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Abstract 

Targeted spatial transcriptomics hold particular promise in analyzing complex tis-
sues. Most such methods, however, measure only a limited panel of transcripts, which 
need to be selected in advance to inform on the cell types or processes being studied. 
A limitation of existing gene selection methods is their reliance on scRNA-seq data, 
ignoring platform effects between technologies. Here we describe gpsFISH, a compu-
tational method performing gene selection through optimizing detection of known 
cell types. By modeling and adjusting for platform effects, gpsFISH outperforms other 
methods. Furthermore, gpsFISH can incorporate cell type hierarchies and custom gene 
preferences to accommodate diverse design requirements.
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Background
The building block of complex tissues is the diverse range of cell types [1–4]. Knowing 
the identity and spatial location of cells from different cell types is the key for under-
standing how they communicate with each other to carry out specific functions and how 
diseases emerge when this complex network of interactions goes awry [5–11]. Single-cell 
RNA sequencing (scRNA-seq) provides a powerful tool to study the identity of cell types 
and cell states [12–17]. However, the spatial information is lost due to cell disassocia-
tion during library preparation. Recent advances in spatial transcriptomics technologies 
have overcome this limitation by providing ways to quantify gene expression while keep-
ing the spatial information of cells, leading to more comprehensive and detailed under-
standing of diseases and normal functions [18–23].

Based on the number of transcripts that can be probed, spatial transcriptomics tech-
nologies can be broadly categorized as (1) targeted, measuring a limited panel of tran-
scripts and (2) untargeted, capturing all transcripts from the transcriptome. Targeted 
spatial transcriptomics include in  situ hybridization (ISH)-based [24–28] and most 
in  situ sequencing (ISS)-based methods [29–32]. Untargeted spatial transcriptomics 
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include next-generation sequencing (NGS)-based methods [33–39]. Compared to untar-
geted spatial transcriptomics, targeted spatial transcriptomics can achieve high sensitiv-
ity and subcellular resolution. However, their targeted nature requires a panel of genes 
(from a few hundred to thousand) to be selected in advance to recognize cell types or 
processes relevant to the tissue being studied.

Gene selection methods are used to design gene panels. They can be classified into two 
major categories based on their gene selection objectives. One category with an impu-
tation-based objective aims to select genes based on their ability to capture as much of 
transcriptional variation in the scRNA-seq data as possible. Examples range from sim-
ply selecting highly variable genes to more advanced methods like L1000 [40], geneBa-
sis [41], and SCMER [42]. Specifically, L1000 identified the optimal set of “landmark” 
transcripts that construct a reduced representation of the transcriptome. geneBasis finds 
genes that can yield a k-nearest neighbor graph that is similar to the “true” graph con-
structed using the entire transcriptome. SCMER aims to select genes that preserve the 
manifold of scRNA-seq data. Another category of gene selection method with a classifi-
cation-based objective selects genes given their ability to reconstruct cell classifications 
or relationships. Examples range from selecting differentially expressed genes (DEGs) to 
more advanced methods like scGeneFit [43], RankCorr [44], and NS-Forest [45]. scGen-
eFit selects marker genes that jointly optimize cell type recovery using a label-aware 
compressive classification method. RankCorr is a rank-based one-vs-all feature selec-
tion method that selects marker genes for each cell type based on a sparsity parameter 
that controls the number of marker genes selected per cell type. NS-Forest is a machine 
learning-based marker gene selection algorithm that uses the nonlinear attributes of 
random forest feature selection and a binary expression scoring approach to select the 
minimal combination of marker genes that captures the cell type identity in scRNA-seq 
data. All these methods can be used to design gene panels for targeted spatial transcrip-
tomics technologies.

A key limitation of current gene selection methods is that they select genes purely 
based on scRNA-seq data without considering potential differences between scRNA-seq 
and the target spatial transcriptomics technologies. Such platform effects include sys-
tematic differences in capture efficiency of genes between platforms caused by technol-
ogy-dependent factors, including detection technique and library preparation chemistry. 
Platform effects have been previously noted when comparing gene expression measure-
ments from single-cell and single-nucleus RNA-seq on the same biological sample [46]. 
Platform effects also exist between scRNA-seq and spatial transcriptomics technologies 
[47–49], posing a challenge when transferring cell type information from scRNA-seq to 
spatial transcriptomics technologies. When selecting gene panels using scRNA-seq data, 
such platform-specific distortions can lead to reduced performance of selected gene 
panels in the resulting spatial measurements.

