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Abstract 

Multi-omic single-cell technologies, which simultaneously measure the transcriptional 
and epigenomic state of the same cell, enable understanding epigenetic mechanisms 
of gene regulation. However, noisy and sparse data pose fundamental statistical chal-
lenges to extract biological knowledge from complex datasets. SHARE-Topic, a Bayes-
ian generative model of multi-omic single cell data using topic models, aims to address 
these challenges. SHARE-Topic identifies common patterns of co-variation between dif-
ferent omic layers, providing interpretable explanations for the data complexity. Tested 
on data from different technological platforms, SHARE-Topic provides low dimensional 
representations recapitulating known biology and defines associations between genes 
and distal regulators in individual cells.
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Background
Biological complexity arises from interactions of many molecular factors at varying spa-
tial and temporal scales. Understanding the nature and dynamics of these interactions is 
a major open problem in fundamental biology, with potentially important translational 
implications. Over the last two decades, the emergence of next-generation sequencing 
technologies, and more recently of single-cell sequencing technologies, has been a major 
accelerator towards tackling these questions, with large international consortia such as 
ENCODE and the Human Cell Atlas [1, 2] providing the community with invaluable data 
sets measuring a variety of molecular features potentially influencing gene expression.

Recent breakthroughs in single-cell technology have opened the possibility of measur-
ing, in a high-throughput fashion, multiple molecular layers within the same cell, pro-
viding new opportunities to enhance our understanding of the interactions between 
biological factors. These technologies, collectively referred to as single-cell (sc) multi-
omics, are generally designed to measure simultaneously the cell’s transcriptome 
together with one or more other molecular features, typically epigenetic factors such 
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as DNA methylation or chromatin accessibility, DNA sequence or presence of protein 
markers [3–8]. These sc multi-omics technologies offer in principle a number of enticing 
possibilities, chief among them the opportunity to measure gene regulatory mechanisms 
in individual cells, and its variability across cells.

In practice, analyzing and interpreting sc multi-omic data present considerable chal-
lenges, due to the high level of sparsity and noisiness of the data [9]. To date, some of 
the most effective strategies adapt methods developed in different contexts to sc mul-
tiomics, such as MOFA+ [10], an extension of the multi-omic factor analysis method 
devised for bulk multiomics [11], or the Seurat/Signac suite [12, 13], originally devised 
to integrate multiple ’omics layers from different cells. These methods rely generally 
on linear dimensionality reduction, often prefaced by non-trivial pre-processing tech-
niques. Alternatively, many recent efforts have focused on deploying deep learning 
methodologies within the autoencoder (AE) paradigm [14–18], sometimes integrated in 
non-trivial architectures such as graph neural networks [19]. AEs use non-linear maps 
(parametrised by deep neural networks) to explain the variability in the data in terms of 
a latent space, where each cell is represented by a low dimensional vector (typically of 
around ten dimensions, instead of tens of thousands of molecular features). Such nonlin-
ear methods have been shown to outperform linear dimensionality reduction methods 
when used for tasks such as clustering cells and for survival analysis [14–16]. Despite 
these successes in extracting patterns at the cell level, obtaining insights at the gene level 
from AEs (for example in terms of specific regulatory interactions) is extremely difficult, 
due to the effective impossibility of reliably interpret the contribution of individual genes 
in complex nonlinear models. Indeed, even simple linear analyses, such as measuring 
correlations between region accessibility and gene expression, are very challenging in 
the single-cell realm due to the high levels of noise, as demonstrated recently in [20].

Here, we introduce SHARE-Topic, a Bayesian statistical model of joint chromatin 
accessibility and transcriptomic data, perhaps the most widely available type of sc multi-
omic data. SHARE-Topic extends the cisTopic model of single-cell chromatin accessibil-
ity [21] by coupling the epigenomic state with gene expression through latent variables 
(topics) which are associated to regions and genes within an individual cell. In this way, 
SHARE-Topic is able to extract a latent space representation of each cell informed by 
both the epigenome and the transcriptome, but crucially also to model the joint variabil-
ity of individual genes regions, providing an interpretable analysis tool which can help 
in generating novel hypotheses from the data. We test SHARE-Topic on five different 
data sets generated using three different single-cell multi-omics platforms: SHARE-seq, 
SNARE-seq [3] and the commercial 10X multi-ome platform. The performance demon-
strates good scalability of the algorithm as well as its ability to extract novel biological 
information from these complex data sets. We show that SHARE-Topic is able to achieve 
competitive results in terms of dimensionality results against state of the art methods, 
and that it can effectively capture interactions between genes and regulatory regions.

