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Abstract 

Background: In rheumatoid arthritis (RA), the activation of T and B cell clones specific 
for self‑antigens leads to the chronic inflammation of the synovium. Here, we per‑
form an in‑depth quantitative analysis of the seven chains that comprise the adaptive 
immune receptor repertoire (AIRR) in RA.

Results: In comparison to controls, we show that RA patients have multiple 
and strong differences in the B cell receptor repertoire including reduced diversity 
as well as altered isotype, chain, and segment frequencies. We demonstrate that thera‑
peutic tumor necrosis factor inhibition partially restores this alteration but find a pro‑
found difference in the underlying biochemical reactivities between responders 
and non‑responders. Combining the AIRR with HLA typing, we identify the specific T 
cell receptor repertoire associated with disease risk variants. Integrating these features, 
we further develop a molecular classifier that shows the utility of the AIRR as a diagnos‑
tic tool.

Conclusions: Simultaneous sequencing of the seven chains of the human AIRR 
reveals novel features associated with the disease and clinically relevant phenotypes, 
including response to therapy. These findings show the unique potential of AIRR 
to address precision medicine in immune‑related diseases.
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Background
Rheumatoid arthritis (RA) is a prevalent immune-mediated disease that is characterized 
by the chronic inflammation of the synovial membrane caused by inadequate activation 
of cells of the innate and adaptive immune systems [1]. Tumor necrosis factor (TNF) 
plays a central role in the inflammatory processes of RA, which can eventually lead to 
irreversible joint damage and bone erosion [2]. Although there is increasing knowledge 
on the immune cell types and states that participate in RA pathogenesis [3, 4], little is 
known on how the immune repertoire—the collection of T and B cell receptor chains—
is shaped by disease or how it is associated with phenotypes of interest like the response 
to TNF inhibition (TNFi) therapy.

The immune repertoire relies on T and B lymphocytes, two cell types that are respon-
sible for regulating and executing the cell- and antibody-mediated adaptive immune 
responses [5]. The presence of RA-specific autoantibodies, IgM-rheumatoid factor (RF), 
and anti-citrullinated protein antibodies (ACPA), in a large percentage of patients is a 
hallmark of RA [6]. The pivotal role of B cells is also strongly supported by the efficacy 
of B cell depletion therapy in patients with RA [7, 8]. Similarly, blocking the activation of 
T cells has proven successful in controlling the disease activity [9]. The involvement of 
T cells in RA pathogenesis is also supported by the strong association between RA risk 
and genetic variation at the HLA class II locus, which determines antigen presentation 
to CD4 + T cells [10]. Therefore, the characterization of the immune repertoire of B and 
T cells is essential to better understand the misdirected adaptive immune response that 
is raised in RA.

In autoimmune diseases like RA, immune tolerance is compromised when T cell 
receptors (TCRs) and B cell receptors (BCRs) fail to distinguish self from non-self anti-
gens [11]. Structurally, each TCR consists of two polypeptide chains (predominantly 
alpha–beta and gamma-delta pairs), and each BCR consists of four proteins, including 
two light chains (i.e., kappa or lambda) and two heavy chains. The latter determine the 
immunoglobulin (Ig) isotype, and therefore the functional properties of BCRs [12]. The 
collection of TCRs and BCRs present in an individual at a given moment constitutes 
the adaptive immune receptor repertoire (AIRR) [13]. The AIRR includes naive, but also 
effector as well as antigen-experienced memory cells that reflect the present and past 
of the individual’s immune responses, respectively [14]. The type and abundance of the 
seven receptor chains confer the functional diversity to the AIRR, and therefore, chain-
wide analysis is fundamental to determine how the adaptive immune response is associ-
ated to disease and clinically relevant phenotypes.

The high diversity of T and B cell receptors that allows the recognition of an extremely 
broad space of potential antigens is one of the most important hallmarks of the AIRR 
[15]. This high diversity emerges as a consequence of the genomic rearrangement 
between the variable (V), diversity (D), and joining (J) AIRR gene segments, along with 
the addition and removal of random nucleotides [16, 17]. The resulting variability in the 
amino acid sequence of the complementarity-determining region 3 (CDR3) that spans 
the V(D)J junction is key to determine antigen binding and specificity [18, 19]. CDR3 
variability widely varies between receptors chains like TRB or IGH that incorporate 
D gene segment in the genomic rearrangement process and the five remaining chains 
whose variability is generated by uniquely recombining V and J gene segments. In BCRs, 
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antigen-binding affinity is further diversified through the somatic hypermutation of V 
gene segments [20]. Additionally, BCR can undergo class switching during B cell differ-
entiation in the germinal center, conferring distinct immunological roles to the antibody 
[21, 22]. As recently described in other autoimmune diseases [23], the isotype signatures 
specific to B cells could provide new insights into the misdirected autoimmune response 
and the generation of different pathological features in RA.

Recent advances in high-throughput sequencing technologies are allowing the quan-
titative analysis of the immune repertoire at unprecedented depth and resolution [24]. 
AIRR immunosequencing (AIRR-seq) is proving successful for disease detection and 
monitoring of treatment response in cancer and infectious diseases [25–27]. To date, 
however, only a few studies analyzing the peripheral repertoire have been performed in 
RA [25–29]. These analyses have been restricted to one type of receptor, limiting the 
global understanding of the complexity and interconnectedness of the adaptive response. 
Very recently, a new AIRR-seq technology that performs an essentially bias-free analy-
sis of the seven receptor chains in a single assay has been developed [30]. Coupling this 
technology with new methodological approaches for AIRR-seq analysis that allow to dis-
tinguish true biological signals from stochastic processes [31], the longitudinal analysis 
of patients can reveal pivotal insights to better understand how the immune repertoire is 
altered by disease and by treatment.

In our work, we have characterized the immunogenomic profile of RA. Using case–
control, case-case, and longitudinal study designs, we have comprehensively analyzed 
the chain-wide AIRR variability association with disease and with clinically relevant 
phenotypes, including the response to TNFi therapy. The present study demonstrates 
the potential of AIRR genomic information for the development of new immune recep-
tor-based precision medicine strategies in autoimmunity.

Results
Quantitative characterization of the AIRR from RA patients and healthy controls 

for the seven receptor chains

To conduct a comprehensive AIRR-seq analysis of the seven receptor chains in RA, we 
immunosequenced whole blood samples from 104 healthy controls and 86 RA patients. 
All RA patients were analyzed at the beginning of TNFi therapy and 77 of them were also 
immunosequenced after 12  weeks of treatment (Additional file  1: Table  S1). For each 
sample, an essentially bias-free amplification of the TCR-alpha (TRA), TCR-beta (TRB), 
TCR-delta (TRD), TCR-gamma (TRG), BCR-Ig heavy (IGH), BCR-Ig lambda (IGL), and 
BCR-Ig kappa (IGK) chains was performed in a single assay (Fig. 1a). The entire chain-
wide sequencing of our study population yielded an average of > 5 and > 6.5 million 
assembled and demultiplexed reads per sample, respectively (Additional file 2: Table S2). 
These immune receptor reads were found to map to > 28.5 million unique molecular 
identifiers (UMI) including > 3.5 million UMIs for each IGH, IGL, and IGK chains, > 6.2 
million UMIs for each TRA and TRB chains as well as > 150,000 UMIs for each of the 
less abundant TRD and TRG chains (Additional file 2: Table S2). Altogether, chain UMIs 
provided quantitative information for > 8.2 million unique clones that were available for 
analysis (Additional file 2: Table S2). In order to identify potential confounding factors, 
we first evaluated the impact of technical and epidemiological variables over the AIRR 
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properties. We found that sequencing depth had a significant impact on multiple AIRR 
measures (Additional file 3: Fig S1), particularly on the TRB diversity. We also detected 
a significant association between the patient’s gender and IgD isotype levels (Additional 
file  3: Fig S1). To control for these confounders, all subsequent AIRR analyses were 
adjusted for the sequencing depth as well as for sex and age.

The low diversity that characterizes the AIRR of RA patients is mainly driven 

by the expansion of BCR clones and is restored by TNFi therapy

To investigate whether the immune repertoire diversity is altered in RA, we compared 
the clone diversity between patients and controls. We found that clone diversity in RA 
is significantly reduced in all seven chains compared to healthy individuals (Fig. 1b). The 
most significant diversity reduction occurred in the B cell compartment, including IGH 
(PD50 = 4.22e − 05), IGL (PD50 = 3.30e − 04), and IGK (PD50 = 9.13e − 03). The observed 
differences were found to be nominal and independent of the type of diversity index 
used (Additional file 4: Table S3).

Association of the immune repertoire to clinical features was found to be moderate 
(Additional file 5: Fig S2, Additional file 6: Table S4). The most consistent signal across 
diversity measures was a nominal increase of clone diversity in the IGK chain of ACPA-
positive patients compared to ACPA-negative patients (PD50 = 9.12e − 03). We also 

Fig. 1 Overview of the study design and chain‑wide characterization of the AIRR diversity in RA. a Overview 
of the study design. b Chain‑wide characterization of the AIRR diversity in rheumatoid arthritis compared to 
controls. This includes the effect that disease has on five complementary diversity measures (i.e., D20, D20, 
Gini‑Simpson, Inverse‑Simpson and Shannon entropy) for each of the seven immune receptor chains. The 
heatmap is colored according to the effect size of the association, ranging from red (i.e., diversity reduction) 
to blue (i.e., diversity increase). Detailed information on the reference group and all effect sizes is provided in 
Table S3. The statistical model used to conduct each association test is described in Table S28. The bubbles 
shown in the right two columns are used to graphically illustrate the association results at the chain level. 
Abbreviations: *, P < 0.05; **, P < 5.00e − 03; ***, P < 5.00e − 04; ****, P < 5.00e − 05. c Chain‑wide impact of TNF 
inhibition therapy on the AIRR diversity in rheumatoid arthritis. Detailed information on the reference group 
and all effect sizes is provided in Table S5. The parameters used for the graphical representation are described 
in (b). d Overall impact of TNFi therapy on the AIRR diversity measured by the D50 index in the three BCR 
chains. Abbreviations: P, p‑value. e Impact of TNFi therapy on the AIRR diversity measured by the D50 index in 
the three BCR chains stratified by clinical response to TNF inhibition. Abbreviations: P, p‑value
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detected a nominal association between the clinical response to TNFi therapy and the 
diversity levels of TRG (PD50 = 3.86e − 02). In particular, responder patients showed a 
moderately higher diversity of TRG clones than non-responders. TRD chain clones also 
showed a reduced diversity in ACPA-negative patients (PD50 = 2.89e − 02). Besides the 
nominal significance of our results, these findings suggest that clinically relevant pheno-
types in RA are also associated with the AIRR, especially at the BCR compartment.

The longitudinal analysis showed that TNFi therapy has a strong impact on the BCR 
repertoire (Fig.  1c). Diversity in IGK (PD50 = 2.72e − 07), IGH (PD50 = 3.63e − 03), and 
IGL (PD50 = 2.16e − 03) chains was found to increase after 3  months of systemic drug 
therapy (Fig. 1d, Additional file 7: Table S5). These findings show, for the first time, that 
blocking of TNF contributes to restore the BCR clone diversity towards that observed 
in healthy individuals (Fig. 1d). As expected, TNF inhibition in our patient cohort led to 
a higher proportion of good responders than non-responders (71.2% vs. 28.8%, respec-
tively). Stratifying the longitudinal analysis by clinical response the TNFi effect on the 
diversity of BCR chains was found to occur only in the responder group of patients 
(PD50 < 1.43e − 04, Fig.  1e). Like in the case–control analysis, the longitudinal results 
were nominally significant and independent of the immune repertoire diversity measure 
used (Additional file 8: Table S6).

Identification and characterization of contracted and expanded clones after TNFi therapy

The finding that BCR diversity is restored by TNFi therapy suggests that the contraction 
of B cell clones is a downstream effect of the drug’s mechanism of action. To identify the 
BCR clones that are contracted or expanded during the 12 weeks of therapy, we used 
a Bayesian approach that accounts for the specific statistical features of longitudinal 
AIRR-seq data [31]. Since B cell activation is mostly T cell dependent, we also analyzed 
the clonal expansion of TCR clones. Using this approach, we identified n = 42,488 and 
n = 55,195 clones from both immune cell receptors that are significantly contracted and 
expanded, respectively, after TNFi therapy (Additional file 9: Table S7). Consistent with 
the findings obtained in the clone diversity analysis, the number of contracted clones 
was found to be significantly higher in the BCR (N = 41,863 clones, 2.50%) than in TCR 
(N = 625 clones, 0.016%) chains (P < 2.20e − 16, Fig. 2a). Clonal expansion was found to 
be also more marked in the B cell compartment (N = 54,433 BCR clones, 1.86%) than in 
T cell compartment (N = 762 TCR clones, 0.020%, P < 2.20e − 16, Fig. 2a). The net effect 
of both processes might suggest a predominant clonal expansion induced by TNF block-
ing. However, comparing the magnitude of the clonal frequency variation induced by 
TNFi therapy, we detected that it is significantly higher in contracted clones from IGH, 
IGL, IGK, TRA, TRB, and TRG chains (P < 0.05, Fig. 2b). The strongest differences were 
detected in the BCR chains (P < 4.40e − 14, Fig. 2b), supporting the findings obtained in 
the clone diversity analysis.

