladder micro-
biome will necessitate such a catalog of genomes, as most metagenomic analysis tools 
rely on reference databases. The availability of a bladder genome catalog, akin to the gut 
microbiome genome catalog, will enable future studies to use shotgun sequencing to 
capture complex communities.

We acknowledge that this study has limitations. First, the vast majority of the 
sequenced bacteria were obtained from adult female participants and thus cannot be 
considered to represent males or children. However, despite including only 19 males in 
this collection, we identified 12 (out of 196) bacterial species found exclusively in males. 
This indicates the unique composition of the male bladder microbiome and the neces-
sity of including more male samples in our next collection. Second, the study popula-
tion mostly consists of US participants. Notably, our previous observations revealed 
distinct differences in the bladder microbiomes between Chinese and US participants, 
indicating a possible geographic variation in the bladder microbiome [45]. An ideal col-
lection should include isolates from different countries. Third, the bladder, vagina, and 
gut genomes were obtained from different participants. An ideal design would be to 
compare the genomes of isolates obtained from all 3 niches from the same cohort of 
participants. Alas, that collection does not yet exist. Finally, our comparisons between 
the bladder, vagina, and gut species are—with the exception of E. coli—limited to a sin-
gle strain per species, which likely excludes some of the genetic diversity present in the 
species. Currently, however, many of these species have few sequenced genomes. The 
observations presented here can only be validated once more sequences are available 
from bladder and vaginal strains.

Conclusions
Comparisons between genomes isolated from the bladder, vagina, and gut provide evi-
dence that the genetic content of bacteria that inhabit the bladder is distinct, most nota-
bly by the functionalities they encode. With the genomes produced through this study, a 
more comprehensive catalog of bacteria species isolated from the bladder is now avail-
able, representative of > 70% of bladder genera detected via high throughput 16S rRNA 
gene or shotgun metagenomic sequencing surveys. Most notably, the 1134 genomes 
examined here capture the genetic diversity of key bladder species associated with both 
the presence and absence of symptoms. The genomes, coupled with the participant 
metadata, provide a key reference for future hypothesis- and data-driven research into 
the bladder microbiota.

Methods
Study design and sample collection

Following Institutional Review Board approval from Loyola University Medical Center 
(LUMC), University of California San Diego (UCSD) Health, University of Iowa, Univer-
sity of California San Francisco (UCSF) Medical Center, Nationwide Children’s Hospital 
(NCH), or University of Pittsburgh (Pitt) School of Medicine, participants gave verbal 
and written consent for chart abstraction and urine collection with analysis for research 
purposes. Urine samples were collected via transurethral catheter. Urine samples were 
placed into BD Vacutainer® plus C&S preservative tubes (Becton, Dickinson and Co., 
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Franklin Lakes, NJ). All specimens from LUMC were transported within 4 h to the Wolfe 
Lab at Loyola University Chicago. Specimens from elsewhere were shipped overnight.

Expanded quantitative urine culture (EQUC)

EQUC was performed as previously described [7, 8]. Briefly, 100 µL of catheterized urine 
was grown under five conditions with BD BBL-prepared plated media: (1) blood agar 
plate (BAP) in 5%  CO2 for 48  h, (2) chocolate agar (CHOC) in 5%  CO2 for 48  h, (3) 
colistin and nalidixic acid (CNA) agar in 5%  CO2 for 48 h, (4) CDC anaerobe BAP in an 
anaerobic jar (BD GasPak Anaerobe Sachets) or anerobic chamber (Coylabs) for 48 h, 
and (5) BAP under aerobic conditions for 48  h, and MacConkey under aerobic or 5% 
 CO2 for 48 h, all at 36 °C. In one study (FUN), EQUC was modified to select for fungal 
microbes as well: BD BBL-prepared plated media (1) brain heart infusion agar, with 10% 
sheep blood, gentamicin, and chloramphenicol gentamicin-BHI in 5%  CO2, (2) Hardy 
Chrome-Candida (Chrom-Candida), and (3) inhibitory mold agar (IMA) for 120 h, all 
at 36 °C. The detection level was 10 CFU/mL, represented by one colony of growth on 
any of the plates. In another study (PBSA), EQUC was modified to include BD BBL plate 
media and Thayer Martin agar for 48 h at 36 °C. Each morphologically distinct colony 
type was isolated on a different plate of the same medium to prepare a pure culture that 
was used for identification using matrix-assisted laser desorption/ionization-time of 
flight (MALDI-TOF) mass spectrometry (MS).