Results
The SHARE‑Topic model

Topic models are unsupervised learning algorithms, originally designed to analyze and 
annotate large archives of text documents with thematic information [22–26]. The 
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premise of topic modeling is that each document can be represented as a point in a 
much lower dimensional space (topic space), corresponding to the relative importance 
of different topics to the document. The probability of a word appearing in a document 
depends strongly on the topic, hence each topic is associated with a distinct distribu-
tion over word frequencies, which can also be used to associate topics with semantically 
meaningful annotations.

Bravo González-Blas et  al. [21] have recently proposed cis-Topic, a topic model 
designed to efficiently analyze single-cell ATAC-seq data. cis-Topic provides an effective 
tool to obtain lower dimensional representations of the very high-dimensional scATAC-
seq data, however interpretation of its latent space is complicated by the varying quality 
of the annotation of open chromatin regions. In this paper, we present SHARE-Topic, a 
topic model adapted to multi-omics data which allows both a stronger interpretability 
and gene-level predictions. A high-level view of the model structure is given in Fig. 1: 
single-cell multi-omics, encoded as two high-dimensional sparse matrices, is the input 
to SHARE-Topic. The model then utilizes a Gibbs sampler to obtain posterior estimates 
of the various parameters, which can be used both to obtain a low dimensional represen-
tation of the cells, and to associate topics to cells and regions to genes. The structure of 
the model is given in Fig. 2. A table illustrating the correspondence of concepts in clas-
sical (text based) topic modeling and their multi-omics analog in SHARE-Topic is given 
in Table 1.

Fig. 1 Workflow of SHARE-Topic: the scATAC-seq binary data and the expression matrix of the scRNA-seq 
data are fed to SHARE-Topic. SHARE-Topic extracts latent representation in topic space for each cell, gene, 
and region in the data. The latent representation of the cells is used to visualize the heterogeneity in cell 
types using Umap. The latent representations of genes and regions are used to extract biological interactions 
between genes and regions that shape the regulatory mechanisms in the cells
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Data sets used

The field of single-cell multi-omics technology is still in rapid development, with multi-
ple protocols being proposed and one already available commercially (the 10X multiome 
platform). To evaluate our results in a platform agnostic fashion, we sample extensively 
the space of sc multi-omics technologies. We use two data sets generated with the 

Table 1 Interpolation of topic model to biological framework

Topic model SHARE‑Topic Symbol

Documents Cells c

Words Regions/genes reads rc/ncg

Topics: science, sports, music,... Biological processes (cell differentiation, 
chemo-taxis...)

t

Topic-contribution to a document Topic-contribution to a cell θ tc

Likelihood to find a word in a topic Likelihood of: an open region/number of 
reads in a topic

φt
r / Poi(�tg)

Fig. 2 The graphical model of SHARE-Topic: graphical representation of the SHARE-Topic model illustrating 
the interrelationships between latent topics and observed gene expression reads ( ncg ) and chromatin regions 
observed ( rc ). The model depicts the interactions on a given cell c between its transcriptomic profile and 
accessible chromatin region profile. These observations, according to SHARE-Topic are generated in the 
following way: each cell c is a different mixture of topics ( θ ct  ). Given a contribution of a certain topic t, there 
is a likelihood to observe a gene count in the cell ncg sampled from a Poisson distribution with an expected 
number of reads �tg . On the other side also for a given topic t contribution in a cell, the likelihood of finding 
a region rc open is φt

r  . The priors are shown in the model at the top layer and descend down in a hierarchical 
fashion to observations
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SHARE-seq technology [6], two data sets generated with the commercial 10X multiome 
platform, and one data set generated with the SNARE-seq technology. The SHARE-seq 
data sets profile approximately 3000 mouse brain cells and approximately 30,000 mouse 
skin cells; the number of genes/regions retained for each data set after pre-processing is 
of approximately 6000 genes expressed, and 2× 106 regions for the brain data set, and 
approximately 3100 genes, and 9× 105 regions for the skin data set. The multiome data 
sets profiles approximately 14,000 lymphoma cancer cells and 10,000 peripheral mono-
nuclear blood cells (PMBC10k), retaining approximately 8000 genes and 9 ×104 regions 
for both. The SNARE-seq data set retained approximately 9000 cells, 5000 genes, and 
5× 104 regions. Pre-processed data was obtained directly from the websites associated 
with the original data sets (see the “Availability of data and materials” section); in par-
ticular, chromatin accessibility was already provided as a binary matrix resulting from a 
peak-calling procedure. Details of the filtering procedure can be found in the “Methods” 
section.