Based on the previous results, we hypothesized that the clones that are affected by 
TNFi therapy might be reacting to the same antigens. To test this, we evaluated the level 
of sequence similarity and its potential functional role. We found that contracted clones 
from the seven receptor chains have a higher CDR3 amino acid sequence similarity than 
expected by chance (P < 1e − 04, Additional file 10: Table S8), a property that was also 
detected among expanded clones (Additional file 10: Table S8). This similarity was also 
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associated to the presence of distinctive biochemical features between the two types 
of dynamic changes (Fig.  2c). While many of the biochemical properties were shared 
between the contracted and expanded clones (e.g., low molecular weight in clones from 
the three BCR chains; P < 1e − 04), there were also contraction- and expansion-specific 
biochemical features like low charge (P < 1e − 04) and high protein–protein interaction 
index detected in IGL clones (P < 1e − 04), respectively. Biochemical differences were 

Fig. 2 Identification and characterization of contracted and expanded clones after TNF inhibition. a 
Number of clones that are significantly contracted and expanded after 12 weeks of TNF inhibition (P < 0.05). 
Abbreviations: N, number of clones; P, p‑value. b In the left side, the average clonal frequency variation 
detected in contracted and expanded clones is shown at the chain level. The scale of each radar plot break 
is independent from the others. The size of the chain name is proportional to the statistical significance of 
the difference of clonal frequency variation between contracted and expanded clones. Chains showing a 
significantly different clonal frequency variation between contracted and expanded clones are colored in red 
(P < 0.05). In the right side, the ratio between the average clonal frequency variation detected in contracted 
and expanded clones is shown. c Biochemical profile of significantly contracted and expanded clones 
after TNFi therapy. For each chain, the enrichment of the indicated group of clones in each biochemical 
feature is represented by a circle. The circle is colored according to the degree of biochemical enrichment 
(i.e., blue) or depletion (i.e., red) compared to a random repertoire from the same chain. The size of the 
circle is proportional to the statistical significance in the negative logarithmic scale of the enrichment in 
each biochemical feature. Only significant differences are represented as circles (P < 0.05). Abbreviations: 
BES, Biochemical Enrichment Score. d Differential biochemical profile resulting from directly contrasting 
expanded and contracted clones after TNFi therapy. For each chain, the association of clonal contraction/
expansion with the indicated biochemical property is represented by a circle. The circle is colored according 
to the effect direction, ranging from red (i.e., the biochemical feature is lower in contracted clones) to 
blue (i.e., the biochemical feature is higher in expanded clones). The size of the circle is proportional to the 
statistical significance of the association in the negative logarithmic scale. Non‑significant differences are 
hidden (P > 0.05). e CDR3 amino acid sequence similarity networks for expanded and contracted IGL clones 
stratified by clinical response to TNFi therapy. Clones are represented as nodes and edges connect clones 
differing by at most one amino acid in the CDR3 sequence. The node size is proportional to the number 
of similarity connections with other clones. The radial width of a given clone is proportional to its number 
of similarity connections with other clones, so that large clones indicate CDR3 amino acid sequences that 
are highly similar to those of the other clones within the specified set. Each node is divided into as many 
fractions as individuals have the clone. f Differential biochemical profile resulting from directly contrasting 
expanded and contracted clones within each group of responder and non‑responder patients to TNFi 
therapy. The details of the graphical representation are described in d 
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even more accentuated when directly contrasting the abundance of expanded and con-
tracted clones. In this analysis, IGH clones that are contracted by TNFi therapy are sig-
nificantly much less hydrophobic than expanded clones (P < 1.00e − 220, Fig.  2d). The 
restriction of the therapeutic effect to clones with a specific biochemical profile, par-
ticularly in the IGH and IGK BCR chains, suggests that the modulation of the immune 
repertoire by TNFi is highly antigen-specific.

We further investigated the properties of the clones differentially modulated by TNFi 
therapy according to clinical response. In both responder and non-responder patients, 
the similarity of the CDR3 amino acid sequences of the contracted and expanded clones 
was found to be higher than expected by chance in all receptor chains (P < 1e − 04, 
Fig. 2e, Additional file 11: Table S9). By directly contrasting the amino acid biochemical 
properties, the biochemical profile of the clones modulated by TNF inhibition was found 
to differ between responder and non-responders (Fig. 2f ). Responders to TNFi therapy 
showed the strongest biochemical differences in IGH and IGK clones (P < 7.45e − 10). In 
non-responders, the differences in these two chains were moderate and, instead, marked 
differences occurred in the biochemical profile of clones from IGL and TRA chains 
(P < 5.95e − 05). These results suggest that patients who will respond to therapy have a 
different antigenic reactivity in the B cell compartment from those that will not show 
clinical improvement and that this reactivity is sensitive to systemic TNF levels.

Low IGL usage in blood of RA patients suggests increased migration rate of IGL‑harboring 

B cells to the synovial tissue

To explore whether RA affects the abundance of each receptor chain, we compared the 
chain usage between cases and controls. Among all seven chains, we found that IGL 
is less abundant in the blood of RA patients than in healthy subjects (P = 2.50e − 03, 
Fig. 3a). This reduction was not observed in the IGK chain and, consequently, the small 
chain immunoglobulin ratio IGK/IGL was significantly altered by disease (1.70 detected 
in the healthy cohort vs. 2.14 in RA, P = 1.03e − 03). Based on this observation and the 
importance of B cells in RA pathology, we hypothesized that the circulating levels of IGL 
detected in RA patients could be explained by an increased migration of IGL-harboring 
B cells from blood to synovium. To investigate this, we analyzed the immune repertoire 
in paired blood and synovial samples using an available bulk RNA-seq dataset from RA 
patients [32]. In line with our hypothesis, we found that IGL usage is significantly higher 
in the RA synovium compared to peripheral blood (P = 4.90e − 09, Fig. 3b).

Unlike the repertoire diversity, chain usage was not significantly associated with clini-
cal phenotypes. Only negative trends between TRA usage and ACPA positivity and 
between TRD usage and disease activity were found (Additional file 12: Fig S3). Also, 
the longitudinal analysis showed that neither TCR nor BCR chain usage is significantly 
altered by TNFi therapy (Additional file 13: Table S10).

RA patients are characterized by a skewed usage of V and J gene segments

There is growing evidence that alterations in the patient’s AIRR can be reflected in a 
biased usage of V and J gene segments [33]. In line with this, we found that the usage 
profile of V segments and V-J pairs is very different between RA and control subjects 
(Fig. 3c–e). When performing the comparative analysis stratified by segment type, the 
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usage of 34 V segments, 12 J segments, and 127 V-J pairs was found to be significantly 
different between RA and control subjects (FDR < 0.05, Additional file  14: Table  S11). 
The signal underlying the largely different gene usage profile that characterizes RA 
patients was mainly driven by gene segments from T cells. In particular, 83.33%, 80.31%, 
and 52.94% of the differentially used J, V-J, and V segments, respectively, were found to 
be from T cells. Moreover, we found that the usage of a large fraction of these differen-
tially expressed segments in T cells (i.e., 70.0% of J segments, 75.5% of V-J segment pairs, 
and 66.7% of V segments) is significantly reduced in RA patients compared to healthy 
individuals.

Chain usage was more moderately associated to clinical phenotypes and the response 
to therapy. A total of 28, 34, and 234 nominal associations were identified with the 
usage of V segments, J segments, and V-J pairs, respectively (P < 0.05, Additional 
file 15: Table S12). The top association signal was detected between disease activity and 
TRAV23DV6-TRAJ22 segment pair (P = 1.12e − 03). The combination of IGKV2-28 and 
IGKJ1 segments showed the strongest association with TNFi response (P = 1.98e − 03), 
and TRDV1-TRDJ1 was found to be the most strongly associated segment pair with 
both the RF and ACPA clinical phenotypes (P = 3.45e − 03). In the longitudinal analy-
sis (Additional file 16: Table S13), TNFi treatment was found to moderately regulate the 

Fig. 3 Chain and gene segment usage profiles of rheumatoid arthritis patients. a Differences in the 
whole blood usage of each immune receptor chain between rheumatoid arthritis and healthy individuals. 
Differences in the percentage of IGK reads from the total pool of IGK and IGL reads are also shown. b 
Differences in the usage of each immune receptor chain between whole blood and synovium samples 
from patients with rheumatoid arthritis. c First two principal components of the V gene segment usage 
(N = 298 variables from the seven immune receptor chains) in rheumatoid arthritis and controls. d First two 
principal components of the J gene segment usage (N = 100 variables from the seven immune receptor 
chains) in rheumatoid arthritis and controls. e First two principal components of the usage of V‑J segments 
pairs (N = 4054 variables from the seven immune receptor chains) in rheumatoid arthritis and controls. 
Abbreviations: P, p‑value; PC, principal component
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usage of two V segments from IGH (P = 1.39e − 02) and IGK (P = 3.34e − 02) as well as 
10 V-J segment pairs (P < 0.05). Furthermore, we have found that those gene segments 
that are used by contracted clones (i.e., those modulated by TNF inhibition that underlie 
the increased diversity detected in RA at baseline) are also, generally, over-represented 
in the immune repertoire of RA patients compared to controls (P < 0.05, Additional file 9: 
Table S7). Therefore, our findings show that TNF inhibition restores the diversity of the 
B cell compartment by modulating BCR clones with a characteristic gene usage profile.

Identification and characterization of RA‑associated clones, meta‑clones, and k‑mers

Analysis at the single-clone level identified a total of 20 IGL and 40 IGK clones with a 
significantly lower abundance in RA patients compared to healthy controls (FDR < 0.05; 
Fig. 4a,b, Additional file 17: Table S14, Additional file 18: Fig S4). The similarity of the 
CDR3 amino acid sequence across these clones was found to be significantly higher 
than expected by chance (P < 1.00e − 09, Fig.  4c, Additional file  19: Table  S15). This 
result suggests that these clones reduced in RA have reactivity to a common antigen 
[34]. By screening the Pan Immune Repertoire Database of 52,058 T and B cell recep-
tors (NTRA  = 4234 clones, NTRB = 46,223 clones, NTRD = 99 clones, NTRG  = 93 clones, 
NIGH = 841 clones, NIGL = 270 clones, NIGK = 298 clones) targeting known antigens [35], 
we found that none of the RA-associated IGL and IGK clones were annotated in the 

Fig. 4 Identification and characterization of clones, meta‑clones, and k‑mers associated with rheumatoid 
arthritis. a CDR3 amino acid sequences of the clones showing a significantly different abundance in 
rheumatoid arthritis compared to healthy controls (FDR < 0.05). b On the left side, the expression of the 
two clones showing the strongest association with rheumatoid arthritis is shown. On the right side, the 
clone expression is plotted against the standardized clone detection rate, indicating that the associations 
detected are not influenced by the sampling bias. Abbreviations: CPM, counts per million; P, p‑value. c 
CDR3 amino acid sequence similarity networks and amino acid motif of the IGL and IGK clones associated 
with rheumatoid arthritis. In the similarity networks, each clone is represented as a node and edges 
connect clones differing by at most one amino acid in the CDR3 sequence. The node size is proportional 
to its number of similarity connections with other clones. The p‑value shown for each chain indicates the 
probability of observing the indicated similarity by chance. Abbreviations: P, p‑value. d Biochemical profile 
of the clones significantly associated with rheumatoid arthritis. For each chain, the enrichment of the 
associated clones in each biochemical feature is represented by a circle. The circle is colored according to 
the degree of biochemical enrichment (i.e., blue) or depletion (i.e., red) compared to a random repertoire 
from the same chain. The size of the circle is proportional to the statistical significance of the enrichment in 
each biochemical feature. Abbreviations: BES, Biochemical Enrichment Score. e Overview of the meta‑clone 
analytical strategy used here to identify groups of highly similar clones associated with disease conditions. 
Abbreviations: CPM, counts per million. f CDR3 amino acid sequence similarity network and amino acid motif 
of the meta‑clone 9 from TRG chain that showed a significant association with the clinical response to TNFi 
therapy. The network parameters are described in (c). g On the left side, expression levels of the meta‑clone 
9 from TRG in responder and non‑responder patients to TNFi therapy. On the right side, the expression of 
meta‑clone 9 is plotted against the standardized meta‑clone detection rate. Abbreviations: CPM, counts per 
million; P, p‑value. h K‑mers showing a significantly different abundance in rheumatoid arthritis compared to 
healthy controls (FDR < 0.05). i On the left side, the expression level of the two k‑mers showing the strongest 
association with rheumatoid arthritis is shown. On the right side, the k‑mer expression is plotted against the 
standardized k‑mer detection rate. Abbreviations: CPM, counts per million; P, p‑value. j Pairwise dissimilarity 
matrix among IGK k‑mers significantly associated with RA (FDR < 0.05). K‑mers over‑ and under‑represented 
in rheumatoid arthritis are represented in dark and light blue, respectively. The dissimilarity index was 
computed using the Levenshtein distance measure so that the higher the Levenshtein distance, the higher 
the dissimilarity index between two k‑mer sequences. Abbreviations: RA, rheumatoid arthritis. k Biochemical 
profile of the k‑mers significantly associated with rheumatoid arthritis. The graphical parameters are 
described in (d)

(See figure on next page.)
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database. However, it cannot be excluded that the BCR of these clones, if produced as 
IGH-IGK/IGL monoclonal antibody, recognize the discovered antigens. Compared to 
the biochemical properties of a random repertoire (i.e., random set of clones from the 
same chain and size as the group of RA-associated clones), we found that the IGL clones 
downregulated in RA are more acidic and have a lower isoelectric point than expected by 
chance (P < 0.05, Fig. 4d). IGK clones were found to be more hydrophobic and aliphatic, 
but less polar (P < 0.05) than expected by chance (Fig. 4d). No clones passed the multiple 
testing threshold in the clone-wide association analysis with clinical phenotypes (Addi-
tional file 20: Table S16). However, when restricting the analysis to the set of clones that 
are associated with RA, we found that the levels of IGK chain clone CMQALQTPPYTF 
at baseline are increased in non-responders to TNFi therapy compared to responders 
(FDR = 1.25e − 02, Additional file 21: Table S17).

To identify groups of highly similar clones (i.e., meta-clones or communities of clones 
differing by at most one amino acid that are identified within the general clone sequence 
similarity network) associated with RA and clinical phenotypes, we developed the meta-
clone method (Fig. 4e). Using this approach, we identified 3 IGL and 1 IGK meta-clones 

Fig. 4 (See legend on previous page.)
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significantly associated with RA (FDR < 0.05, Additional file 22: Table S18). Unlike the 
clone-level analysis, the meta-clone approach was able to identify a significant associa-
tion with RA phenotypes (Additional file 23: Table S19). Before initiating TNFi therapy, a 
meta-clone from the TRG chain was found to be significantly increased in non-respond-
ers compared to responder patients (meta-clone 9 with FDR < 0.05, Fig. 4f, g).

Since it is only a fraction of the amino acids of the CDR3 sequence that directly inter-
acts with the antigen, we also sought to investigate the association of smaller amino 
acid motifs or k-mers with disease. Consistent with the results in the single-clone and 
meta-clone association analyses, we found n = 43 IGK and n = 38 IGL k-mers that are 
differentially represented in RA compared to controls (FDR < 0.05, Additional file  24: 
Table S20, Fig. 4h). In addition to these associations, we also identified 16 k-mers from 
TRA and 3 k-mers from TRB significantly associated with RA (FDR < 0.05, Additional 
file 24: Table S20, Fig. 4h). From the total of 100 RA-associated BCR and TCR k-mers, 
22 and 78  k-mers were found to be over and under-represented in RA, respectively 
(Fig. 4i, Additional file 25: Fig S5). All RA-associated k-mers displayed a high sequence 
similarity (P < 1.00e − 04, Additional file  26: Table  S21). From these, only IGK k-mers 
over-represented in RA were found to cluster together according to their sequence simi-
larity (Fig.  4j, Additional file  27: Fig S6). RA-associated k-mers from different chains 
were found to have a significantly different biochemical profile (Fig. 4k). In the case-case 
analysis, k-mers in IGK (n = 3) and IGL (n = 16) chains were also significantly associated 
with clinical phenotypes (Additional file  28: Table  S22, Additional file  29: Table  S23). 
The strongest k-mer associations were detected with TNFi response and disease activ-
ity (FDR < 0.05, Additional file 28: Table S22). In particular, at baseline, the DHRE k-mer 
was found to be detected only in responders to TNFi therapy (FDR = 1.21e − 02) and 
the WVVF k-mer showed a significantly higher abundance in patients with low disease 
activity compared to high disease activity patients FDR = 2.16e − 02).