Choice of isolates for sequencing

To assess genomes across as much of the phylogenomic spectrum as possible, we 
selected at least one member from each species identified by MALDI-TOF for which we 
had at least 1 isolate. For some of the species commonly found in either symptomatic or 
asymptomatic individuals, we chose more than 20 isolates. Given the limited phenotypic 
or genomic data for most species, the selection process was largely random. For E. coli, 
we chose 186 isolates to ensure that we captured several isolates from each phylogroup.

DNA extraction and whole‑genome sequencing

A total of 342 strains from our collection were sequenced and reported previously, as 
described [14, 54, 64–97]. The remaining 708 strains were sequenced as part of this cur-
rent effort. Their isolates were grown in their preferred medium and pelleted. To extract 
genomic DNA, cells were resuspended in 0.5 mL DNA extraction buffer (20 mM Tris–
Cl, 2 mM EDTA, 1.2% Triton X-100, pH 8) followed by the addition of 50 µL lysozyme 
(20 mg/mL) and 30 µL mutanolysin (5 kU/mL, resulting in 0.15 kU/sample). After a 1-h 
incubation at 37 °C, 80 µL 10% SDS and 20 µL proteinase K were added, followed by a 
2-h incubation at 55  °C. From this point, genomic DNA was either purified with phe-
nol–chloroform or the MagMax DNA Multi-Sample Kit, according to the manufactur-
er’s instructions. For phenol–chloroform extractions, 210 µL of 6 M NaCl and 700 µL 
phenol–chloroform were added. After a 1-h incubation with rotation, the solution was 
centrifuged at 13,500 rpm for 10 m, and the aqueous phase was extracted. An equiva-
lent volume of isopropanol was added; after a 10-m incubation, the solution was cen-
trifuged at 13,500  rpm for 10  m. The supernatant was decanted, and the DNA pellet 
precipitated using 600 µL 70% ethanol. Following ethanol evaporation, the DNA pellet 
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was resuspended in nuclease-free  H2O and stored at − 20 °C. For both approaches, DNA 
purity and quality were spot-checked with a NanoDrop spectrophotometer. One per-
cent agarose gel electrophoresis was performed in difficult-to-extract isolates to confirm 
genomic DNA isolation and assess degradation. DNA was quantified with the Qubit 
Fluorimeter Broad Range or with High Sensitivity Kits, depending on yield.

To sequence, the samples were normalized to a maximum of 16  ng/µL. Most were 
library-prepped with the Illumina Nextera Flex library prep kit with Nextera XT Indi-
ces, but 193 samples were prepared using the Qiagen FX library prep kit with Qiagen 
Indices. Libraries were quantified with qubit, size distribution assessed with Agilent 
Bioanalyzer HS kit, and were pooled. A quality control PE150 MiSeq flow cell was run 
on the pools. Successful pools were sent to the Northwestern University Core Sequenc-
ing Facility, where they were sequenced on a Novaseq 6000 yielding PE150 reads for an 
approximate target of 50 × coverage.

Whole‑genome sequence analysis and annotation

Raw reads of the 342 previously sequenced isolates were downloaded from the NCBI 
Sequence Read Archive (n = 240) and the European Nucleotide Archive (n = 102). With 
the addition of the 708 newly sequenced isolates for this study, a total of 1050 isolates 
with whole-genome sequences were used for analysis (Additional file  2: Table  S1). 
The quality of the raw reads was assessed using FastQC (https:// www. bioin forma tics. 
babra ham. ac. uk/ proje cts/ fastqc/). Then, the raw reads were trimmed and filtered using 
BBMap in BBTools (v38.94) (https:// jgi. doe. gov/ data- and- tools/ bbtoo ls/). Adaptors in 
samples were first removed using reference (adapters.fa) and trimmed using default 
settings (ktrim = r, k = 23, mink = 11, hdist = 1, tpe, tbo). Bases with low-quality scores 
(qtrim = rl, trimq = 20) and positions with high compositional bias (ftl = 20, ftr = 135) 
were removed from both ends, keeping only reads with lengths above 30  bp (min-
length = 30), with no Ns (maxns = 0), and with an average quality above 20 (maq = 20). 
After quality control, all the clean paired-end reads were assembled using SPAdes 
(v3.14.1) [98] specifying the (–isolate) mode with a full k-mer size list (− k 21,33,55,77). 
To assess the completeness and contamination of the assembled genomes, CheckM 
(v1.0.12) [99] was performed using the “lineage_wf” pipeline, and genomes were fil-
tered at completeness ≥ 90% and contamination ≤ 5% to obtain high-quality genomes. 
MaxBin 2.0 (v2.2.7) [100] was used to filter samples with contamination above 5%, 
using the contigs’ coverage and the full marker gene set to obtain high-quality genome 
bins. Quast (v5.2.0) [101] was performed to examine the metrics of assemblies, such 
as N50, L50, total number of contigs, total length of the assembly (bp), and GC con-
tent (Additional file  2: Table  S1). The clean reads from each sample were mapped to 
its high-quality assemblies to estimate the coverage of contigs in assembled genomes 
using BBMap, and the mean coverage for each genome was calculated using samtools 
(https:// github. com/ samto ols/ samto ols). The taxonomy of assembled genomes was 
classified by gtdbtk (v2.1.1) [102] with the database (release207_v2) in the “classify_wf” 
mode. Additional file 2: Table S1 lists the taxonomy for each of the sequenced strains, 
including the taxonomies from both the Genome Taxonomy Database (GTDB) and 
NCBI Taxonomy Database.