SHARE‑Topic recapitulates cell identities

As with any other dimensionality reduction tool, from PCA to variational auto-encod-
ers, a primary output of SHARE-Topic is the assignment of a latent vector to every cell. 
In our case, this vector is a probability distribution over the topics indicating to which 
topic each cell partakes. The choice of the number of topics (dimensionality of the latent 
space) is a non-trivial hyperparameter tuning issue; we resort to using the Widely Appli-
cable Information Criterion (WAIC) [27] (more details on the criteria for the choice of 
topics number are given in the “Methods” section). The latent space can then be visu-
alized using tools such as Uniform Manifold Approximation and Projection (UMAP) 
[28], and the consistency of the visualization with existing annotations can be assessed 
using quantitative criteria. While the main purpose of SHARE-Topic is to leverage the 
latent representation to understand biological interactions, it is still a useful quantitative 
benchmark to assess its capability of recapitulating cell identities.

Figure  3 shows the results of this exercise on the data sets we consider. The pan-
els show a UMAP reduction to two dimensions of the (posterior mean) topic vectors 
assigned to each cell, with each dot colored according to the corresponding cell-type 
annotation. Visually, all plots highlight a good separation between cell types and a bio-
logically plausible organization of the latent space.

Naturally, SHARE-Topic is not the only method capable of obtaining a latent rep-
resentation from multi-omic data. To quantitatively assess the performance of 
SHARE-Topic in the context of the state-of-the-art, we performed dimensionality 
reduction also using three other methods: Multi-Omic Factor Analysis (MOFA+, 
[10]) a recent adaptation of the MOFA linear dimensionality reduction method to sin-
gle-cell multi-omic data; Seurat [12], which combines a principal component analysis 
on transcriptomic data with a preprocessing of chromatin accessibility using latent 
semantic indexing (itself a technique closely related to topic modeling); and the very 
recently proposed graph neural-network (GNN) method scGlue [19], which utilizes 
an AE strategy within a graph-based deep neural network architecture. We used the 
MOFA+ implementation within the muon platform [29]; due to a technical problem, 
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related to memory usage, we could not run MOFA+ on the whole mouse skin and 
lymphoma datasets and therefore subsampled that data set retaining approximately 
only 25k chromatin regions for the ATAC component.

To assess quantitatively the validity of the latent representation discovered by the 
various methods, we use a k-Nearest Neighbor (k-NN, using k = 10 ) classifier trained 
on 50% of the cell type annotations, and evaluate its accuracy in predicting the anno-
tations of the remaining 50% of cells. This was repeated over multiple independent 
splits (100 splits) to achieve a measure of statistical variability.

The results of this assessment are shown in Table 2, and in Additional file 1: Fig. S1 
in terms of confusion matrices. Based on this assessment, Seurat performs best across 

Fig. 3 UMAP embedding of SHARE-Topic based on cell-topic distribution(θ c ). a SHARE-seq mouse brain data 
set embedding of 2781 cells from topic space of dimension 30. b SHARE-seq mouse skin data set embedding 
of 27,782 cells from topic space of dimension 60. c B-cell lymphoma data set embedding of 14,566 cells from 
topic space of dimension 45. d SNARE-seq mouse cortex data set of 9161 cells embedded in 50 dimensions. 
e 10x Genomics human PBMC10k of 9631 cells embedded in 45 dimensions

Table 2 Table showing the accuracy of K-NN classifiers trained on the latent representation of 
different methods to predict cell types in the five datasets. The KNN classifier is trained on 50% of 
the cells and tested on the rest with k=10. The standard deviation is computed by training 5 KNN-
classifiers on randomly chosen cells for each experiment

Mouse brain Mouse skin B‑lymphoma Pbmc10k Mouse cortex

MOFA+ 0.479 ±10
−2 0.379 ±2× 10

−2 0.813 ±3× 10
−3 0.802 ±5× 10

−3 0.66 ±5× 10
−3

scGlue 0.803 ±10
−2 0.834 ±2× 10

−3 0.894 ±2× 10
−3 0.895 ±3× 10

−3 0.853 ±4× 10
−3

Seurat (PCA, LSI) 0.854 ±8× 10
−3 0.887 ±2× 10

−3 0.904±2× 10
−3 0.896 ±5× 10

−3 0.863 ±4× 10
−3

SHARE‑Topic 0.830 ±10
−2 0.754 ±3× 10

−3 0.871 ±10
−3 0.880 ±2× 10

−3 0.756 ±7× 10
−3
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all data sets, with scGlue or SHARE-Topic a close second. In general, all three meth-
ods obtain accuracies of over 75% on all data sets. MOFA+ performs at a comparable 
level with the other methods on the multiome B-lymphoma and PBMC data sets, but 
its performance on the other data sets is considerably worse than the other methods 
(but still very significantly better than random).