HLA alleles associated with RA risk mediate the antigen presentation to expanded 

and disease‑specific TRB clones

Antigenic peptide residues presented by HLA proteins are directly in contact with amino 
acids spanning the CDR3 sequences from the TRB chain and can influence immune 
reactivity. We sought to find how HLA variation shapes TRB clone expansion. Using 
the grouping lymphocyte interactions by paratope hotspots (GLIPH) algorithm [36], we 
identified a total of 126 and 504 clusters of TRB clones that are significantly enriched 
in the immune repertoire of RA patients compared to a naive repertoire of CD4 + and 
CD8 + T cells, respectively (FDR < 0.05, Additional file 30: Table S24). The little overlap 
observed between significant clusters from CD8 + and CD4 + T cells (i.e., 2.06%) indi-
cates a marked cell-type specificity for these groups of TRB clones. From the total of 630 
clusters of TRB clones that are over-represented in RA, 417 were found to be also sig-
nificantly enriched in the immune repertoire of healthy controls (FDR < 0.05, Additional 
file 30: Table S24). These findings suggest that the remaining 213 clusters of TRB clones 
are RA-specific (n = 56 CD4 + T cell clusters; n = 157 CD8 + T cell clusters). Amino acid 
motif analysis of each cluster revealed seven RA-specific motifs that have a significantly 
different abundance between RA and control individuals (P < 0.05, Additional file  24: 
Table S20).
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We further investigated whether the antigen presentation to the RA-specific clusters 
of TRB clones is modulated by HLA class II alleles. In this analysis, we found that the 
HLA class II haplotypes are likely to restrict the antigenic peptide presentation to 65 out 
of the 213 RA-specific clusters (P < 0.05, n = 16 CD4 + T cell clusters; n = 49 CD8 + T 
cell clusters, Fig.  5). The strongest signal from CD4 + T cells was detected between 
the HLA-DRB1*15 allele and the TRB cluster (QDFA amino acid motif, P = 4.20e − 03, 
Fig.  5). Association analysis of HLA haplotypes in a large case–control cohort of the 
same population (n = 1191 RA patients and 1558 healthy controls), corroborated that 
HLA-DRB1*15 is also the HLA variant that is most strongly associated with RA risk 
in Spain (P = 8.86e − 11, Additional file 31: Table S25). Analysis of the QDFA motif in 
RA phenotypes showed that it is also significantly increased in ACPA-negative patients 
compared to ACPA-positive patients (P < 0.05, Additional file 29: Table S23). These find-
ings corroborate the impact of genetic risk variation on the shaping of the immune rep-
ertoire in RA.

The length of the CDR3 amino acid sequence is associated with disease, clinical 

phenotypes, and anti‑TNF response

Longer CDR3 amino acid sequences have been previously associated with polyreactiv-
ity and increased risk for self-recognition and autoimmunity [37]. In the present study, 

Fig. 5 Clusters of TRB clones that are specific to rheumatoid arthritis and associated with HLA class II alleles. 
Clusters of TRB clones that are associated with HLA class II alleles and specifically enriched in the immune 
repertoire of rheumatoid arthritis patients compared to a naive repertoire of CD4 + (left side) and CD8 + T 
cells (right side). The most representative amino acid motif of those clones that are clustered together is used 
for the cluster naming. Clusters of TRB clones are sorted according to the Levenshtein distance among amino 
acid motifs. The number of unique clones belonging to each cluster and the number of patients having the 
indicated cluster are used for the cluster characterization. Each motif‑allele pair is colored in accordance 
with the statistical significance of the motif enrichment in rheumatoid arthritis. The size of each association 
is proportional to the statistical significance of the genetic association between the indicated HLA allele 
and amino acid motif. The name of each amino acid motif is based on the nomenclature used by the GLIPH 
algorithm. Abbreviations: N, sample size, P, p‑value; RA, rheumatoid arthritis
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we found a highly significant enrichment of long TRD sequences in RA compared to 
healthy individuals (P = 7.91e − 202, Additional file 32: Fig S7). This signal was mainly 
driven by the over-representation of TRD clones with more than 20–23 amino acids 
of length, but also by a strong reduction of clones with the specific length of 18 amino 
acids (Additional file 32: Fig S7). Clone length was also found to be significantly asso-
ciated with clinical phenotypes (Additional file 32: Fig S7). For example, the length of 
TRD clones was found to be significantly different between ACPA-positive and ACPA-
negative patients (P = 6.69e − 260), and between high and low disease activity patients 
(P = 2.24e − 08). The longitudinal analysis revealed that TNFi therapy alters the clone 
length distribution within the IGH repertoire (Additional file  32: Fig S7). At baseline, 
stratifying the analysis by clinical response, we found that the proportion of IGH clones 
with less than 18–20 amino acids is reduced in responders towards the levels observed 
in controls. An opposite effect was detected in non-responder patients to TNFi therapy 
(Additional file 32: Fig S7).

RA patients display an isotype‑specific signature

To further characterize properties of the BCR repertoire in RA, we analyzed the isotype 
information contained within the constant region of the IGH chain. This region interacts 
with effector molecules and cell types and therefore determines the functional role of 
the immunoglobulin. In this analysis (Fig. 6a), the levels of IgD isotype were found to be 
significantly lower in RA compared to controls (P = 4.45e − 04). Conversely, RA patients 
showed higher levels of IgG than healthy subjects (P = 5.30e − 03). None of the five iso-
types showed a significant association with RA clinical phenotypes (Additional file 33: 
Table S26).

After a B cell is activated by an antigen in an immune response, BCRs acquire dis-
tinct functional roles through isotype class switching. We next compared the degree 
of isotype class switching between RA and healthy subjects. RA patients were found to 
have, at the nominal level, a significantly higher degree of IgE-IgG switching compared 
to healthy individuals (P = 1.32e − 02, Fig. 6b). At the clinical phenotype level, we found 
no evidence of heterogeneity of isotype class switching in RA phenotypes (Additional 
file 33: Table S26).

After the initiation of the immune response, B cells increase affinity to antigens by 
undergoing somatic hypermutation in the V segment genes. To determine whether the 
level of BCR affinity is modified in RA, we analyzed the somatic hypermutation pro-
file of IgM, IgA, IgG, IgD, and IgE IGH isotypes as well as in IGL and IGK chains. The 
degree of somatic hypermutations in IGL (P = 1.31e − 02), IgM (P = 1.26e − 02), and 
IGK (P = 2.04e − 02) chains was found to be significantly higher in RA compared to 
controls (Fig. 6c). Stratifying the analysis by clinical phenotype, the IgE isotype showed 
a distinct somatic hypermutation profile in patients with high and low disease activity 
(P = 4.36e − 02, Additional file  33: Table  S26). RA patients also showed a significantly 
higher percentage of mutated IgD/M than healthy subjects (P = 4.31e − 03, Fig. 6d). In 
the clinical phenotype analysis (Additional file 33: Table S26), we detected that ACPA-
positive and ACPA-negative patients differ on the percentage of mutated IgD/M 
(P = 4.49e − 02).
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Fig. 6 Characterization of the isotype signature underlying rheumatoid arthritis. Comparison of the a isotype 
usage, b isotype class switching index, c somatic hypermutation profile, and d percentage of IgD/M mutated 
between patients with rheumatoid arthritis and healthy controls. Abbreviations: P, p‑value
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Multi‑chain AIRR predicts RA

To assess if the information residing in the AIRR of RA patients could be translated to 
information directly applicable in medical practice, we evaluated the utility of AIRR 
sequencing as a tool for disease diagnosis. Using a leave-one-out cross-validation strat-
egy, we found that, rather than a single AIRR measure being useful for prediction, 
aggregating information from different AIRR properties leads to an optimal disease 
classifier (Additional file 34: Table S27). Combining usage information from the seven 
receptor chains and each of the 298 V gene segments, we built a disease classifier with 
a 95.2% accuracy (Fig. 7a,b). Among these predictor variables, IGKV2-28, TRAV20, and 
TRBV25-1 segments were found to be the AIRR features that contributed most to RA 
classification (Fig. 7c).

We also interrogated the potential of AIRR-seq information for predicting clinically 
relevant phenotypes in RA, particularly response to therapy. We found that while the 
percentage of IgD/M mutated at baseline only predicted 56.25% of non-responder 
patients to TNFi therapy (Additional file  34: Table  S27), the specificity increased sub-
stantially (68.75%) when only patients with extreme clinical responses (i.e., non- and 
good-responders) were included in the analysis (Additional file  34: Table  S27). The 
power of AIRR-seq information for predicting other clinical features was found to be 
variable, ranging from a low accuracy for disease activity (57.1%) to improved accuracies 
for RF (69.8%) and ACPA (74.7%) positivity (Additional file 34: Table S27).

Discussion
The present work represents the first comprehensive study of the seven immune recep-
tor chains in autoimmunity. Using a novel high-throughput sequencing method and 
three complementary study designs, our analytical pipeline reveals a profound hetero-
geneity in the AIRR of RA. We demonstrate that AIRR features like diversity are not 
equally distributed between the seven immune receptor chains and disease conditions. 
Many of the AIRR associations with disease and clinically relevant phenotypes that we 
have found have not been previously described, including those related with the longitu-
dinal evolution of the AIRR under TNFi treatment. This study provides a deep quantita-
tive analysis on the variability of the adaptive immune response in RA, and it is a step 
forward to develop new precision medicine strategies based on circulating B and T cell 
receptor repertoires.

(See figure on next page.)
Fig. 7 Development of a multi‑chain AIRR predictor for rheumatoid arthritis. a Predictive performance of the 
optimal classifier that aggregates chain and gene segment usage information. On the left side, the graphical 
representation of the confusion matrix is shown. The number of individuals that were predicted as patients 
or controls is shown between parenthesis. On the right side, the value of the five metrics used for evaluating 
the predictive performance is shown. Abbreviations: CTRL, controls; RA, rheumatoid arthritis; FN, false 
negatives; FP, false positives; FPR, false positive rate; TP, true positives; TN, true negatives. b Receiver operating 
characteristic and precision‑recall curves illustrating the diagnostic ability of the multi‑chain AIRR classifier for 
rheumatoid arthritis. Abbreviations: ROC, receiver operating characteristic; ROCAUC, are under the receiver 
operating characteristic curve; PRAUC, are under the precision‑recall curve. c Identification of the 15 AIRR 
predictor variables that contributed most to the diagnosis of patients with rheumatoid arthritis in accordance 
with the mean decrease in accuracy and Gini importance measures
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Fig. 7 (See legend on previous page.)
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The quantitative analysis performed here has allowed to characterize, for the first 
time, the main AIRR features of RA at the resolution of the seven receptor chains. We 
have demonstrated that the low AIRR diversity detected in RA patients is restricted 
to the B cell compartment. Our findings confirm the expansion of BCR clones in RA, 
which is consistent with the previous identification of dominant B cell clones both in 
circulation and in the RA synovium [38, 39]. Although baseline BCR diversity could 
be influenced by previous first-line therapies like leflunomide or methotrexate [40], 
90% of the patients here analyzed had received immunosuppressant drugs before 
TNF inhibition and, therefore, the potential impact of these drugs is likely to be simi-
lar across patients. For example, we confirm that immune repertoire diversity of our 
cohort of RA patients at baseline is not altered by methotrexate, the most common 
immunosuppressive drug (data not shown). We also demonstrate that therapeutic 
inhibition of TNF is able to restore the BCR chain diversity, raising it to the levels 
observed in healthy individuals. A previous longitudinal study on anti-CD20 therapy 
(rituximab) in RA showed the impact that biological therapies have on BCR diver-
sity [29]. However, this is an expected finding in a drug that directly depletes B cells. 
Instead, the strong impact of TNFi therapy on IGH, IGK, and IGL diversity reported 
here supports a previously unknown downstream effect of the drug’s mechanism of 
action. By immunosequencing, a new cohort of healthy donors at two time points and 
contrasting the observed immune repertoire changes with our findings, the impact 
of TNFi therapy on the immune repertoire diversity of RA patients could be further 
refined.

The stratification of the longitudinal analysis by treatment efficacy contributed to 
better understand the differences in AIRR diversity between TNFi responders and 
non-responders. We found that response to treatment is associated with a bigger 
increase in diversity and that this is mainly driven by the reduction of BCR clones 
that share a specific biochemical profile. Although replication in an independent 
cohort of anti-TNF-treated patients is needed to corroborate the response-specific 
treatment effect, the latter finding suggests that TNFi responders are reacting against 
a different group of autoantigens than non-responders and, therefore, antibody-medi-
ated immune mechanisms could also be different between the two groups. In RA, the 
recent identification of macrophage heterogeneity supports that distinct subtypes 
could be activated in responders and non-responders as a consequence of the rec-
ognition of different autoantigens [41]. Importantly, macrophage heterogeneity has 
already been associated to TNF inhibition response [42–44]. According to the capac-
ity of B cells to polarize into subtypes that can differ in their production of proinflam-
matory cytokines like TNF [45], the activation of different macrophages in responders 
and non-responders might result from the activation of distinct B cell populations 
in these two groups of patients. Of relevance, B cell activation can be also mediated 
through TNF-independent mechanisms by peripheral helper T cells, a pathogenic 
subtype that we have recently found to influence the clinical response to anti-TNF 
therapy [46]. In line with these findings, a significant increase of BCR diversity would 
be only observed in patients enriched in TNF-dependent mechanisms, where the 
anti-TNF agent would be more effective at disrupting the proinflammatory cascade. 
Following recent analysis in the target tissue of RA [43], future longitudinal studies of 
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TNF inhibition at the functional level are needed to corroborate whether responder 
patients are enriched in macrophage and B cell subtypes that are sensitive to TNF 
and, therefore, susceptible to be targeted by TNF blocking.

In this work, we have characterized the TCR and BCR repertoire underlying RA 
by interrogating a wide variety of AIRR properties. Exploiting the multi-chain data 
provided by a new technology, we have detected, for the first time, a reduction of the 
abundance of IGL in the blood of RA patients. We have demonstrated that the usage 
of this BCR chain is higher in synovium than in blood, suggesting a strong migra-
tion of IGL-harboring B cells to the target tissue of RA. This result is consistent with 
a recent BCR analysis that demonstrates how expanded B cells that derive from the 
same clonal family are detected in both blood and synovial tissue [47]. A similar find-
ing has been recently described in COVID-19, where patients with more severe dis-
ease display a reduction of circulating T cells due to increased migration to sites of 
inflammation like the lungs [48, 49]. In line with our results, the enhanced production 
of autoantibodies in the RA synovium could also be mediated by IGL-harboring B 
cells that are more prone to differentiate into plasmablasts than B cells in other devel-
opment stages. BCR profiling at the resolution of single cells is needed to corroborate 
that B cell compartment from the RA synovium with high expression of immuno-
globulin genes (e.g., XBP1 + B cells) are enriched in IGL-harboring B cells [4]. Also, 
when testing chain usage differences for validation we detected and increased expres-
sion of IGK in synovial tissue that, consistent with previous studies [47, 50], could 
be explained by the local expansion of IGK-harboring B cells. Furthermore, we have 
found that the multi-chain gene segment usage profile is highly distinctive between 
RA and control subjects. This signal was found to be mainly driven by the differential 
usage of IGKV2-28, a gene segment also associated with autoantibodies in SLE [51], 
supporting the importance of this gene segment in autoimmune diseases with a key 
B cell component. Accordingly, we hypothesize that autoreactive IGK antibodies har-
boring V2-28 segment are accumulated in RA patients as a result of an altered DNA 
recombination process that increases the patient’s burden of self-reactive clones. This 
result corroborates previous findings derived from single-TCR chain analyses and 
reveals further differences at the chain-wide scale [28].