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://jgi.doe.gov/data-and-tools/bbtools/
https://github.com/samtools/samtools
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Based on statistical metrics of the assemblies, a single genome with relatively 
higher quality for each species identified by gtdbtk (v2.1.1) [102] was selected from 
the 1134 high-quality isolated genomes; representative genomes were selected based 
on assembly quality. In brief, we chose genomes with high completeness, low con-
tamination, few contigs, and/or high coverage depth, prioritizing these metrics in this 
order. dRep (v2.2.3) [103] and fastANI (v1.32) [104] were used to compare and calcu-
late the average nucleotide identity (ANI) of the representative genomes of the 196 
species. Ninety-five percent ANI and 96% ANI cutoffs were used to cluster genomes 
into different groups (-pa 0.95 -sa 0.96 –S_algorithm fastANI). Phylogenomic analy-
sis of the representative genomes of bladder strains was conducted using anvi’o v7 
[105]; assemblies were made into the anvi’o contig databases (anvi-gen-contigs-data-
base) and populated with hmms (anvi-run-hmms). The multiple sequence alignment 
of the concatenated amino acid sequences for 71 universal single-copy marker genes 
was extracted via the anvi’o command anvi-get-sequences-for-hmm-hits –get-aa-
sequences –hmm-source Bacteria_71 –return_best-hit –concatenate. Phylogenetic 
trees were constructed using FastTree v2 [106] with default settings (JTT + CAT 
model) and visualized in the iTOL v6 web browser [107]. Genomes were single anno-
tated using the Database of Clusters of Orthologous Genes (COGs 2020) [108] and 
KEGG (Kyoto Encyclopedia of Genes and Genomes) [109] in anvi’o v7 [105].

Comparison of the bladder‑, vaginal‑, and gut‑isolated genomes

Since our bladder-isolated genomes were mostly collected from US participants, 
we only compared them to genomes of isolates from the vaginas or guts of asymp-
tomatic individuals in Western and European populations. The reference collec-
tion of gut-isolated genomes was downloaded from the Broad Institute-OpenBiome 
Microbiome Library [43] (BIO-ML, bioproject PRJNA544527, n = 3423) and a previ-
ously published study [110] (European Nucleotide Archive under accession number 
ERP012217, n = 152). The vaginal genomes were mostly collected from the Human 
Microbiome Project [111] (including only vaginal genomes with metadata explicitly 
indicating collection from the vagina, n = 92) and our laboratory’s collection of vagi-
nal isolates (n = 5).

The statistical metrics of the assemblies were conducted in the same manner, as 
described above for bladder genomes. The GTDB-Tk (v2.1.1) was used for taxonomi-
cal identification of the reference genomes, classifying 175 species for gut genomes 
and 74 species for vaginal genomes, respectively. Due to the different number of iso-
lated strains from the 3 niches, for the purpose of niche comparison, we selected a sin-
gle genome with relatively high quality for each species as the representative genome, 
based on statistical metrics of the assemblies. The selection criteria were the same as 
described above for bladder genomes. We used the selected genomes for functional 
annotation and niche comparison (Additional file 2: Table S4). The pan-genomes of 
the bladder, vaginal, and gut representative genomes were generated using the param-
eter (anvi-pan-genome) with frags (–minbit 0.6 and –mcl-inflation 2). Using these 
pan-genomes, enrichment analysis for KEGG and COG functions was then con-
ducted in anvi’o v7 with the parameter (anvi-compute-functional-enrichment) [112].
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Microbial 16S rRNA gene amplicon sequence analysis