To benchmark the quality of the data integration performed by SHARE-Topic, we 
also compared the performance of SHARE-Topic with the reduced models obtained 
by considering only the transcriptome or the chromatin accessibility data (right and 
left arms of the graphical model in Fig. 2). The results are given in Additional file 1: 
Table S1, and the corresponding visualizations are given in Additional file 1: Figs. S2 
and S3. The same exercise was also performed for scGlue and Seurat since they auto-
matically provide separate embeddings for RNA and ATAC prior to data integration1.

Additional file 1: Table S1 provides a measure of the effectiveness of the various meth-
ods in capturing complementary information from the different data sources. Here, we 
observe a dependence on the underlying multi-omics platform. In the 10X multiome 
data sets (B-lymphoma and PBMC10k), performance is largely driven by a single modal-
ity (RNA and ATAC resp), with the best performance being actually achieved by using a 
single modality. On the other three data sets, we see that scGlue’s performance, and, to a 
lesser extent, Seurat’s performance, is largely driven by transcriptomic data, and in fact 
it is always better on a single source than on two sources. By contrast, when integrat-
ing both modalities (scATAC and scRNA), SHARE-Topic in most cases outperforms its 
RNA-only or accessibility-only versions, indicating that the model is able to effectively 
integrate both channels of information. We do not know whether the platform depend-
ence of these results is caused by design choices (e.g., depth of sequencing in one modal-
ity) or is somewhat linked to the different technology itself.

Associating SHARE‑Topic results to underlying biology

SHARE-Topic’s performance at identifying effective low dimensional representation 
supports our hypothesis that the degrees of freedom of the system are far fewer than the 
dimensions of the very high dimensional spaces of genes and regulatory regions. This 
hypothesis is shared by all dimensionality reduction approaches developed for single-
cell multi-omics. SHARE-Topic, due to its transparent probabilistic formulation, offers 
a natural way to interpret its results, making it suitable as a hypothesis-generating tool.

One simple approach to interpret SHARE-Topic results is to consider topic assign-
ments at the cell level. For example, one may select all cells with the same dominant 
topic (largest element of the cell-topic assignment vector θc ) and then check for enrich-
ment of specific cell types among the selected set.

Alternatively, one may leverage the gene by topic matrix, whose entries �tg provide 
expected expression levels of a gene in a certain topic, to obtain a molecular interpreta-
tion of the SHARE-Topic latent space in terms of biological processes associated with 
each topic. To do so, we first associate genes to a topic by computing an entropic meas-
ure of the distribution of gene expression across topics (Additional file 2: Fig. S4, see the 

1 MOFA+ instead learns a joint latent representation so we cannot evaluate it on individual sources without re-running 
the code independently.
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“Methods” section). Intuitively, we seek genes which are highly expressed in one (or few) 
topics, and nearly silent in the others; such genes will have a very low entropy, indicat-
ing a distribution across topics which is far from uniform (Additional file 2: Fig. S4). By 
pre-filtering genes based on low entropy levels, we can then associate each gene to the 
top topic in terms of corresponding expression. This procedure enables us to associate a 
set of genes to each topic, which can then be queried for enrichment using tools such as 
clusterProfiler [30, 31] or GSEApy package [32].

An example of these analyses is provided in Fig. 4a for the B-lymphoma data set. Here, 
a particular topic (topic 13 in our run of the algorithm) was strongly concentrated within 
a particular cell type, tumor B-cells. Considering genes significantly associated with this 
topic, a number of enriched gene functions appear, primarily but not solely connected 
with B-cell physiology and tumor biology. A table summarizing the principal functions 
associated with this topic is provided in Table  3. A similar analysis is carried out for 
topic 27 in the brain data set, which is strongly enriched in oligodendrocite cells, see 
Additional file 3: Fig. S6 and Table S1.