Association of the immune repertoire to clinical phenotypes was variable. Some 
phenotypes like the presence of autoantibodies showed significant association to 
multiple AIRR features, while disease activity showed a more moderate impact. One 
of the AIRR features that was found to be most strongly associated to multiple RA 
phenotypes was clone length. Previous studies have found large CDR3 amino acid 
sequences in RA synovial membrane [38], supporting the hypothesis that longer 
amino acid sequences are more likely to react against self-antigens [37]. Our results 
provide clear evidence that this feature is characteristic of the circulating AIRR of RA 
patients, and also extend the relevance of clone length to other clinical phenotypes. 
The association, for the first time, of large CDR3 sequences in TRD clones provides 
additional support to the pathogenic role for this T cell subset in the pathology of RA 
[52, 53]. In line with previous TCR repertoire analyses in RA [54], sorting each sam-
ple into distinct T and B cell subtypes could help to refine the overall characterization 
of the TCR and BCR compartments here performed.
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Immunoglobulin isotype class switching and somatic hypermutation delineate the 
functional properties of antibodies. By performing an in-depth characterization of the 
main isotype features, we have found a high level of IgE-IgG switching in RA. While 
significant only at the nominal level, our finding is in line with recent evidence in sys-
temic lupus erythematosus and Crohn’s disease that also showed an association to IgE-
IgG isotype class switching [23]. IgG but not IgE isotypes play a key role in the activation 
of the complement pathway and, therefore, our findings also support an increased acti-
vation of the complement system in RA [22, 55]. The lower IgD and higher IgG levels 
that we detected in RA compared to controls are in accordance with previous studies 
measuring the serological levels of these two isotypes [56]. The accumulation of somatic 
hypermutations detected in RA patients is also in line with recent evidence supporting 
that this affinity maturation step contributes to increased polyreactivity to different self-
epitopes by altering key amino acid residues within the antibody paratope [57, 58]. The 
highly mutated IgD/M isotypes detected in ACPA-positive RA could therefore reflect 
the raised production of B clones that recognize citrullinated peptides in this group of 
patients [59].

One of the main challenges in AIRR-seq analyses is the robust identification of specific 
clones associated with traits [24, 60]. The extraordinary size and diversity of the TCR 
and BCR repertoires severely limits the statistical power to identify trait-specific clones. 
To overcome this, we have adopted two new methodological strategies. First, we have 
introduced the use of an analytical methodology commonly used in single-cell RNA-seq 
studies that is robust to the overabundance of zero values [61]. Second, to identify the 
temporal changes in clonal frequencies after 3 months of TNFi therapy, we have used 
a new Bayesian method that accounts for the clonal frequency variability that is due to 
sampling, library preparation, and expression noises [31]. Consistently, this approach has 
proven successful to identify contracted T cell clones in longitudinal analysis of COVID-
19 infection [26]. By modelling technical noise, the probabilistic approach used here 
overcomes the power of classical difference tests such as Fisher’s or chi-squared test [14, 
31]. To our knowledge, this method stands out as one of the most notably well-suited 
approaches that are currently available to identify expanded and contracted clones at 
the T cell compartment. However, extending its applicability to the B cell compartment 
is challenging because, unlike T cells, CDR3 sequences from B cells undergo an affinity 
maturation cycle, involving somatic hypermutations and selective processes, to enhance 
their affinity for a specific antigen. The assumptions underlying NoisET approach were 
based on TCR clones and, therefore, they might not perfectly align with the specific 
attributes of BCRs, such as the generative probabilistic model underlying affinity matu-
ration. In line with this, precise identification of somatic hypermutations, a BCR-specific 
attribute subject to diverse definition criteria, along with the extent to which they can 
be distinguished from germline mutations, might introduce additional variability in the 
statistical analysis. Similarly, detecting clonal families within BCR sequences, especially 
when multiple isotypes are present, could be elusive and hinder downstream longitudi-
nal analyses with NoisET method. Hence, we acknowledge that these methodological 
limitations should be considered when interpreting the current findings obtained from 
the longitudinal analysis of the BCR. Incorporating BCR-specific assumptions to Noi-
sET probabilistic model will be needed to validate not only our longitudinal findings of 
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the B cell compartment, but also differentially represented BCR clones previously identi-
fied using classical frequency difference tests. The study of the dynamics of the immune 
repertoire is still an area of intensive research and it is likely that the golden standard 
pipeline for this type of analyses will be refined in the near future. In the case–control 
analysis, we were able to confidently identify 20 IGL and 40 IGK clones associated with 
disease that were characterized in silico. In vitro analyses will therefore be necessary to 
characterize these 60 clones at the functional level [47]. Nevertheless, the striking low 
levels of all significant clones in RA patients raise the possibility of B cell subtypes that 
are protective of autoimmunity. This is in line with the growing evidence on the immu-
nosuppressive role that B regulatory cells have on autoimmune diseases [62]. Previous 
studies have shown the existence of PD-L1 + B regulatory cells with CD8 + T cell sup-
pressive capacity that are reduced in RA compared to healthy controls [63]. Our results 
point towards a potential depletion in RA of specific IGL- and IGK-harboring B regula-
tory cells that are needed for maintaining the immune tolerance.

The search for clonal features associated with RA at the chain-wide scale was also 
extended to groups of clones with similar amino acid motifs. For this objective, we 
developed meta-clone and k-mer analytical strategies that yielded 4 meta-clones and 
100  k-mers associated with RA. The detection of k-mers spanning the amino acid 
sequences of clones from TCR chains that are over-represented in RA is consistent with 
the previous identification of highly expanded T cell clones in RA blood [64, 65]. Since 
the T cell repertoire is markedly shaped by variation at the HLA loci, and its diversity 
has been associated to HLA-DRB1 shared epitope alleles by previous AIRR-seq analyses 
of CD4 + T cells [66, 67], we also conducted TCR association analysis with HLA vari-
ants in our study cohort. Integrating this data in our analysis, we found that the cluster 
of CD4 + TRB clones that harbors the QDFA amino acid motif is both enriched in the 
RA repertoire and associated with HLA-DRB1*15, the class II HLA variant that is most 
strongly associated with RA risk in the Spanish population. HLA-DRB1*15 has also been 
previously associated with an increased production of ACPA levels in RA [68]. Accord-
ingly, the present findings support that part of the genetic risk to RA could be mediated 
by the HLA restriction of the hypervariable region of TRB clones that recognize citrul-
linated peptides. The TRB clones associated with disease risk HLA variants identified in 
our work represent a useful reference that could help to identify additional autoantigens 
in RA.

In the present study, we also demonstrate that AIRR-seq information residing in the 
seven receptor chains has a highly promising diagnostic potential in RA. This finding 
represents an important step to overcome one of the currently unmet needs in RA, 
which is the lack of peripheral blood biomarkers with high accuracy for disease diagno-
sis [69]. While anti-cyclic citrullinated peptide antibodies have a high specificity, they 
lack sensitivity due to the considerable fraction of autoantibody-negative patients in RA 
(25–30%). We have developed a disease diagnostic predictor with unprecedented effi-
cacy which is able to accurately diagnose antibody-negative patients. Validation of the 
AIRR-seq predictor in early RA patients could substantiate earlier, and thereby more 
efficacious, therapeutic interventions.

One of the current challenges in AIRR-seq studies is to provide replication on inde-
pendent populations, as it has become standard in other genomic analysis fields like 
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genome-wide association studies [70]. With the increasing sharing and standardization 
of AIRR-seq data like the initiative promoted by the AIRR Community [13], the avail-
ability of chain-wide immunosequencing data from different case–control cohorts will 
enable the validation of our findings in RA before moving to the clinical setting. In the 
future, immune receptor profiling at the single-cell resolution in patients will be key to 
refine the present findings down to the T and B cell subtype level. To date, however, 
the high costs that would involve sequencing the repertoire of millions of cells in large 
cohorts of individuals, together with the huge diversity of circulating T and B lympho-
cytes, makes bulk repertoire analysis a cost-efficient and highly informative approach for 
studying the AIRR in autoimmunity.

Conclusions
In the present study, we have conducted an in-depth characterization of the immunog-
enomic profile of RA by exploiting a novel high-throughput sequencing technology. 
Coupling the power of this technology with complementary study designs, we have 
quantified the profound variability that underlies the patient’s immune repertoire at the 
lymphocyte receptor chain level. We provide compelling evidence showing the features 
of the immune repertoire that specifically characterize each of the seven lymphocyte 
receptor chains across clinically relevant conditions. In the context of disease treatment, 
we have determined not only how TNF blocking shapes the immune repertoire of RA 
but also discerned the response-specific effects that occur on each receptor chain within 
circulating T and B cells. Together with these findings, the high accuracy of our molecu-
lar classifier sheds light on the development of innovative precision medicine strategies 
by harnessing the insightful information that resides in the immune repertoire.

Methods
Patients and samples

A total of 86 RA patients and 104 healthy subjects were included in the present study 
(Additional file  1: Table  S1). All patients were collected from the outpatient’s clinics 
of the rheumatology departments of 12 Spanish University Hospitals involved in the 
Immune-Mediated Inflammatory Disease Consortium [71]. Controls were recruited 
from healthy blood donors from Spanish hospitals in collaboration with the Spanish 
DNA Bank. Enrolled patients fulfilled the ACR/EULAR 2010 classification criteria for 
RA and had more than 2 years of follow-up since diagnosis [72]. All recruited patients 
had an erosive disease defined as erosions in more than one joint group including hands 
and/or feet. The clinical response to TNF inhibition therapy was measured using the 
European League Against Rheumatism treatment response criteria [73]. For all patients, 
the Disease Activity Score (DAS28) was measured at baseline and after 12 weeks of TNFi 
therapy. According to the DAS28 variation and the DAS28 at the endpoint, RA patients 
were categorized into good (n = 42), moderate (n = 25), and non-responders (n = 17). 
Good and moderate responders were grouped into a single and larger responder group. 
A DAS28 threshold of 5.1 at baseline was used to categorize RA patients into high (i.e., 
DAS28 >  = 5.1, n = 48) and moderate-low (i.e., DAS28 < 5.1, n = 38) disease activity. All 
RA patients included in this cohort were Caucasian European and born in Spain. The 
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main clinical and epidemiological characteristics of this cohort of RA patients are sum-
marized in Additional file 1: Table S1.

Whole blood RNA extraction

Peripheral whole blood from venipuncture was dispensed into PAXgene™ Blood RNA 
Tubes (Qiagen). Whole blood samples in PAXgene™ Blood RNA Tubes were stored 
at − 80  °C until RNA extraction. RNA was extracted from PAXgene™ Blood RNA 
Tubes via the PreAnalytiX PAXgene™ blood RNA kit (Qiagen) and automated using the 
QIAcube.

High‑throughput sequencing of the seven receptor chains of the study population

Two independent next-generation sequencing libraries covering all TCR (i.e., TRA, 
TRB, TRD and TRG) and BCR (i.e., IGH, IGL and IGK) chains were generated from 
each sample using iR-RepSeq + 7-Chain service (iRepertoire, US). This technology 
allows the amplification of the seven receptors chains by addressing every known source 
of errors in AIRR-seq analyses [30]. In this procedure, the first set of primer pairs for 
each V-J combination is used, allowing the extension with tags that, in turn, enable a 
second set of primers to be utilized for global amplification of all seven chains. This 
essentially bias-free amplification was conducted in a single assay using UMI during the 
reverse transcription step. The introduction of UMI to distinguish between single RNA 
molecules during cDNA synthesis was essential to minimize the impact of PCR dupli-
cates and sequencing errors. All necessary reagents for amplification and purification 
are preloaded into the cassette. Extracted RNA (1000 ng) with an appropriate volume of 
RT mix and nuclease-free water were added into the cassette, which was processed by 
the iR-Processor. The instrument can automatically set up and carry out all amplifica-
tion and purification. Briefly, RT is performed using Qiagen OneStep RT-PCR mix (Qia-
gen). First-strand cDNA was selected, and remnant primers were removed by SPRIselect 
bead selection (Beckman Coulter) followed by the second round of binding and exten-
sion with the V-gene primer mix. After binding and extension, SPRIselect beads were 
used to purify the first and second-strand synthesis products. Library amplification was 
performed with a pair of primers that are specific for communal sites engineered onto 
the 5′ end of the C- and V- primers used in first- and second-strand synthesis. The final 
constructed library includes Illumina dual index sequencing adapters, a 10-nucleotide 
UMI, and an 8-nucleotide internal barcode associated with the C gene primer. Amplified 
libraries were multiplexed and pooled for sequencing on the Illumina NovaSeq platform 
with a 500-cycle kit (250 paired-end reads) at Hudson Alpha Institute for Biotechnol-
ogy (Huntsville, AL, USA). The output of the immune receptor sequence covers within 
the first framework region through the beginning of the constant region, including the 
CDR3 hypervariable region.

AIRR‑seq data processing

Illumina paired-end reads were demultiplexed and collapsed by 8 base pairs barcode and 
10 base pairs UMI tag using the default MIG size threshold set by MiGEC v1.2 software 
[74]. In order to assemble the full TCR/BCR sequences, the resulting UMI-collapsed 
fastq files were mapped to the V, D, J, and C reference sequences from the International 
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ImMunoGeneTics (IMGT) database using the MiXCR software (v3.0.14) with the clus-
tering parameters turned off [75, 76]. From the two alignment algorithms that are imple-
mented in MiXCR software which were developed for immune repertoire data based on 
a seed-and-vote strategy [77], the default Kaligner and its own built-in reference library 
(repseqio v1.7) were used. Sequences that were out-of-frame or contained stop codons 
were filtered out from the analysis. The resulting AIRR-seq data contained sequences 
from the seven chains that cover the receptor sequence spanning from the FR1-IMGT 
to FR4-IMGT region, as well as the constant region of the receptor. Sequencing informa-
tion contained within the constant region of IGH was used to compute the isotype-spe-
cific features described in the “Isotype information contained within the constant region 
of IGH” section. In order to increase the statistical power of the present analysis, AIRR-
seq data from each sample and its corresponding replicate were merged by the CDR3 
nucleotide sequence. The total number of reads and UMIs obtained at each stage of the 
pipeline are summarized in Additional file 2: Table S2.