Besides platform effects, there are other complications involved in gene panel selec-
tion. First, current classification-based gene selection methods [43–45] treat cell types 
as equally distinct. However, cell types are organized in a hierarchical manner with cell 
subpopulations belonging to the same broad cell type more similar to each other than 
subpopulations belonging to different broad cell types [50–56]. Depending on the bio-
logical questions and capabilities of the assays, a gene selection method could optimize 
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for fidelity at lower cell type resolution, or place increased emphasis on certain sub-
groups of cell types. More generally, this is not only useful for selecting genes that inform 
on cell types but can also be extended to selecting genes for other biological entities with 
a hierarchical structure, e.g., gene ontology and pathways [57, 58]. Second, both imputa-
tion-based and classification-based gene selection methods select genes solely based on 
a pre-defined objective function. However, in practice of gene panel design for targeted 
spatial transcriptomics, there can be other criteria contributing to the gene selection. 
Examples range from technical factors, such as ability to design probes for targeting cer-
tain transcripts, to biological factors such as preferences for certain pathways or marker 
genes commonly used in the literature. A framework that takes such orthogonal prefer-
ences into consideration can be helpful in practice.

To address these challenges, we developed gpsFISH, a classification-based gene selec-
tion method that models and adjusts for the platform effects between scRNA-seq and 
targeted spatial transcriptomics technologies, yielding more informative gene panels and 
better cell type classification compared to previously published classification-based gene 
selection methods. In addition, gpsFISH provides options to account for cell type hierar-
chy and gene-specific custom preferences during gene panel design, offering flexible and 
finer control of cell type granularity and gene selection for different biological questions.

Results
Platform effects between scRNA‑seq and targeted spatial transcriptomics

Even molecule counting assays carry inherent detection biases, posing challenges 
for joint analysis of multiple assays, such as scRNA-seq and spatially resolved counts 
[47–49]. Indeed, we observed a systematic difference of transcript detection rate across 
platforms (Fig.  1A–D), which distorts the resulting transcriptional profile estimates. 
Consequently, a panel of genes selected based on scRNA-seq that works well on dis-
tinguishing cell types may not achieve similar level of performance when measured by 
targeted spatial transcriptomics.

To address this challenge, we estimate the level of gene expression distortion in tar-
geted spatial transcriptomics data relative to scRNA-seq and from the same tissue using 
a Bayesian model (Additional file 1: Fig. S1, “Methods”). Bayesian inference estimates the 
posterior distribution of distortion magnitudes, which will be used to predict the poten-
tial distortion levels for genes that have not yet been observed in a given assay. Specifi-
cally, we assume platform effects are on a per gene basis. γi and ci represent gene-specific 
multiplicative and additive platform effect for each gene i , respectively. These distortion 
parameters are assumed to follow two normal distributions with µγ ,µc as mean and 
σγ , σc as standard deviation, respectively. The posterior distribution of σγ and σc can be 
considered as a generalized description of the magnitude of multiplicative and additive 
platform effects. We can use them to sample the magnitudes of gene-specific multiplica-
tive and additive platform distortions for unobserved genes. The model is fitted for a 
given pair of scRNA-seq and targeted spatial transcriptomics platforms to account for 
the differences between them.

To check the extent to which the model is able to capture platform biases, we used 
three paired scRNA-seq and targeted spatial transcriptomics datasets: scRNA-seq 
and MERFISH data from mouse hypothalamic preoptic region [24] (Moffit dataset), 
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scRNA-seq and osmFISH data from mouse cortex [26, 59] (Codeluppi dataset), and 
scRNA-seq and DARTFISH data from healthy human kidney [60] (Zhang dataset) 
(“Methods” Additional file 2: Table S1). Fitting a model for each pair of datasets, we then 
performed posterior predictive check, i.e., we simulated spatial transcriptomics meas-
urements from scRNA-seq data using the fitted Bayesian model (“Methods”). Compari-
sons of the distribution of simulated and observed spatial transcriptomics measurements 
demonstrated that the Bayesian model can accurately recapitulate the platform effects 
from different pairs of technologies (Fig. 1E, Additional file 1: Fig. S2A-C). The poste-
rior distributions of σγ and σc (Fig. 1F,G) on the three datasets showed distinct levels of 
additive and multiplicative platform effects, indicating the need to account for platform-
specific properties during gene panel selection.

Gene panel selection using genetic algorithm

To take platform distortions into account during selection of the gene panels, we use the 
platform-specific Bayesian model to simulate spatial transcriptomics measurements with 
distortions (“Methods”). The gene panels are optimized for their ability to recover cell 
type labels from such simulated spatial measurements, rather than the original scRNA-
seq measurements. Such an approach is intended to provide a more accurate estima-
tion of panel performance in a real spatially resolved measurement. Instead of selecting 