SHARE‑Topic uncovers regulatory events

One of the most attractive features of sc multi-omic data is the opportunity to identify 
cell-specific gene-region associations. To do this, we define a score for every pair of 
genes and chromatin regions (within a certain neighborhood) which quantifies the joint 
probability of high expression for the gene and of opening for the region. The score is 
obtained by multiplying a (normalized) expression rate for the gene ( � in the notation of 
Table 1) by the (normalized) open chromatin rate for each region in a pre-defined neigh-
borhood of 105 bp. Region annotations are obtained using the SCREEN database [33]. 
See the “Methods” section for full mathematical details of the definition of the score. The 
choice of a very large window of 105 bp is designed to capture both distal and proximal 
regulatory relationships.

In order to validate the proposed score, we first turn to a simulation study. We simu-
late gene/ region pairs using SCRaPL [20], a recently proposed generative probabilistic 
model of sc multiomics data that allows to pre-specify the correlation levels between 

Fig. 4 a Umap embedding of the B-lymphoma dataset showing the enrichment of topic 13 across 
cells. Topic 13 is relatively highly enriched in the tumor B cells. This can be an indication that topic 13 
captures biological processes specific to B-lymphoma. b SHARE-Topic score Prg IN B-lymphoma dataset 
for gene-region pairs at a distance d of the region from the starting site of the gene (GSS). The regions 
are selected such that they are on window 105 from the gene. The SHARE-Topic score captures distance 
dependence. The score decays when going far from the GSS
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different molecular features. We then correlate the SHARE-Topic score with the relevant 
prior means in SCRaPL (see the “Methods” section). Figures S10a, b, c, and d show the 
resulting scatterplots, highlighting a very good recovery of the ground truth parameters 
despite the differences between the models. We also tested this procedure on Seurat, 
which also allows the computation of a gene/region association score through Pearson 
correlation. In this particular set of simulations, Signac [34] did not perform as strongly 
(see Additional file 4: Fig. S9e and f ), possibly due to the difficulties in estimating corre-
lation coefficients from highly noisy data.

As a second, more indirect validation of the biological plausibility of the proposed 
score, we considered how the score depended on the genomic distance between the 
gene and the putative regulator. For this analysis, we extended the window around the 
gene to 2Mb; Fig. 4b shows, on the B-lymphoma data set, that the SHARE-Topic score 
rapidly decreases after a few hundreds Kb, consistent with the biological intuition that 
distal regulation over very long genomic distances may be less common. Similar results 
are shown for the other data sets in Additional file  3: Fig. S8. This empirical decay is 
remarkable, because the SHARE-Topic model does not in any form encode a notion of 
genomic distance, so that the distance dependence of the score purely emerges from the 
data itself.

SHARE‑Topic elucidates the regulation of FOXP1 in B‑cell lymphoma

As a biologically relevant example of the use of SHARE-Topic, we turn to the lymphoma 
multiome data set, studying the regulatory architecture of one of the major regulators. 
We focus on topic 13; this topic is primarily associated with B-cell tumor cells, and pre-
sents a strong enrichment of the cytokine production pathway, indicating a probable 
involvement in the inflammatory response.

Among the prominent genes associated with this topic, we focus on the master regu-
lator FOXP1, an essential gene in development which has been associated with several 
cancers, including lymphoma [35]. FOXP1 is a long gene (approximately 600Kb) with 
a complex transcriptional architecture, expressing several isoform; excess abundance of 
a short isoform has been reported to be a marker for lymphoma [36]. Brown et al. [36] 

Table 3 Table showing GO terms of topic 13 enriched in the tumor B cells. The GO terms are 
obtained using GSEApy package that uses Enrichr to compute the with Fisher’s exact test and 
adjusted p-value with Benjamini-Hochberg method

GO term Adjusted P‑value Odd ratio

DNA damage response 4 ×10
−32 3.7

Chromatin remodeling 6.69 ×10
−24 4.40

DNA repair 2.42 ×10
−19 3.16

Regulation Of DNA repair 1.31 ×10
−11 3.84

Regulation Of Cell Cycle 1.10 ×10
−8 2.10

Regulation of type I interferon production 3.97 ×10
−7 4.86

B cell receptor signaling pathway 1.8 ×10
−5 4.69

Response to ionizing radiation 7 ×10
−4 2.60

T Cell receptor signaling pathway 8 ×10
−4 2.28

B cell homeostasis 0.01 13.23
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also observed the presence of two predicted internal regulatory regions just before the 
start of the short isoform. In our data set, we find several enhancer regions within the 
gene body, broadly clustered in three positions; Fig. 5a shows the relative importance of 
the regulatory elements located in or near the gene. We notice a clear dominance of the 
promoter-proximal regions, but also a substantial support for joint activity in the gene 
body region. Similar analyses of other genes in the B-lymphoma data set are shown in 
Fig. 5b and for other data sets in Additional file 3: Fig. S7. While these are purely correla-
tive observations at this level, they provide further examples of the type of non-trivial 
testable predictions that can be produced by SHARE-Topic.