Genome‑wide genotyping and HLA imputation

All individuals included in the case–control cohort from the Spanish population 
(n = 190) were genome-wide genotyped using Illumina Global Screening Array-24 Multi 
Disease version 2.0 (Illumina, USA) at Life and Brain Center (Bonn, Germany). Geno-
type calling and quality control analyses were performed using GenomeStudio (Illumina, 
USA) and PLINK software, respectively [78]. Two samples showing a call rate < 0.95 were 
excluded from the study and, therefore, samples from 84 RA patients and 104 healthy 
subjects were finally available for analysis. Using GWAS data from our study popula-
tion, we performed the imputation of the HLA classical alleles and amino acid polymor-
phisms. HLA imputation was conducted using the SNP2HLA V.1.0.3 software [79].

Definition of AIRR variables

Clone

In the present study, clones were defined by the CDR3 amino acid sequences. Accord-
ingly, the number of unique clones detected within the AIRR of a particular individual 
corresponds to the total number of unique CDR3 amino acid sequences detected in this 
individual.

Clone publicity

In the present study, the publicity degree of each clone was defined as the number of 
individuals where the clone is detected.

Meta‑clone

Groups of clones showing a high similarity at the CDR3 amino acid sequence level. More 
specifically, a meta-clone is a community of clones differing by at most one amino acid 
in their sequence that is identified within the general clone sequence similarity network 
(Fig. 4e).
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K‑mer

K-mers are groups of amino acids of length K contained within the CDR3 amino acid 
sequence [80]. Here, the CDR3 amino acid sequence of each clone was broken into over-
lapping k-mers of 4 amino acids of length.

Diversity

Diversity is one of the most commonly used metrics to characterize and quantify the 
vastness of the AIRR. Here, diversity was calculated at the chain level according to 
the observed frequency of clones within an individual’s AIRR. Given the lack of a sin-
gle measure that efficiently captures all diversity features and the availability of differ-
ent measures that provide complementary information on the AIRR diversity [81], we 
followed a recent TCR repertoire analyses on T cell subsets and we computed differ-
ent diversity measures to characterize the diversity of the AIRR in RA: Diversity 20 
(D20), Diversity 50 (D50), Gini-Simpson, Inverse-Simpson, and Shannon entropy [54]. 
D20 and D50 measures represent the number of dominant unique clones which make 
up 20 and 50% of the total clones, respectively. Gini-Simpson measure is computed as 
the unity minus the Simpson’s index and indicates if the repertoire is oligoclonal with a 
few highly frequent clones (i.e., low values) or polyclonal with a similar representation of 
each clone (i.e., high values). For the present analyses, the Gini-Simpson index was log-
transformed. Inverse-Simpson index was obtained using the weighted arithmetic mean 
to quantify the average proportional abundance of clones, thereby indicating an even 
distribution of clones (i.e., high values) or clonal expansion (i.e., low values). Finally, the 
Shannon entropy was computed to account for both the unique clone number (i.e., rep-
ertoire richness) and the clone relative abundance (i.e., repertoire evenness).

Clone length

The length of each clone was determined by the number of amino acids that are present 
in its CDR3 amino acid sequence.

Chain usage

In order to determine the relative mRNA expression of each immune receptor chain, 
we computed the chain usage measure. For each individual, the usage of each immune 
receptor chain was defined as the proportion of chain UMIs.

V and J gene segment usage

The genomic rearrangement between V and J gene segments determines the V(D)J junc-
tion, which includes the CDR3 hypervariable region. The AIRR of an individual can 
be therefore described not only by the frequency of CDR3 sequences, but also by the 
frequencies of each V and J segments as well as the frequency of each VJ combination. 
Accordingly, we computed the usage of each V, J, and VJ segments as their frequency 
within the AIRR of each individual.

Isotype information contained within the constant region of IGH

In order to characterize the molecular signatures that characterize IGH isotypes in 
RA patients, we have computed four informative measures of the antibody functional 
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role. Using sequencing information contained within the constant region of IGH, we 
have computed the isotype use (i.e., percentage of unique VDJ sequences per isotype), 
isotype class switching recombination index (i.e., frequency of unique VDJ regions 
expressed as two isotypes), and both the percentage of mutated IgD/M and degree 
of somatic hypermutations (i.e., average number of mutations per unique VDJ region 
sequence) as previously described [23]. In order to quantify these isotype-specific fea-
tures, the exportAlignments function of MiXCR software was used to get maximum 
length sequences. Given the small number of occurrences in which an IgE primer 
picked up an IgG sequence, which were incorrectly called as IgE by the MiXCR pipe-
line, we conducted an ad hoc post-processing step that corrected this spurious isotype 
calling by realigning the reported IgE sequences with the Smith-Waterman algorithm 
[82]. More specifically, in order to compute the percentage of somatic hypermuta-
tions at the sample level, sequence information from CDR1 and CDR2 regions (i.e., 
starting from CDR1 until the end of the V region), which influence B cell biology, was 
also considered. These analytical criteria align with the standards utilized by other 
well-established methods for BCR analysis, such as IgBlast, in the context of somatic 
hypermutation estimation. Unlike IgBlast, the MiGEC/MiXCR pipeline employed in 
the present study excels at handling UMI data and accurately distinguishes somatic 
hypermutations from PCR errors. This particularity of the MiGEC/MiXCR pipeline 
provides a high degree of confidence in the estimation of somatic hypermutations.

Statistical analysis

Influence of technical factors and epidemiological variables on AIRR properties

We first investigated the impact that both technical factors (i.e., sequencing depth, 
sequencing plate, RNA integrity and RNA concentration) and epidemiological varia-
bles (i.e., age and gender) have on the main AIRR properties (Additional file 3: Fig S1). 
After detecting technical factors showing a high degree of collinearity, we tested the 
influence of non-redundant technical variables and epidemiological variables on each 
AIRR measure. To ensure that our analyses are not biased by technical aspects, tech-
nical factors influencing AIRR measures (r2 > 0.25, P < 0.05) were considered when the 
epidemiological variables were tested for association with these measures. The asso-
ciation between quantitative variables was assessed using the Pearson correlation. 
The association between categorical variables with two and more than two labels was 
determined using the Wilcoxon and Kruskal–Wallis tests, respectively. The complete 
list of associations is detailed in Additional file 3: Fig S1. The downstream AIRR-seq 
analyses presented in the present study were adjusted by age and gender as well as in 
accordance with the statistical association observed between each technical variable 
and AIRR measure.

Clone publicity analysis

Since the degree of clone sharing between individuals is strongly influenced by the num-
ber of individuals included in each group of interest, we performed a rarefaction analysis 
to compare the clone publicity between groups with an unbalanced sample size.
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V and J gene segment usage analysis

In order to characterize the gene segment usage profile of our case–control cohort, gene 
segments showing a usage < 5% were excluded from the study. Subsequently, we con-
ducted a principal component analysis to determine the potential of gene segment usage 
to differentiate RA patients from healthy individuals. The two components explaining 
the largest fraction of the gene segment usage variance were selected for the analysis.

Clone length comparative analysis

We conducted a multi-step statistical analysis to detect (i) shifts in the clone length 
distribution between two conditions and (ii) the amino acid positions at which the dif-
ferential pattern starts. To identify shifts in the clone length distribution between the 
groups of interest, the frequency of clone abundance was compared using the Wilcoxon 
test. Differences in the abundance of clones with a particular length of the CDR3 amino 
acid sequence between two conditions were evaluated using Fisher’s exact test. To bet-
ter characterize the amino acid positions at which the differential pattern starts, we 
computed both the empirical cumulative density distribution function and the quan-
tile–quantile plots. These graphical representations were used to determine if the clone 
length frequencies observed in two different conditions follows the same probability 
distribution.

Baseline association analysis

In order to identify AIRR-seq variables associated with a trait of interest, we used logis-
tic and negative binomial regression models according to the distribution followed by 
the AIRR-seq variable analyzed (Additional file 35: Table S28). Epidemiological variables 
and technical factors like sequencing depth were included as covariates in all statistical 
models.

Given the vastness of the AIRR and the complexity of translating repertoire informa-
tion contained in a few milliliters of blood to the whole individual’s AIRR (i.e., sampling 
bias), discovering clones associated with complex traits is highly challenging. The lit-
tle clone sharing (i.e., clone publicity) detected between our study samples leads to an 
extremely zero-inflated clone distribution (Additional file 36: Fig S8, Additional file 37: 
Fig S9). This particularity of the AIRR-seq data represents a major analytical challenge to 
identify disease-associated clones with high confidence [24, 60]. To identify clones that 
are over- or under-represented in disease conditions, in the present study we adapted 
the Hurdle model [61]. This model is commonly used in single-cell RNA-seq studies and 
allows the comparison of extremely zero-inflated clone abundance distributions [83]. 
It is a two-part generalized linear model that simultaneously models the rate of clone 
abundance over the background of various clones and the positive clone abundance 
mean. This modelling allows the inclusion of covariates in both the discrete and continu-
ous parts of the model allowing the adjustment of the model for confounding factors. To 
adjust our model for important factors of AIRR-seq analyses, we designed and imple-
mented the Clone Detection Rate (CDR) measure that acts as a proxy for both technical 
(e.g., sampling bias) and biological factors (e.g., RNA volume and extrinsic factors other 
than the clinical phenotype of interest) that globally influence clone abundances. The 
CDR was computed as the standardized proportion of clones that are detected in each 
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sample. Together with the statistical properties of the Hurdle model, the adjustment for 
the variability of AIRR-seq data captured by the CDR makes the Hurdle model more 
effective at controlling the impact of the technical factors and reducing the false positive 
rate than other analytical strategies commonly used in AIRR-seq analyses (e.g., Fisher’s 
exact test). Before using the Hurdle model, clone counts were adjusted for the library 
size, multiplied per million and converted to the logarithmic scale. After excluding those 
clones detected in < 1% of samples (Additional file 38: Table S29), the association of each 
clone with disease conditions was tested using the Hurdle model adjusted for CDR, age, 
and gender. The false discovery rate (FDR) method was used to account for multiple 
testing [84].

The stringent multiple testing correction that must be applied to the association anal-
ysis at the single-clone level can reduce the power to identify disease-relevant clones. 
This statistical power limitation raises the need of developing new approaches to iden-
tify disease-associated clones. Given that clones with high sequence similarity are likely 
to recognize similar antigens [34], we exploited the similarity information across CDR3 
amino acid sequences using network analysis to identify meta-clones associated with RA 
(Fig. 4e). Our meta-clone approach starts with the construction of the CDR3 sequence 
similarity network of millions of clones that follow an extremely zero-inflated frequency 
distribution. This is built using the mutation.network function of the tcR R package [85]. 
In this network, edges connect those clones that differ by at most one amino acid. Com-
munities of highly connected clones (i.e., meta-clones or groups of clones with a high 
CDR3 amino acid sequence similarity) are subsequently identified by directly optimizing 
a modularity score with the cluster.fast.greedy function of the igraph R package [86]. The 
expression of each meta-clone is then computed by aggregating the expression values of 
the community of highly similar clones. Finally, the association of each meta-clone (i.e., 
detected in > 1% of samples) with disease conditions is tested using the Hurdle model 
adjusted for age, gender, and detection rate as previously described (Additional file 38: 
Table  S29). The same analytical approach was used to test the association between 
k-mers and disease conditions (Additional file 38: Table S29).

Longitudinal association analysis

In order to evaluate the impact that TNFi drugs have on the main AIRR-seq features, we 
implemented a logistic and negative binomial regression (i.e., determined by the distri-
bution of the AIRR-seq variable analyzed, Additional file 35: Table S28) using a mixed 
effect model. Like in the baseline association analysis, sequencing depth and epidemio-
logical variables were included as covariates in the mixed effect models.

Similar to the baseline association analysis, studying the dynamics of the AIRR at the 
resolution of single clones must allow to distinguish true differences in clone frequen-
cies from experimental noise. To address this analytical challenge in the study of the 
impact of TNFi therapy at the single-clone level, we used NoisET [31]. Briefly, NoisET is 
a newly developed Bayesian approach that exploits the information of each sample and 
replicate for learning a noise model that accounts for read counts variability due to sam-
pling, library preparation, and expression noises. Following the method’s guidelines, we 
selected the negative binomial model for learning the experimental and technical noise. 
According to the AIRR-seq data required for the probabilistic method implemented in 
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NoisET, we used the CDR3 nucleotide sequence of each clone to infer the noise model 
that allowed the unbiased identification of contracted and expanded clones after TNFi 
therapy.

Differences in the number of significantly contracted and expanded clones between 
BCR and TCR chains were determined using Fisher’s exact test. The effect of TNF inhi-
bition on contracted and expanded clones was compared using the Wilcoxon test. The 
same statistical test was used to compare the effect of TNF inhibition on contracted and 
expanded clones between BCR and TCR chains.

Grouping lymphocyte interaction by paratope hotspots

To identify groups of TRB clones with shared specificity that are expanded in RA, we 
used the grouping of lymphocyte interactions by paratope hotspots (GLIPH) algorithm 
version 2 [36]. GLIPH2 method is designed to cluster clones from the TRB chain accord-
ing to their probability of binding the same Major histocompatibility complex-restricted 
peptide antigen. In the three-step algorithm implemented in GLIPH2, global similarity 
and local similarity are first computed. While the former is based on differences on the 
CDR3 sequence of up to one amino acid, the latter is based on the sharing of amino acid 
motifs among CDR3 sequences (i.e., > tenfold enriched and < 0.001 probability of occur-
ring at this level of enrichment in the naive repertoires used as reference). Global and 
local similarities are then used to construct clusters of TRB clones with shared specific-
ity. The enrichment of each cluster of TRB clones in CDR3 length, clonal expansions, 
shared HLA alleles in subjects, motif significance, and cluster size is next tested. Finally, 
the resulting probabilities of each enrichment are combined and summarized in a sin-
gle score. Given that TRB clones quantified in our study population were determined 
from bulk RNA and no information from T cell types was available, the enrichment of 
the TRB repertoire was tested against a naive repertoire of both CD4 + and CD8 + T 
cells. To avoid false positive results, TRB clusters composed of less than three clones and 
detected in less than three individuals were removed from the analysis.

Genetic association between HLA alleles and RA risk

The imputed HLA alleles were tested for association using a logistic regression model. 
In order to increase the power of identifying HLA alleles associated with RA risk in the 
Spanish population, we analyzed a case–control cohort of 1191 RA patients and 1558 
healthy controls that we had previously collected [87]. The genetic association results 
were adjusted for multiple testing using the FDR method [84].

Estimating the AIRR from bulk RNA‑Seq data

In order to obtain the immune repertoire from the seven receptor chains that are 
expressed in blood and synovial tissue of RA patients [32], we leveraged the informa-
tion provided by TCR and BCR transcripts that are present in a publicly available bulk 
RNA-seq dataset using MiXCR software [75]. MiXCR aligns paired-end reads to a 
built-in library of V, D, J, and C gene sequences and, subsequently, information from 
the alignment of the two reads is aggregated to increase the gene assignment accuracy. 
After correcting for PCR and sequencing errors, identical and homologous reads are 
assembled into clones. In order to maximize the quantitative information available for 
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analysis, low-quality reads are rescued by mapping them to previously assembled high-
quality clones.