16S rRNA gene sequence analysis of previously obtained 392 female bladder urine sam-
ples [3, 5, 38–40] was conducted, as previously described [44, 45]. Cutadapt (cutadapt.
readthedocs.io) was used to quality trim the raw reads derived from the 16S rRNA V4 
region by removing adaptors from both ends (-a ^GTG CCA GCMGCC GCG GTAA…
ATT AGA WACCCBDGTA GTC C -A ^GGA CTA CHVGGG TWT CTAAT…TTA CCG 
CGGCKGCT GGC AC) and discarding processed reads that were shorter than 200  bp 
or longer than 240  bp (-m 200 -M 240 –discard-untrimmed). To generate amplicon 
sequence variant (ASV) tables, DADA2 [113] was applied to process the trimmed reads, 
including quality control, dereplication, and chimera removal. A total of 392 bladder 
urine samples with > 1000 ASV counts were kept for downstream analysis. We then used 
BLCA v2.2 [114] with the NCBI 16S Microbial Database to obtain taxonomic identities 
at the genus level.

Metagenomics sequence analysis

Raw sequencing reads of metagenomic sequences obtained from 42 urine samples col-
lected using catheters in 2 previous studies [28, 31] were downloaded from NCBI (30 
samples from BioProject PRJEB8104 and 12 samples from BioProject PRJNA700071). 
Quality control of metagenomes was performed similarly to whole-genome sequence 
analysis, as described above. An additional step was taken to eliminate human reads 
from the samples. This was achieved by mapping the reads against the human genome 
(GRCh38.p14, GCF_000001405.40) and removing reads with a minimum identity of 
95% (minid = 0.95) using BBmap (bbmap.sh). After quality control, all the clean paired-
end reads were processed through MetaPhlAn (v 4.0.5) [115] with the Bowtie database 
(mpa_vJun23_CHOCOPhlAnSGB_202307) using default settings to identify taxonomy 
and estimate the relative abundances of discrete taxa. The Python script (sgb_to_gtdb_
profile.py) in MetaPhlAn4 was utilized to transform the output of MetaPhlAn4 (SGBs) 
to the corresponding GTDB taxonomy. Eight samples with no identified bacteria were 
subsequently removed. Results were parsed via Python and displayed in Additional 
file 2: Table S3.

Phylogenetic grouping and virulence profiling of E. coli strains

We assembled and annotated publicly available gut E. coli isolates [43] following the pro-
tocol listed above for the bladder isolates. E. coli strains of bladder and gut with high 
coverage (> 20 ×) were used for downstream pan-genome and phylogenetic analyses. 
The phylogroups of E. coli strains were determined using ClermonTyping [116]. anvi’o 
v7 was applied for the pan-genome analysis of E. coli strains using the parameter (anvi-
pan-genome) with frags (–minbit 0.6 and –mcl-inflation 10). Phylogenetic analysis for 
bladder E. coli strains was conducted by extracting amino acid sequences of 1084 single-
copy core clusters (201,624 genes); amino acid sequences were concatenated and aligned 
(–concatenate-gene-clusters) in anvi’o v7. The phylogenetic tree was constructed and 
visualized as mentioned above. The genomes were screened for virulence factors and 
antibiotic resistance genes via abricate V.1.0.1 (https:// github. com/ tseem ann/ abric ate) 

https://github.com/tseemann/abricate
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using the following databases: Virulence Factor Database [117] (VFDB, updated 2021-
Mar-27) and Comprehensive Antibiotic Resistance Database [118] (CARD, updated 
2021-Mar-27). The results were parsed via Python.

Statistical analyses

All the statistical analyses were conducted using RStudio v3.6. The “ggplot2″ R package 
was used for box plots, and “pheatmap” was used for heatmaps. Discriminant analysis of 
principal components (DAPC) was conducted using the “adegenet” package using the 
“dapc” function. Principal coordinates analysis (PCoA, function “capscale” with no con-
straints applied) was conducted using the “vegan” package and the vegdist function with 
method “bray” for Bray-Cutis dissimilarity analysis. Different groups in the ordination 
plot were tested using a PERMANOVA test (function “adonis”) and were clustered on 
the plot using the function “ordiellipse” with statistics (kind = “sd”,” conf = 0.95).
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