Conclusions
Single-cell multi-omic technologies open up unprecedented opportunities to explore 
the molecular landscape of living cells. Most existing deep-learning based methods have 
focused on representing the variation in these data sets at the cell level, developing tools 
which focus on highlighting the diversity across cell populations, but often at the cost of 
hiding in algorithmic complexity the molecular mechanisms which give rise to this diversity.

With SHARE-Topic, we propose a Bayesian hierarchical model with transparent 
probabilistic semantics for the analysis of joint expression and chromatin accessibil-
ity data. SHARE-Topic provides a low-dimensional representation of multi-omic data 
by embedding cells in a topic space. We show on a number data sets that SHARE-
Topic embeddings are highly accurate at recapitulating cell diversity and effectively 
integrate both channels of information. Moreover, the simplicity of the model enables 
a straightforward interpretation of the obtained embeddings in terms of biological 
processes and permits non-trivial gene-level insights on the interactions of chromatin 
accessibility and gene expression in single cells.

Fig. 5 a Analysis of the activity of the enhancer in gene FOXP1. According to the SCREEN database, the 
regions are intersected to distal enhancer-like sites and sometimes also CTCF-bound sites. The SHARE-Topic 
score is scattered on the open chromatin regions (annotated as enhancers) from the B-lymphoma dataset. 
The enhancer regions shown are located within a window of 105 within and around FOXP1. The curve is 
fitted by taking the average of the SHARE-Topic score on intervals of length 103 nucleotide. According to 
the SHARE-Topic score, the enhancers at the starting site of FOXP1 are shown to have a higher contribution 
to the gene activity. b SHARE-Topic score for regions at distance 105 from two genes (CD35, XRCC5) in the 
B-lymphoma dataset. The regions are annotated using the SCREEN database as promoter-like sites (PLS), 
CTCF-bound sites, and proximal/distal enhancer-like sites (p/dELS)
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Topic models have already been employed in a variety of single-cell analyses, ranging 
from scATAC-seq visualization to determining cellular crosstalk [21, 37]. Since the sub-
mission of this paper, we have become aware of a paper using embedded topic models 
to analyze sc-multiomic data [38], bearing witness to the vitality of this field of research.

SHARE-Topic can also be extended to build more complex data models which will 
inevitably be needed as single-cell multi-omics technologies become more widely 
used in biomedicine. Two directions are certainly foremost: first, several other multi-
omic technologies such as CITE-seq or scNMT-seq [7, 8] are gaining increasing 
attention, even though not as widely available. Extension of SHARE-Topic to such 
technologies is in principle trivial, although the development and implementation of 
bespoke noise models would be required prior to deployment. Secondly, the increas-
ing availability of commercial kits for sc multiomics will rapidly lead to a proliferation 
of translational applications in studies with complex experimental designs. This will 
require the development of models which can dissect variability arising from mul-
tiple donors and multiple (possibly related) conditions, creating new challenges for 
method development. The flexible Bayesian architecture of SHARE-Topic will cer-
tainly provide a solid starting points for future models which can address these tasks.

Methods
Data filtering

We filtered cells in the skin and mouse brain data sets. In each cell type, cells with a 
total number of genes read lower than 5–10% or higher than 90% percentile are con-
sidered an outlier and discarded in our study. For the three remaining data sets, we 
kept all the cells. Also, we kept the genes that are expressed in over 5% of the cells.

Since the chromatin accessibility data is binary and highly sparse, filtering the 
regions is decided according to the average number of region reads across cells. For 
all data sets except the mouse brain, we retain regions present in at least ∼ 1% of all 
cells. For the mouse brain data set, which has lower coverage in scATAC-seq, the 
threshold is 10 fold less ( ∼0.1%).

SHARE‑Topic implementation

SHARE-Topic is designed to derive from the multiome dataset (transcriptome and 
chromatin accessibility) a regulatory topic space of dimension T (number of topics). 
The implementation is based on latent Dirichlet allocation [22] and extends to include 
multiple inputs to infer interaction between inputs in the reduced dimension topic 
space. SHARE-Topic infers:

1.  θ c = θ c
1
, θ c

2
, ..., θ cT  : probability distribution of topics in a cell c. θ ct  represents the 

contribution (importance) of a topic t to a cell c.
2.  �tg : Poisson rate for gene reads in a topic, i.e., the average number of expected reads 

when the gene is contributing to a topic t. The lambdas are considered independent 
in our model across topics and genes.
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3.  φt =
(

φt
1
, ....,φt

R

)

 : probability distribution of regions in a topic. φt
r is the likelihood to 

observe a region r in a topic t.