Clone characterization

Amino acid sequence similarity

In order to quantify the similarity between amino acid sequences, we implemented two 
analytical approaches. The sequence similarity among a given set of clones was deter-
mined using a network analysis strategy. This analytical strategy consisted on building a 
CDR3 amino acid sequence similarity network. Graphically, each clone is represented as 
a node and edges connect CDR3 amino acid sequences differing by at most one amino 
acid. The node size is proportional to the number of similarity connections with other 
clones and each node is divided into as many fractions as individuals have the clone. 
Nodes are displayed on the plane in accordance to the physical model of springs that is 
used by the Kamanda-Kawai layout algorithm implemented in igraph R package. The 
degree centrality value of the sequence similarity network was used to estimate the simi-
larity among the set of clones. The similarity among a given set of smaller amino acid 
sequences (i.e., k-mers) was determined using the Levenshtein distance metric, which 
represents the minimum number of characters that differs between two strings of char-
acters [88]. Unlike the commonly used Hamming distance, which is limited to count 
character substitutions between two sequences of the same length [89], the Levenshtein 
distance metric considers also the presence of character insertions/deletions and, there-
fore, it can provide additional insights into the characterization of the immune reper-
toire [90].

Biochemical profile of the CDR3 amino acid sequence

The sequence profile of a given set of CDR3 amino acid sequences was determined using 
the ClustalW alignment algorithm with the R package msa [91]. The sequence logo of 
the resulting alignment was built using the probability method provided by the R pack-
age ggseqlogo [92]. Each amino acid was colored according to its most characteristic bio-
chemical feature (i.e., acidic, basic, hydrophobic, neutral or polar). In order to refine the 
biochemical characterization of a given set of CDR3 amino acid sequences, we studied 
additional biochemical properties using the Peptides R package. To determine whether 
the biochemical profile of expanded and contracted clones differs between responder 
and non-responder patients to TNFi therapy, the enrichment in each biochemical 
property was compared using a logistic regression model adjusted for the length of the 
CDR3 amino acid sequence. After weighting the biochemical profile of the significantly 
expanded or contracted clones by the magnitude of the frequency change, the same ana-
lytical approach was used to quantify the global effect that TNF inhibition exerts on the 
AIRR biochemical profile that characterizes responder and non-responder patients.

Comparison against a random repertoire

In order to determine whether a given set of CDR3 amino acid sequences are character-
ized by a particular biochemical property or a higher sequence similarity than expected 
by chance, we have used a resampling strategy. Using this analytical approach, a random 
repertoire was generated by sampling > 1000 times a random set of clones from the same 
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chain and size as a group of clones of interest (e.g., contracted IGH clones). The random 
set of clones was sampled from the observed clones and the probability of being sampled 
was equally assigned to each one.

The statistical significance of the feature (e.g., sequence similarity or biochemical 
property) was computed by contrasting the observed metric in a given set of clones 
against the null distribution obtained after sampling multiple times (i.e., here > 1000 and 
1000 for sequence similarity and biochemical properties, respectively) a random set of 
clones from the same size and receptor chain. After obtaining the statistical significance 
of enrichment and depletion in a particular biochemical feature, both statistics were log-
transformed (i.e., − log10 and log10 for enrichment and depletion p-values, respectively) 
and subsequently aggregated into a single biochemical enrichment score (BES).

Development of the multi‑chain AIRR predictor

To investigate whether AIRR molecular data could be translated into information of clin-
ical utility, we built and tested predictor models. Multi-chain AIRR features (n = 4521 
variables) and HLA genetic information (n = 6407 genetic variants) from 84 RA patients 
and 104 control individuals were evaluated as predictors (Additional file 39: Table S30). 
The predictive power of AIRR information was separately analyzed for each AIRR fea-
ture as well as aggregating information from different AIRR features. The analytical 
approach selected for the present predictive analysis was composed by the random for-
est algorithm and leave-one-out cross-validation strategy. Briefly, this analytical strategy 
consists of four consecutive steps. First, the dataset is split into a training set and a test-
ing set, leaving only one observation “out” from the training set as a testing set. Second, 
the statistical model (i.e., here random forest) is built using only data from the training 
set. Third, the model is used to estimate the class probability of the left-out observation 
and compared to the real (observed) class. This process is repeated for all observations 
in the dataset to calculate the global classifier performance.

To avoid biased prediction resulting from the analysis of imbalanced classes (e.g., 
more TNFi responders than non-responders), we used the random forest algorithm with 
down-sampling (i.e., sampling the majority class to make their frequencies closer to the 
minority class). The predictive performance was determined using five discriminative 
measures: (i) accuracy (i.e., number of correct predictions out of the total number of 
predictions), (ii) sensitivity, (iii) specificity, (iv) precision, and (v) false positive rate. For 
the most powerful predictor both the area under the receiver operating characteristic 
and the area under the precision-recall curve were computed.

Supplementary Information
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Additional file 1: Table S1. Main clinical and epidemiological characteristics of the study population. All RA 
patients, RA patients at baseline, RA patients after 12 weeks of TNFi therapy and control individuals are separately 
characterized. Abbreviations: N, sample size; NA, not applicable; M, mean; RA, rheumatoid arthritis.

Additional file 2: Table S2. Summary of the quantitative AIRR‑seq information available for analysis. The number of 
UMIs, clones, UMIs per sample and clones per sample are provided separately for each of the seven immune recep‑
tor chains. The total number of successfully assembled and demultiplexed reads is provided at the sample level. 
Information of technical variables (i.e., Sequencing plate, RNA concentration and RNA integrity) is also provided. 
Abbreviations: N, number; M, mean; RA, rheumatoid arthritis.
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Additional file 3: Figure S1. Impact of technical and epidemiological variables on AIRR features. Evaluation of col‑
linearity among technical variables (i.e., RNA concentration, RNA integrity, sequencing depth and plate), association 
of technical variables with AIRR features as well as association of epidemiological variables with AIRR features (i.e., 
adjusted by the influencing technical factors).

Additional file 4: Table S3. Diversity association with rheumatoid arthritis. For each immune receptor chain and 
diversity measure, both the statistical significance and effect size of the association are shown.

Additional file 5: Figure S2. Chain‑wide characterization of the AIRR diversity in rheumatoid arthritis phenotypes. 
The statistical significance and effect size of the association between each diversity measure and clinical pheno‑
type are shown. The heatmap is colored according to the effect size of the association at the chain level. Details on 
the direction of the effect size are provided in Table S4. Abbreviations: P<0.05; **, P<5.00e‑03; ***,P<5.00e‑04; ****, 
P<5.00e‑05.

Additional file 6: Table S4. Diversity association with clinical phenotypes in rheumatoid arthritis. The statistical 
significance and effect size of the association between each diversity measure and clinical phenotype are shown. 
The information is presented at the chain level.

Additional file 7: Table S5. Diversity association with TNFi therapy in rheumatoid arthritis. For each immune recep‑
tor chain and diversity measure, both the statistical significance and effect size of the longitudinal association is 
shown.

Additional file 8: Table S6. Diversity variation association with TNFi therapy in rheumatoid arthritis stratified by 
clinical response. For each immune receptor chain and diversity measure, both the statistical significance and effect 
size of the longitudinal association is separately shown for responders and non‑responders to TNFi therapy.

Additional file 9: Table S7. Summary statistics of the single clone analysis at the longitudinal level. For each chain, 
the number of clones that are significantly contracted and expanded after 12 weeks of TNFi therapy is shown. 
Detailed information on the CDR3 amino acid sequence of the significant clones is provided at the sample level. 
Gene usage information of contracted clones is also provided. Abbreviations: N, number of clones; NA, not applica‑
ble; P, P‑value.

Additional file 10: Table S8. Summary statistics of the CDR3 amino acid sequence similarity analysis among all 
contracted and expanded clones. For each chain, the number of permutations used to determine the statistical 
significance of the sequence similarity is shown together with the observed and permuted degree centrality values. 
Abbreviations: N, number of permutations; M, mean.

Additional file 11: Table S9. Summary statistics of the CDR3 amino acid sequence similarity analysis among 
contracted and expanded clones detected in responder and non‑responders to TNF inhibition. For each chain, the 
number of permutations used to determine the statistical significance of the sequence similarity is shown together 
with the observed and permuted degree centrality values. Abbreviations: N, number of permutations; M, mean.

Additional file 12: Figure S3. Chain usage association with clinical phenotypes in rheumatoid arthritis. The percent‑
age of patient UMIs mapping to each immune receptor chain is separately represented by clinical phenotype.

Additional file 13: Table S10. Chain usage association with TNFi therapy in rheumatoid arthritis. The statistical 
significance and effect size of the longitudinal association is shown for each of the seven immune receptor chains.

Additional file 14: Table S11. Gene segment usage association with rheumatoid arthritis. The summary statistics 
resulting from the association between each V, J and VJ gene segments with rheumatoid arthritis are shown. Abbre‑
viations: FDR, false discovery rate.

Additional file 15: Table S12. Gene segment usage association with clinical phenotypes in rheumatoid arthritis. 
The summary statistics resulting from the association between each V, J and VJ gene segments with TNFi response, 
disease activity, ACPA and RF phenotypes are shown. Abbreviations: ACPA, anti‑citrullinated protein antibodies; FDR, 
false discovery rate; RF, rheumatoid factor.

Additional file 16: Table S13. Gene segment usage association with TNFi therapy in rheumatoid arthritis. The sum‑
mary statistics resulting from the longitudinal association between each V, J and VJ gene segments with TNFi therapy 
are shown. Abbreviations: FDR, false discovery rate.

Additional file 17: Table S14. Summary statistics of the single clone association analysis with rheumatoid arthritis. 
The statistical significance of the association between each single clone and rheumatoid arthritis is shown at the 
chain level. For each clone, the statistical significance determined by the Hurdle, continuous and discrete models is 
provided. Abbreviations: FDR, false discovery rate.

Additional file 18: Figure S4. Graphical representation of the significant associations between IGL/IGK clones and 
rheumatoid arthritis. Significant associations detected by the Hurdle or continuous models are represented using 
violin plots, where the clone expression is plotted separately for each phenotype. Significant associations detected 
by the discrete model are represented using bar plots, where the number of individuals having the clone are plotted 
separately for each phenotype. For all significant associations (FDR<0.05), the clone expression is also plotted against 
the standardized clone detection rate. Abbreviations: CDR, clone detection rate; CPM, count per million on the 
logarithmic scale; Cont, continuous model; CTRL, healthy individuals; Disc, discrete model; P, p‑value; RA, rheumatoid 
arthritis.

Additional file 19: Table S15. Summary statistics of the CDR3 amino acid sequence similarity analysis on the 
single clones associated with rheumatoid arthritis. The number of permutations used to determine the statistical 
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significance of the sequence similarity among the disease‑associated IGK and IGL clones is shown together with 
the observed and averaged degree centrality values. Abbreviations: N, number of permutations; M, mean.

Additional file 20: Table S16. Summary statistics of the single clone association analysis with clinical phenotypes 
in rheumatoid arthritis. The statistical significance of the association between each single clone and response to 
TNFi therapy, disease activity, RF and ACPA phenotypes is shown at the chain level. For each clone, the statistical 
significance determined by the Hurdle, continuous and discrete models is provided. Abbreviations: FDR, false 
discovery rate.

Additional file 21: Table S17. Summary statistics of the candidate analysis between disease‑associated IGK/IGL 
clones and clinical phenotypes in rheumatoid arthritis. The statistical significance of the association of each single 
clone is shown separately for response to TNFi therapy, disease activity, RF and ACPA phenotypes. Abbreviations: 
FDR, false discovery rate.

Additional file 22: Table S18. Summary statistics of the meta‑clone association analysis with rheumatoid 
arthritis. The statistical significance of the association between each meta‑clone and rheumatoid arthritis is shown 
at the chain level. For each meta‑clone, the statistical significance determined by the Hurdle, continuous and 
discrete models is provided. Abbreviations: FDR, false discovery rate. 

Additional file 23: Table S19. Summary statistics of the meta‑clone association analysis with clinical phenotypes 
in rheumatoid arthritis. The statistical significance of the association between each meta‑clone and response 
to TNFi therapy, disease activity, RF and ACPA phenotypes is shown at the chain level. For each meta‑clone, the 
statistical significance determined by the Hurdle, continuous and discrete models is provided. Abbreviations: FDR, 
false discovery rate.

Additional file 24: Table S20. Summary statistics of the k‑mer association analysis with rheumatoid arthritis. The 
statistical significance of the association between each k‑mer and rheumatoid arthritis is shown at the chain level. 
For each k‑mer, the statistical significance determined by the Hurdle, continuous and discrete models is provided. 
Abbreviations: FDR, false discovery rate.

Additional file 25: Figure S5. Graphical representation of the significant associations between TRA/TRB/IGL/
IGK k‑mers and rheumatoid arthritis. Significant associations detected by the Hurdle or continuous models are 
represented using violin plots, where the k‑mer expression is plotted separately for each phenotype. Significant 
associations detected by the discrete model are represented using bar plots, where the number of individu‑
als with clones harboring the k‑mer are plotted separately for each phenotype. For all significant associations 
(FDR<0.05), the k‑mer expression is also plotted against the standardized k‑mer detection rate. Abbreviations: 
Cont, continuous model; CPM, count per million on the logarithmic scale; CTRL, healthy individuals; Disc, discrete 
model; KDR, k‑mer detection rate; P, p‑value; RA, rheumatoid arthritis.

 Additional file 26: Table S21. Summary statistics of the amino acid sequence similarity analysis on the k‑mers 
associated with rheumatoid arthritis. Levenshtein distance observed among the TRA, TRB, IGL and IGK k‑mers 
associated with rheumatoid arthritis. The number of permutations used to determine the statistical significance of 
the sequence similarity is shown together with the observed and averaged Levenshtein distance values. Abbre‑
viations: N, number of permutations; M, mean.

Additional file 27: Figure S6. Pairwise dissimilarity matrix among the amino acid sequences of TRA/TRB/IGL/
IGK k‑mers associated with rheumatoid arthritis. K‑mers over‑ and under‑represented in rheumatoid arthritis are 
represented in dark and light blue, respectively. The dissimilarity index was computed using the Levenshtein dis‑
tance measure so that the higher the Levenshtein distance, the higher the dissimilarity index between two k‑mer 
sequences. Abbreviations: Cont, continuous model; Disc, discrete model; RA, rheumatoid arthritis.

Additional file 28: Table S22. Summary statistics of the candidate analysis between disease‑associated TRA/TRB/
IGK/IGL k‑mers and clinical phenotypes in rheumatoid arthritis. The statistical significance of the association of 
each k‑mer is shown separately for response to TNFi therapy, disease activity, RF and ACPA phenotypes. Abbrevia‑
tions: FDR, false discovery rate.