Fig. 1 Platform effect between scRNA-seq and targeted spatial transcriptomics technologies. A–C Scatter 
plot showing the log transformed relative expression of genes measured by both scRNA-seq and targeted 
spatial transcriptomics across three datasets, Moffit (A), Codeluppi (B), and Zhang (C), respectively. A small 
value is added to avoid negative infinity after log transformation. Each dot represents the relative expression 
of one gene in one cell type. Denominator for relative expression calculation is from all genes measured by 
both technologies. Color indicates density of dots. Dots should fall on the diagonal when there is no platform 
effect. D Density plot of Deming regression coefficient for each dataset. Deming regression is fitted for each 
gene using relative expression measured by scRNA-seq and spatial transcriptomics data with intercept fixed 
to 0. E Posterior predictive check of the Bayesian models fitted using each of the three datasets. QQ plot 
showing the distribution of simulated vs. observed spatial transcriptomics measurements. F,G Density plot 
showing the estimated posterior distribution of σγ (F) and σc (G)
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top-performing genes, gpsFISH optimizes the entire gene panel in its combined ability 
to recover cell type labels. To optimize within this combinatorial gene space, gpsFISH 
uses genetic algorithm optimizer [61, 62] (Fig. 2, “Methods”).

Within each iteration of optimization, multiple cross-validations of classification are 
performed for each proposed gene panel. To avoid biasing towards a specific realization 
of spatial transcriptomics distortions, gpsFISH performs the platform simulations sepa-
rately in each cross-validation. As a result, gene panels that are more robust to unex-
pected platform distortions will be favored. This gene panel selection framework ensures 
the evaluation is reflective of the gene panel’s real classification performance when 
measured by specific targeted spatial transcriptomics technologies.

We first tested gpsFISH on the mouse hypothalamic scRNA-seq data (Moffitt dataset) 
with simulated platform effect by optimizing a 200-gene panel to distinguish “level 1” 
cell type annotation, which includes 12 broadly defined cell types (Fig. 3A). Most of the 
cells are correctly classified, yielding an overall accuracy of 0.983 and high area under 
the receiver-operator curve (AUC) across all cell types (Fig. 3B, C). The optimized gene 
panel selected with considering platform effect was also more successful in separating 
the 12 cell types on the resulting UMAP embedding compared to the gene panel selected 
without considering platform effect (Fig. 3D, E).

To evaluate the impact of platform effect on the spatial transcriptomics measurement 
simulation and cell type classification, we simulated different levels of additive and mul-
tiplicative platform effects for the three datasets (“Methods”). As expected, we observed 

Fig. 2 Schematic overview of gpsFISH. Upper left, an scRNA-seq dataset with cell type annotation is used 
as input. Bottom, a genetic algorithm framework is used for gene panel selection. Platform effects are 
accounted for using a Bayesian model. Cell type hierarchy can also be incorporated. Upper right, output 
includes optimized gene panel with classification statistics
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a poorer agreement between the scRNA-seq data and the simulated spatial transcrip-
tomics data at higher-level platform effects (Additional file 1: Fig. S3G-L). Higher level of 
platform effects has also led to a decreased classification accuracy (Additional file 1: Fig. 
S3A-E), with the notable exception of the Codeluppi dataset where increasing level of 
multiplicative platform effect first leads to higher classification accuracy and then satu-
rates at a comparable level (Additional file 1: Fig. S3F). This is because the Codeluppi 
dataset has the lowest average level of multiplicative noise ( µγ , Additional file  1: Fig. 
S2D), and simulated increase of gene-specific multiplicative noise ( σγ ) initially results 
in increased average cell depth (Additional file  1: Fig. S4B), which in turn leads to an 
increased classification accuracy following the same trend (Additional file 1: Fig. S3F). 
This effect was abolished when we artificially increased the average level of noise ( µγ ) 
for the Codeluppi dataset (Additional file  1: Fig. S4A, C). Overall, increasing level of 
multiplicative platform effect will reduce cell type classification accuracy when µγ is suf-
ficiently high.

To quantify performance of different methods, we simulated spatial transcriptomics 
data from scRNA-seq, separating training and test sets (“Methods”). Simulations were 
performed both with and without distortions in order to evaluate how taking platform 
effects into account impacts gene panel performance. We also compared gpsFISH with 
two previously published classification-based gene selection methods: RankCorr and 
scGenefit. Both methods rely on the scRNA-seq expression profiles without consider-
ing platform effects. RankCorr is a rank-based one-vs-all feature selection method that 

Fig. 3 Gene panel selection using gpsFISH. A UMAP of cells based on the mouse hypothalamic scRNA-seq 
data from Moffit dataset at level 1 cell type annotation. B Normalized confusion matrix of the optimized 
gene panel for Moffit dataset at level 1 cell type annotation. C AUC for each cell type of the same gene 
panel. D,E UMAP of cells based on simulated spatial transcriptomics measurements with platform effect of 
the optimized gene panel selected with (D) and without (E) considering platform effect at level 1 cell type 
annotation
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selects marker genes for each cell type given a sparsity parameter, which controls the 
number of marker genes selected per cell type. We tuned this parameter to make sure 
the panels generated using RankCorr have the same size (200 genes). scGenefit selects 
gene markers that jointly optimize cell label recovery using label-aware compressive 
classification methods. As control, we provided a naïve way to simulate spatial tran-
scriptomics measurements without platform effects (Methods). In addition, we also 
generated a panel of randomly selected genes as baseline.