SHARE-Topic is implemented using a Gibbs sampler and the update equations are 
derived based on the SHARE-Topic graphical model shown in Fig. 2. The latent variables 
are initialized from predefined priors:
θ c,0 ∼ Dir(α); �t,0g ∼ Gam(γ , τ );φt,0 ∼ Dir(β); 
where:
α,β : pseudo-count for Dirichlet distribution
γ , τ : shape and scale parameters respectively of the gamma distribution
Using the conjugacy property between the priors and likelihood, the Gibbs update 

equations of the model at the kth step are written as follows:

Such that:

– Pc,k
g ,t  : probability of a gene g read in a cell c to have membership in a topic t,

– Pc,k
r,t  : probability of an observed region r in a cell c to have membership in a topic t,

– zc,kg  : topic membership of a gene g in cell c,
– zc,kr  : topic membership of a region r in cell c,
– ncg : count of a gene g in cell c,
– rc : observed region r in cell c,
– Nc,k

t  : total number of regions and genes that have tth membership in cell c in the kth step.

(1)Pc,k
g ,t =

Poi
(

ncg|�
t,k−1
g

)

θ
c,k−1
t

∑T
t=1 Poi

(

ncg|�
t,k−1
g

)

θ
c,k−1
t

(2)Pc,k
r,t =

φt,k−1θ
c,k−1
t

∑T
t=1 φ

t,k−1θ
c,k−1
t

(3)zc,kg ∼ Multi
(

Pc,kg,1, ..., P
c,k
g,t , ..., P

c,k
g,T

)

(4)zc,kr ∼ Multi
(

Pc,kr,1 , ..., P
c,k
r,t , ..., P

c,k
r,T

)

(5)θ c,k ∼ Dir
(

α +Nc
)

;Nc =

(

Nc,k
1 , ..., Nc,k

T

)

(6)�
t,k
g ∼ Gam

(

γ + nt,kg ,
τ

Nt,k
g + τ

)

(7)φt,k ∼ Dir
(

β +Nt,k
r

)
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– nt,kg  : total number of reads for gene g of tth membership in the kth step,
– Nt,k

g  : total number of gene g across cells of tth membership in the kth step,
– Nt,k

r  : total number of region r across cells of tth membership in the kth step.

The hyperparameters of the model are fixed such that α = 50/T ,β = 0.1, γ = 1, 
and τ = 0.5 . We run the MCMC to obtain 3000 samples where 500 samples are used 
as burn-in. To reduce the effect of correlations, we considered a single sample every 10 
samples. The convergence of the MCMC chain is assisted by monitoring the evolution of 
the likelihood (Additional file 5: Fig. S10).

The outputs of the Gibbs sampler are three matrices: (1) θ of dimension K × C × T, (2) � 
of dimension K × T × G, (3) φ of dimension K × T × R. Here, K, T, C, G, and R are the num-
ber of samples, topics, cells, genes, and regions respectively. The latent parameters are 
estimated using the mean of the samples.

Choosing number of topics

The number of topics is chosen according to the widely applicable information criterion 
(WAIC). Using the samples, WAIC of the model is obtained by computing the log-point-
wise- predictive-density (lppd) and the variance in log probabilities for each observation 
(penalty term) [39]:

The WAIC is computed for both datasets for different numbers of topics (Additional 
file 5: Fig. S11). In cases when the WAIC did not exhibit a clear minimum but contin-
ued on a very slow descent, a number of topics was chosen at the beginning of the slow 
descent. Based on these criteria 30, 45, 60, 50, and 45 topics are chosen for brain, B-cell 
lymphoma, skin, mouse cortex, and PBMC10k datasets, respectively.

Computational considerations

The diagnostic plots of convergence of MCMC chains are provided in Additional file 5: 
Fig. S10 (individual chains for all data sets) and Additional file 5: Fig. S12a (across differ-
ent chains, B-lymphoma data set). The computing times of the model for varying num-
bers of topics on the B-lymphoma data set are provided in Additional file 5: Fig. S12b. 
The SHARE-Topic code is written to run on GPUs to gain computational time and speed 
up the Gibbs sampler computations, especially on big datasets. SHARE-Topic is trained 
on NVIDIA A100-PCIE-40GB. The time needed to run a single chain scales linearly with 
the number of topics (Additional file 5: Fig. S12b).