Additional file 29: Table S23. Summary statistics of the k‑mer association analysis with clinical phenotypes in 
rheumatoid arthritis. The statistical significance of the association between each k‑mer and response to TNFi 
therapy, disease activity, RF and ACPA phenotypes is shown at the chain level. For each k‑mer, the statistical signifi‑
cance determined by the Hurdle, continuous and discrete models is provided. Abbreviations: FDR, false discovery 
rate.

Additional file 30: Table S24. Clusters of TRB clones that are enriched in the repertoire of patients with rheu‑
matoid arthritis and healthy individuals compared to a naive repertoire. Summary statistics of the TRB clusters’ 
enrichment in the immune repertoire of rheumatoid arthritis patients and healthy controls compared to a naive 
repertoire of CD4+ and CD8+ T cells (P<0.1). The name of the most representative amino acid motif of each TRB 
cluster is based on the nomenclature used by the GLIPH2 algorithm. Detailed information on the clones that 
belong to each TRB cluster is also provided, including the number of unique clones, CDR3 amino acid sequences 
as well as V and J gene segments. Abbreviations: N, sample size, FDR, false discovery rate.

Additional file 31: Table S25. Genetic association between HLA alleles and rheumatoid arthritis risk in the Span‑
ish population. The frequency of each HLA allele in both the case and control populations is shown. The statistical 
significance and effect size of each association are also provided. Abbreviations: CTRL, control individuals; HLA, 
human leukocyte antigen; OR, odds ratio; P, p.‑value; RA, rheumatoid arthritis.

Additional file 32: Figure S7. Graphical representation of the association between the length of the CDR3 
amino acid sequences and rheumatoid arthritis. The results of the case‑control, case‑case (i.e., association analysis 
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with clinical phenotypes in rheumatoid arthritis) and longitudinal analysis (i.e., baseline vs. week 12 and baseline 
vs. week 12 stratified by clinical response) are provided at the chain level. Shifts in the clone length distribution and 
the statistical significance of the difference in the abundance of clones with a particular length of the CDR3 amino 
acid sequence between the two indicated conditions are shown on the left side. This plot also shows the summary 
statistics detected for each condition. In the middle, the empirical cumulative density distribution of the abundance 
of CDR3 amino acid sequences is shown separately for each condition. On the right side, the empirical quantile‑
quantile plot computed for the two indicated conditions is shown. Abbreviations: P, p‑value of the Wilcoxon test;*, 
p‑value<0.05 in the Fisher test; **, p‑value<0.005 in the Fisher test.

Additional file 33: Table S26. Association of isotype‑specific features with clinical phenotypes in rheumatoid 
arthritis. The summary statistics (i.e., significance and effect size) of the isotype percentage, isotype class switching, 
somatic hypermutations and percentage of mutated IgD/M associations with disease clinical phenotype are shown. 
Abbreviations: P, p.‑value; RA, rheumatoid arthritis.

Additional file 34: Table S27. Predictive performance of the multi‑chain AIRR predictors evaluated in the present 
study. The predictive performance of each multi‑chain AIRR predictor is determined using the accuracy, sensitivity, 
specificity, precision and false positive rate measures. For each multi‑chain AIRR predictor, the number of individuals 
that were properly classified is also shown. The AIRR feature column indicates if the multi‑chain AIRR predictor was 
built using information from a single AIRR‑ feature or aggregating information from different AIRR features. Informa‑
tion from different AIRR features was aggregated according to different thresholds of accuracy when the sample 
size of the classes tended to be balanced (i.e., predictor of rheumatoid arthritis diagnosis and disease activity). The 
aggregation of information from different AIRR features was based on different specificity thresholds when the clini‑
cal interest was to identify the minor class (i.e., predictors of TNFi response, ACPA and RF phenotypes). The predictive 
performance of redundant multi‑chain AIRR predictors obtained after applying different accuracy or specificity 
thresholds is not shown.

Additional file 35: Table S28. Detailed information on the statistical test used to determine the association 
between each AIRR feature and clinical phenotype of interest. This information is provided for both the baseline and 
longitudinal analyses.

Additional file 36: Figure S8. Clonality profile of the samples included in the present study. Density distribution 
resulting from the analysis of the clone frequency at the sample and chain levels.

Additional file 37: Figure S9. Clone publicity profile of the study population. Graphical representation of the 
percentage of clones that are shared by more than two individuals (i.e., publicity degree) at the chain level. The clone 
publicity profile is separately shown for healthy individuals and rheumatoid arthritis patients. For each condition, the 
highest number of individuals sharing a clone is annotated on the right side. Abbreviations: CTRL, healthy individu‑
als; N, sample size; RA, rheumatoid arthritis.

Additional file 38: Table S29. Main characteristics of the single‑clone, meta‑clone and k‑mer association analyses 
with rheumatoid arthritis and clinical phenotypes. For each analysis, the number of UMIs, clones, meta‑clones, 
k‑mers as well as the clone, meta‑clone and k‑mer detection rate per sample are shown at the chain level. The 
number of clones, meta‑clones and k‑mers detected in >1% of the samples that were included in the association 
analyses is also provided. Abbreviations: M, mean; N, sample size.

Additional file 39: Table S30. Complete list of the AIRR variables used for developing multi‑chain AIRR predictors. 
Detailed information on the 4,521 AIRR variables and 6,407 HLA genetic variants from the present study population 
that were available for analysis.

Additional file 40. Review history.

Acknowledgements
We thank the patients and clinical specialists collaborating in the IMID Consortium for participation. We thank David 
Ellinghaus and Frauke Degenhardt (Institute of Clinical Molecular Biology, Kiel University) for conducting the genome‑
wide genotyping of the study population.

Review history
The review history is available as Additional file 40.

Peer review information
Stephanie McClelland, Anahita Bishop, and Wenjing She were the primary editors of this article and managed its editorial 
process and peer review in collaboration with the rest of the editorial team.

Authors’ contributions
AA, RMM, SM, JH, and AJ conducted the study design and data interpretation. MLL, FB, AJM, MLGV, AE, CPG, SASF, RS, 
AFN, MAL, JT, AMO, JM, NP, and SM participated in patient recruitment and sample acquisition. IR, RMM, WP, and MB‑S 
were involved in AIRR immunosequencing and review of the data. AA, AJ, DW, and DS performed AIRR‑seq data analyses. 
AA, SM, and AJ wrote the manuscript. All authors revised the manuscript and gave final approval for its submission.

Funding
This study was funded by Instituto de Salud Carlos III through the project PI17/00019 (Co‑funded by European Regional 
Fund “A way to make Europe”) and by the Spanish Ministry of Economy and Competitiveness (grant number: IPT010000–
2010–36). The study sponsors had no role in the collection, analysis, or interpretation of the data.



Page 34 of 36Aterido et al. Genome Biology           (2024) 25:68 

Availability of data and materials
All the research findings can be browsed on the website of the Rheumatology Research Group (www. urr. cat/ AIRR‑ RA). 
The immunosequencing data from the seven receptor chains used for this study is also available for download on GEO 
(accession number  GSE256256) [93]. Custom R code used for analyzing the AIRR‑seq data is publicly available at GitHub 
(www. github. com/ Rheum atolo gy‑ Resea rch‑ Group/ AIRR‑ RA) [94] and it is also deposited in the DOI‑assigning repository 
Zenodo (https:// zenodo. org/ recor ds/ 10641 095) [95], with assigned DOI:10.5281/zenodo.10641095, under the GNU 
General Public License version 3 (GPL3). AIRR‑seq data from blood and synovial tissue of RA patients was estimated by 
leveraging the information provided by TCR and BCR transcripts that are present in the bulk RNA‑seq dataset of reference 
(ArrayExpress E‑MTAB‑6141) [32].

Declarations

Ethics approval and consent to participate
All the procedures were followed in compliance with the principles of the Declaration of Helsinki and all patients pro‑
vided written informed consent to participate in this study. The study and the consent procedure were approved by the 
local Institutional Review Board of each participating center.

Competing interests
SM is the founder of IMIDomics, Inc. and the Chief Medical Officer Board Director at the company. RMM is the chair of the 
Scientific Advisory Board and co‑founder of IMIDomics, Inc. AJ is the Chief Data Scientist of IMIDomics, Inc. WP, DS, DW, 
MB‑S, and JH are employees of iRepertoire, Inc. The remaining authors declare that they have no competing interests.

Author details
1 Rheumatology Research Group, Vall Hebron Research Institute, 08035 Barcelona, Spain. 2 Rheumatology Department, 
Hospital Juan Canalejo, A Coruña, Spain. 3 Rheumatology Department, Hospital Son Llatzer, Palma, Spain. 4 Rheumatology 
Department, Hospital Universitario Barsuto, Bilbao, Spain. 5 Rheumatology Department, Hospital Sant Rafael, Barce‑
lona, Spain. 6 Rheumatology Department, Parc de Salut Mar, Barcelona, Spain. 7 Rheumatology Department, Hospital 
La Mancha Centro, Alcázar de San Juan, Spain. 8 Rheumatology Department, Hospital Clínic de Barcelona and IDIBAPS, 
Barcelona, Spain. 9 Rheumatology Department, Hospital Regional Universitario de Málaga, Málaga, Spain. 10 Rheumatol‑
ogy Department, Hospital Universitario Central de Asturias, Oviedo, Spain. 11 Rheumatology Department, Hospital Univer‑
sitario Guadalajara, Guadalajara, Spain. 12 Rheumatology Department, Hospital Universitario La Princesa, IIS La Princesa, 
Madrid, Spain. 13 Rheumatology Department, Hospital Universitario Virgen de La Arrixaca, Murcia, Spain. 14 iRepertoire Inc, 
Huntsville, AL, USA. 15 HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA. 

Received: 4 March 2022   Accepted: 4 March 2024

References
 1. McInnes IB, Schett G. The pathogenesis of rheumatoid arthritis. N Engl J Med. 2011;365:2205–19.
 2. O’Dell JR. Therapeutic strategies for rheumatoid arthritis. N Engl J Med. 2004;350:2591–602.
 3. Orange DE, et al. RNA Identification of PRIME Cells Predicting Rheumatoid Arthritis Flares. N Engl J Med. 

2020;383:218–28.
 4. Zhang F, et al. Defining inflammatory cell states in rheumatoid arthritis joint synovial tissues by integrating single‑

cell transcriptomics and mass cytometry. Nat Immunol. 2019;20:928–42.
 5. Mitchison NA. T‑cell‑B‑cell cooperation. Nat Rev Immunol. 2004;4:308–12.
 6. van Steenbergen, H.W., Ajeganova, S., Forslind, K., Svensson, B. & van der Helm‑van Mil, A.H. The effects of rheu‑

matoid factor and anticitrullinated peptide antibodies on bone erosions in rheumatoid arthritis. Ann Rheum 
Dis. 2015;74:e3.

 7. Edwards JC, et al. Efficacy of B‑cell‑targeted therapy with rituximab in patients with rheumatoid arthritis. N Engl J 
Med. 2004;350:2572–81.

 8. Keystone E, et al. Rituximab inhibits structural joint damage in patients with rheumatoid arthritis with an inad‑
equate response to tumour necrosis factor inhibitor therapies. Ann Rheum Dis. 2009;68:216–21.

 9. Genovese MC, et al. Abatacept for rheumatoid arthritis refractory to tumor necrosis factor alpha inhibition. N Engl J 
Med. 2005;353:1114–23.

 10. Matzaraki V, Kumar V, Wijmenga C, Zhernakova A. The MHC locus and genetic susceptibility to autoimmune and 
infectious diseases. Genome Biol. 2017;18:76.

 11. Petersone L, et al. T Cell/B cell collaboration and autoimmunity: an intimate relationship. Front Immunol. 2018;9:1941.
 12. Calis JJ, Rosenberg BR. Characterizing immune repertoires by high throughput sequencing: strategies and applica‑

tions. Trends Immunol. 2014;35:581–90.
 13. Rubelt F, et al. Adaptive Immune Receptor Repertoire Community recommendations for sharing immune‑repertoire 

sequencing data. Nat Immunol. 2017;18:1274–8.
 14. Emerson RO, et al. Immunosequencing identifies signatures of cytomegalovirus exposure history and HLA‑medi‑

ated effects on the T cell repertoire. Nat Genet. 2017;49:659–65.
 15. Davis MM, Bjorkman PJ. T‑cell antigen receptor genes and T‑cell recognition. Nature. 1988;334:395–402.
 16. Schatz DG, Ji Y. Recombination centres and the orchestration of V(D)J recombination. Nat Rev Immunol. 

2011;11:251–63.
 17. Trück J, Eugster A, Barennes P, Tipton CM, Luning Prak ET, Bagnara D, et al. Biological controls for standardization and inter‑

pretation of adaptive immune receptor repertoire profiling. eLife. 2021;10:e66274. https:// doi. org/ 10. 7554/ eLife. 66274.

http://www.urr.cat/AIRR-RA
http://www.github.com/Rheumatology-Research-Group/AIRR-RA)
https://zenodo.org/records/10641095)
https://doi.org/10.7554/eLife.66274


Page 35 of 36Aterido et al. Genome Biology           (2024) 25:68  

 18. Fischer DS, Wu Y, Schubert B, Theis FJ. Predicting antigen specificity of single T cells based on TCR CDR3 regions. Mol 
Syst Biol. 2020;16: e9416.

 19. Rossjohn J, et al. T cell antigen receptor recognition of antigen‑presenting molecules. Annu Rev Immunol. 
2015;33:169–200.

 20. De Silva NS, Klein U. Dynamics of B cells in germinal centres. Nat Rev Immunol. 2015;15:137–48.
 21. Duarte JH. Functional switching. Nat Immunol. 2016;17:S12–S12.
 22. Lu LL, Suscovich TJ, Fortune SM, Alter G. Beyond binding: antibody effector functions in infectious diseases. Nat Rev 

Immunol. 2018;18:46–61.
 23. Bashford‑Rogers RJM, et al. Analysis of the B cell receptor repertoire in six immune‑mediated diseases. Nature. 

2019;574:122–6.
 24. Georgiou G, et al. The promise and challenge of high‑throughput sequencing of the antibody repertoire. Nat Bio‑

technol. 2014;32:158–68.
 25. Cui JH, et al. TCR repertoire as a novel indicator for immune monitoring and prognosis assessment of patients with 

cervical cancer. Front Immunol. 2018;9:2729.
 26. Minervina AA, Komech EA, Titov A, Bensouda Koraichi M, Rosati E, Mamedov IZ, et al. Longitudinal high‑throughput 

TCR repertoire profiling reveals the dynamics of T‑cell memory formation after mild COVID‑19 infection. eLife. 
2021;10:e63502. https:// doi. org/ 10. 7554/ eLife. 63502.