(8)WAIC(n, r; θ , �,φ) = −2(lppd − penalty term)

(9)lppd :
∑

c,g ,r,t

log
∑

k

1

K
p
(

ncg , r
c|θ

c,k
t , �t,kg ,φt,k

r

)

(10)penalty term :
∑

c,g ,r,t

Varθct ,�tg ,φt
r
logp

(

ncg, r
c|θct , �

t
g,φ

t
r

)
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Associating genes and chromatin regions to topics

Given that topics are intuitively related to biological processes, we expect genes to be strongly 
non-uniformly distributed across topics, so that in certain topics they are highly transcribed 
(the expected transcription value �tg is high ) while they are relatively less transcribed or 
absent in other topics ( �tg is low). The same argument is valid for the accessible chromatin 
regions, i.e., chromatin regions are active in certain biological processes, thus accessibility(φt

r ) 
is higher compared to other topics, or less active in others so φt

r is relatively low. To quantify 
topic specificity we computed the entropy per gene and region across topics. Genes or 
regions with high entropy are close to the uniform entropy, meaning that they are expressed 
(or open) at a similar rate across all topics. Additional file 2: Fig. S4 shows that the entropy of 
all genes (left) and chromatin regions (right) in the B-lymphoma data set are non-uniform. 
Thus all genes and regions exhibit a degree of topic specificity. A topic, t, is assigned to a gene 
(g)/region (r) if the �tg/φt

r is above the 90th percentile of the �g/φr distribution across topics. 
Naturally, a gene might have similar expression rates in different topics if the two topics were 
largely overlapping. To quantify the degree of independence across topics, we normalized 
each �g=

(

�
1
g , ..., �

T
g

)

 and φr=
(

φ1
r , ...,φ

T
r

)

 by subtracting the mean of the vector and dividing 

with the standard deviation. Then we calculated the dot product between the topic vectors 
(

�
t
1
, ..., �tG;φ

t
1
, ...,φt

R

)

 divided by the norm of the vector. The results for the mouse brain and 
skin dataset are shown in the Fig. S8a and b, respectively. The resulting heatmaps are domi-
nated by the diagonal, indicating a good level of independence between the topics.

Annotating topics

After associating a list of genes to each topic, the GO terms enriched per topic are 
quantified using the GSEApy package [32] (Table 3).

Inferring regions‑genes interactions

In order to quantify the interactions between the genes and the neighboring regions 
(100kb), we calculated the SHARE-Topic score Pr

g:

The rationale behind this formula is the following: we expect interacting gene/region 
pairs to be most highly expressed/ most probably open in the same topics. By taking the 
dot product, genes/ regions which satisfy this property will yield a high score, while pairs 
which are independent will have low scores. The normalization step w.r.t. to expression 
levels is needed to make the association score independent of expression level. The score 
is normalized by the maximum with respect to the maximum score.

(11)Pr
g =

1

C

∑

c

∑

t

�
∗t
g φ∗t

r θ∗ct

(12)�
∗t
g =

�
t
g

∑

t ′ �
t ′
g

(13)φ∗t
r =

φt
r

∑

t ′ φ
t ′
r
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Benchmarking with synthetic datasets

We generated synthetic datasets using SCRaPL [20]. SCRaPL generates multi-omic data 
starting from a multivariate Gaussian distribution with mean µj such that index j denotes 
the gene-region pair and ranges from 1 to J pairs. The vector µj is composed of two 
entries µj

1
 which is gene-specific and µj

2
 which chromatin region specific; these represent 

the prior mean expression levels and open chromatin levels. We compare these quantities 
with inferences from SHARE-Topic of the interaction score, and with the z-score used 
by Seurat to decide about interacting pairs. Because SCRaPL does not have a concept of 
topics (all pairs are generated independently), we run SHARE-Topic with different num-
bers of topics on the synthetic data; we also run with different sizes of simulated data in 
terms of numbers of simulated genes/cells. The scatter plots in Additional file 4: Fig. S9a, 
b, c, and d show the recovery of the regulation pattern between the ground truth and the 
SHARE-Topic features specific parameters (genes and regions). We report the Pearson 
correlations between the parameters of the two models in Additional file 4: Fig. S9. We 
compared the results with the z score computed by Signac [13]; the relevant scatterplots 
and Pearson correlations are given in Additional file 4: Fig. S9e and f.
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