 27. Page DB, et al. Deep Sequencing of T‑cell Receptor DNA as a Biomarker of Clonally Expanded TILs in Breast Cancer 
after Immunotherapy. Cancer Immunol Res. 2016;4:835–44.

 28. Liu X, et al. T cell receptor β repertoires as novel diagnostic markers for systemic lupus erythematosus and rheuma‑
toid arthritis. Ann Rheum Dis. 2019;78:1070–8.

 29. Pollastro S, et al. Non‑response to rituximab therapy in rheumatoid arthritis is associated with incomplete disruption 
of the B cell receptor repertoire. Ann Rheum Dis. 2019;78:1339–45.

 30. Han J, Lotze MT. The adaptome as biomarker for assessing cancer immunity and immunotherapy. Methods Mol Biol. 
2020;2055:369–97.

 31. Puelma Touzel M, Walczak AM, Mora T. Inferring the immune response from repertoire sequencing. PLoS Comput 
Biol. 2020;16: e1007873.

 32. Lewis, M.J., et al. Molecular Portraits of Early Rheumatoid Arthritis Identify Clinical and Treatment Response Pheno‑
types. Cell Rep. 2019;28:2455–2470 e2455.

 33. Rosati E, et al. Overview of methodologies for T‑cell receptor repertoire analysis. BMC Biotechnol. 2017;17:61.
 34. Glanville J, et al. Identifying specificity groups in the T cell receptor repertoire. Nature. 2017;547:94–8.
 35. Zhang W, et al. PIRD: Pan Immune Repertoire Database. Bioinformatics. 2020;36:897–903.
 36. Huang H, Wang C, Rubelt F, Scriba TJ, Davis MM. Analyzing the Mycobacterium tuberculosis immune response by 

T‑cell receptor clustering with GLIPH2 and genome‑wide antigen screening. Nat Biotechnol. 2020;38:1194–202.
 37. Wardemann H, et al. Predominant autoantibody production by early human B cell precursors. Science. 

2003;301:1374–7.
 38. Doorenspleet ME, et al. Rheumatoid arthritis synovial tissue harbours dominant B‑cell and plasma‑cell clones associ‑

ated with autoreactivity. Ann Rheum Dis. 2014;73:756.
 39. Tak PP, et al. Dominant B cell receptor clones in peripheral blood predict onset of arthritis in individuals at risk for 

rheumatoid arthritis. Ann Rheum Dis. 2017;76:1924.
 40. Cronstein BN, Aune TM. Methotrexate and its mechanisms of action in inflammatory arthritis. Nat Rev Rheumatol. 

2020;16:145–54.
 41. Alivernini S, et al. Distinct synovial tissue macrophage subsets regulate inflammation and remission in rheumatoid 

arthritis. Nat Med. 2020;26:1295–306.
 42. Haringman JJ, et al. Synovial tissue macrophages: a sensitive biomarker for response to treatment in patients with 

rheumatoid arthritis. Ann Rheum Dis. 2005;64:834–8.
 43. Kuo D, Ding J, Cohn IS, Zhang F, Wei K, Rao DA, et al. HBEGF+ macrophages in rheumatoid arthritis induce fibroblast 

invasiveness. Sci Translational Med. 2019;11(491):eaau8587. https:// doi. org/ 10. 1126/ scitr anslm ed. aau85 87.
 44. Onuora S. Experimental arthritis: Anti‑TNF kills the macrophage response. Nat Rev Rheumatol. 2018;14:64.
 45. Shen P, Fillatreau S. Antibody‑independent functions of B cells: a focus on cytokines. Nat Rev Immunol. 

2015;15:441–51.
 46. Julià A, et al. Lower peripheral helper T cell levels in the synovium are associated with a better response to anti‑TNF 

therapy in rheumatoid arthritis. Arthritis Res Ther. 2020;22:196.
 47. Elliott SE, et al. B cells in rheumatoid arthritis synovial tissues encode focused antibody repertoires that include 

antibodies that stimulate macrophage TNF‑α production. Clin Immunol. 2020;212: 108360.
 48. Grau‑Expósito J, et al. Peripheral and lung resident memory T cell responses against SARS‑CoV‑2. Nat Commun. 

2021;12:3010.
 49. Vabret N, et al. Immunology of COVID‑19: Current State of the Science. Immunity. 2020;52:910–41.
 50. Humby F, et al. Ectopic lymphoid structures support ongoing production of class‑switched autoantibodies in rheu‑

matoid synovium. PLoS Med. 2009;6: e1.
 51. Al Kindi MA, et al. Serum SmD autoantibody proteomes are clonally restricted and share variable‑region peptides. J 

Autoimmun. 2015;57:77–81.
 52. Guggino G, et al. Downregulation of miRNA17‑92 cluster marks Vγ9Vδ2 T cells from patients with rheumatoid arthri‑

tis. Arthritis Res Ther. 2018;20:236.
 53. Mo W‑X, et al. Chemotaxis of Vδ2 T cells to the joints contributes to the pathogenesis of rheumatoid arthritis. Ann 

Rheum Dis. 2017;76:2075–84.
 54. Jiang X, et al. Comprehensive TCR repertoire analysis of CD4(+) T‑cell subsets in rheumatoid arthritis. J Autoimmun. 

2020;109: 102432.
 55. Trouw LA, Pickering MC, Blom AM. The complement system as a potential therapeutic target in rheumatic disease. 

Nat Rev Rheumatol. 2017;13:538–47.

https://doi.org/10.7554/eLife.63502
https://doi.org/10.1126/scitranslmed.aau8587


Page 36 of 36Aterido et al. Genome Biology           (2024) 25:68 

 56. Gravina G, Erlandsson M, Bossios A, Ekerljung L, Malmhäll C. Low Serum Levels of Immunoglobulin D Recognize 
Autoantibody Production in Rheumatoid Arthritis. J Mol Sci. 2018;2:5.

 57. Ge C, Holmdahl R. The structure, specificity and function of anti‑citrullinated protein antibodies. Nat Rev Rheumatol. 2019;15:503–8.
 58. Kongpachith S, et al. Affinity maturation of the anti‑citrullinated protein antibody paratope drives epitope spread‑

ing and polyreactivity in rheumatoid arthritis. Arthritis Rheumatol. 2019;71:507–17.
 59. Titcombe PJ, et al. Pathogenic citrulline‑multispecific B cell receptor clades in rheumatoid arthritis. Arthritis Rheuma‑

tol. 2018;70:1933–45.
 60. Greiff V, Miho E, Menzel U, Reddy ST. Bioinformatic and statistical analysis of adaptive immune repertoires. Trends 

Immunol. 2015;36:738–49.
 61. Finak G, et al. MAST: a flexible statistical framework for assessing transcriptional changes and characterizing hetero‑

geneity in single‑cell RNA sequencing data. Genome Biol. 2015;16:278.
 62. Zhu Q, Rui K, Wang S, Tian J. Advances of Regulatory B Cells in Autoimmune Diseases. Front Immunol. 2021;12: 592914.
 63. Zacca ER, et al. PD‑L1(+) Regulatory B cells are significantly decreased in rheumatoid arthritis patients and increase 

after successful treatment. Front Immunol. 2018;9:2241.
 64. Ishigaki K, et al. Quantitative and qualitative characterization of expanded CD4+ T cell clones in rheumatoid arthritis 

patients. Sci Rep. 2015;5:12937.
 65. Klarenbeek PL, et al. Inflamed target tissue provides a specific niche for highly expanded T‑cell clones in early 

human autoimmune disease. Ann Rheum Dis. 2012;71:1088.
 66. Sakurai K, et al. HLA‑DRB1 shared epitope alleles and disease activity are correlated with reduced t cell receptor 

repertoire diversity in CD4+ T cells in rheumatoid arthritis. J Rheumatol. 2018;45:905–14.
 67. Dendrou CA, Petersen J, Rossjohn J, Fugger L. HLA variation and disease. Nat Rev Immunol. 2018;18:325–39.
 68. Laki J, et al. Very high levels of anti‑citrullinated protein antibodies are associated with HLA‑DRB1*15 non‑shared 

epitope allele in patients with rheumatoid arthritis. Arthritis Rheum. 2012;64:2078–84.
 69. Pitzalis C, Choy EHS, Buch MH. Transforming clinical trials in rheumatology: towards patient‑centric precision medi‑

cine. Nat Rev Rheumatol. 2020;16:590–9.
 70. Kingsmore SF, Lindquist IE, Mudge J, Gessler DD, Beavis WD. Genome‑wide association studies: progress and poten‑

tial for drug discovery and development. Nat Rev Drug Discov. 2008;7:221–30.
 71. Julia A, et al. Risk variants for psoriasis vulgaris in a large case‑control collection and association with clinical sub‑

phenotypes. Hum Mol Genet. 2012;21:4549–57.
 72. Kay, J. & Upchurch, K.S. ACR/EULAR 2010 rheumatoid arthritis classification criteria. Rheumatology. 2012;51:vi5‑vi9.
 73. van Gestel AM, Haagsma CJ, van Riel PL. Validation of rheumatoid arthritis improvement criteria that include simpli‑

fied joint counts. Arthritis Rheum. 1998;41:1845–50.
 74. Shugay M, et al. Towards error‑free profiling of immune repertoires. Nat Methods. 2014;11:653–5.
 75. Bolotin DA, et al. MiXCR: software for comprehensive adaptive immunity profiling. Nat Methods. 2015;12:380–1.
 76. Lefranc M‑P, et al. IMGT®, the international ImMunoGeneTics information system® 25 years on. Nucleic Acids Res. 

2015;43:D413–22.
 77. Liao Y, Smyth GK, Shi W. The Subread aligner: fast, accurate and scalable read mapping by seed‑and‑vote. Nucleic 

Acids Res. 2013;41: e108.
 78. Purcell S, et al. PLINK: a tool set for whole‑genome association and population‑based linkage analyses. Am J Hum 

Genet. 2007;81:559–75.
 79. Jia X, et al. Imputing amino acid polymorphisms in human leukocyte antigens. PLoS ONE. 2013;8: e64683.
 80. Shoukat MS, et al. Use of machine learning to identify a T cell response to SARS‑CoV‑2. Cell Rep Med. 2021;2: 100192.
 81. Kaplinsky J, Arnaout R. Robust estimates of overall immune‑repertoire diversity from high‑throughput measure‑

ments on samples. Nat Commun. 2016;7:11881.
 82. Smith TF, Waterman MS. Identification of common molecular subsequences. J Mol Biol. 1981;147:195–7.
 83. Smillie, C.S., et al. Intra‑ and Inter‑cellular Rewiring of the Human Colon during Ulcerative Colitis. Cell. 2019;178:714–730 e722.
 84. Hochberg Y, Benjamini Y. More powerful procedures for multiple significance testing. Stat Med. 1990;9:811–8.
 85. Nazarov VI, et al. tcR: an R package for T cell receptor repertoire advanced data analysis. BMC Bioinformatics. 2015;16:175.
 86. Csardi G, Nepusz T. The igraph software package for complex network research. InterJournal Complex Syst. 

2006;1695(5):1–9.
 87. Aterido A, et al. Genetic variation at the glycosaminoglycan metabolism pathway contributes to the risk of psoriatic 

arthritis but not psoriasis. Ann Rheum Dis. 2019;78:355.
 88. Levenshtein VI. Binary codes capable of correcting deletions, insertions and reversals. Soviet Physics Doklady. 

1966;10:707–10.
 89. Hamming RW. Error detecting and error correcting codes. Bell System Tech J. 1950;29:147–60.
 90. Miron M, et al. Maintenance of the human memory T cell repertoire by subset and tissue site. Genome Med. 2021;13:100.
 91. Bodenhofer U, Bonatesta E, Horejš‑Kainrath C, Hochreiter S. msa: an R package for multiple sequence alignment. 

Bioinformatics. 2015;31:3997–9.
 92. Wagih O. ggseqlogo: a versatile R package for drawing sequence logos. Bioinformatics. 2017;33:3645–7.
 93. Aterido, A., et al. Seven chain adaptive immune receptor repertoire analysis in rheumatoid arthritis reveals novel 

features associated with disease and clinically relevant phenotypes. Gene Expression Omnibus. https:// www. ncbi. 
nlm. nih. gov/ geo/ query/ acc. cgi? acc= GSE25 6256 (2024).

 94. Aterido, A., et al. Seven chain adaptive immune receptor repertoire analysis in rheumatoid arthritis reveals novel 
features associated with disease and clinically relevant phenotypes. Github. 2024. https:// github. com/ Rheum atolo 
gy‑ Resea rch‑ Group/ AIRR‑ RA.

 95. Aterido, A., et al. Seven chain adaptive immune receptor repertoire analysis in rheumatoid arthritis reveals novel 
features associated with disease and clinically relevant phenotypes. Zenodo. 2024;10.5281/zenodo.10641095.

Publisher’ s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE256256
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE256256
https://github.com/Rheumatology-Research-Group/AIRR-RA
https://github.com/Rheumatology-Research-Group/AIRR-RA

	Seven-chain adaptive immune receptor repertoire analysis in rheumatoid arthritis reveals novel features associated with disease and clinically relevant phenotypes
	Abstract 
	Background: 
	Results: 
	Conclusions: 

	Background
	Results
	Quantitative characterization of the AIRR from RA patients and healthy controls for the seven receptor chains
	The low diversity that characterizes the AIRR of RA patients is mainly driven by the expansion of BCR clones and is restored by TNFi therapy
	Identification and characterization of contracted and expanded clones after TNFi therapy
	Low IGL usage in blood of RA patients suggests increased migration rate of IGL-harboring B cells to the synovial tissue
	RA patients are characterized by a skewed usage of V and J gene segments
	Identification and characterization of RA-associated clones, meta-clones, and k-mers
	HLA alleles associated with RA risk mediate the antigen presentation to expanded and disease-specific TRB clones
	The length of the CDR3 amino acid sequence is associated with disease, clinical phenotypes, and anti-TNF response
	RA patients display an isotype-specific signature
	Multi-chain AIRR predicts RA

	Discussion
	Conclusions
	Methods
	Patients and samples
	Whole blood RNA extraction
	High-throughput sequencing of the seven receptor chains of the study population
	AIRR-seq data processing
	Genome-wide genotyping and HLA imputation
	Definition of AIRR variables
	Clone
	Clone publicity
	Meta-clone
	K-mer
	Diversity
	Clone length
	Chain usage
	V and J gene segment usage
	Isotype information contained within the constant region of IGH

	Statistical analysis
	Influence of technical factors and epidemiological variables on AIRR properties
	Clone publicity analysis
	V and J gene segment usage analysis
	Clone length comparative analysis
	Baseline association analysis
	Longitudinal association analysis

	Grouping lymphocyte interaction by paratope hotspots
	Genetic association between HLA alleles and RA risk
	Estimating the AIRR from bulk RNA-Seq data
	Clone characterization
	Amino acid sequence similarity
	Biochemical profile of the CDR3 amino acid sequence
	Comparison against a random repertoire

	Development of the multi-chain AIRR predictor

	Acknowledgements
	References