The objective of gpsFISH optimization is to achieve high-quality cell type clas-
sification on the spatial transcriptomics data. This entails two tasks: (1) selecting a 
good gene panel, and (2) using the gene panel for accurate cell type classification. In 
practice, while the design of an initial gene panel may rely on the scRNA-seq data, 
optimization of subsequent panels can take advantage of the probe-specific distor-
tions that have already been observed in earlier measurements. Similarly, as more and 
more spatial transcriptomics data are generated, when classifying cell types in a newly 
generated spatially resolved measurement, it is likely that some partial annotations 
may already be available for that platform either on the current or previously acquired 
datasets. Regardless of the cell type granularity of partial annotation, it contains 
gene-specific platform effect information of genes in the spatial transcriptomics data, 
which can be estimated using our Bayesian model to improve cell type classification. 
Following this logic, we used two benchmark strategies, which evaluate the impact of 
platform effects on the two tasks (“Methods”). Both strategies share the same general 
framework in which a classifier is trained on the training data with gene expression 
profiles for all cell types, and then applied onto the testing data for cell type classifica-
tion. The difference is how the two strategies incorporate partial annotation into the 
training data when available. Specifically, for the first strategy, evaluation with plat-
form effect re-estimation (“Methods”), platform effects are estimated from the partial 
annotation data and incorporated into the training data for all gene selection meth-
ods. Since under this strategy the gene panels from all methods are evaluated in the 
same manner, it is useful in evaluating the impact of platform effect on the first task, 
i.e., selecting a good gene panel. In contrast, under the second evaluation strategy, 
evaluation without platform effect re-estimation (“Methods”), only gpsFISH panels 
are evaluated with platform effect estimation as described above (“Methods”), illus-
trating the impact of platform effects on both tasks.

Evaluation with platform effect re-estimation on the Moffit dataset using naïve 
Bayes as the classifier shows gpsFISH outperforms the control with naïve simula-
tion and other gene selection methods (Fig.  4A), indicating that taking platform 
effects into consideration leads to more informative gene panels. Similar results were 
observed for the Zhang and Codeluppi dataset (Additional file 1: Fig. S5A and S5C) 
and using random forest as classifier (Additional file 1: Fig. S6A-C). From the normal-
ized confusion matrix of the gene panel selected by gpsFISH with hierarchical tree on 
the left showing the relationship between cell types (Fig. 4C), we can see that most of 
the misclassifications are within the complex subpopulations of inhibitory and excita-
tory neurons.

A larger performance improvement of gpsFISH over other gene selection methods 
is observed using evaluation without platform effect re-estimation, especially when 
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the level of partial annotation is low (Fig.  4B, Additional file  1: Fig. S5B and S5D, 
Additional file 1: Fig. S6D-F), indicating that considering platform effects can lead to 
more accurate cell type classification.

Overall, the comparison results show that gpsFISH outperforms other gene selection 
methods and considering platform effects can result in more informative gene panels 
and better cell type classification.

Redundancy in gene space across independent gene panel optimizations enables 

incorporation of customized preferences

Independent panel optimizations performed multiple times (10) for each of the 
three datasets showed high level of redundancy in the gene space (Fig.  5A). Specifi-
cally, despite similar levels of overall performance, the overlap between independently 
optimized 200-gene panels was around 85, 65, and 35 genes, and more than 20, 30, 
and 45% of the genes showed up in only one of the 10 optimized gene panels for the 
Zhang, Moffit, and Codeluppi datasets, respectively (Additional file 1: Fig. S7A-C). We 
observed similar level of redundancy even when the optimization was performed for 
a more granular “level 2” cell type annotations (46, 87, and 47 cell types for Zhang, 

Fig. 4 Comparison between gpsFISH and other gene selection methods. A,B Box plot showing classification 
accuracy distribution of gene panels selected by 5 gene panel selection methods at different levels of partial 
annotation. The result is based on the Moffit dataset using evaluation with (A) and without (B) platform effect 
re-estimation. Naïve Bayes is used as classifier. C Normalized confusion matrix of the optimized gene panel 
for Moffit dataset at level 2 cell type annotation with dendrogram showing the cell type hierarchy. Diagonal 
values of the confusion matrix are removed for better visualization of misclassifications
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Moffit, and Codeluppi dataset, Additional file 1: Fig. S7D). The ability to achieve a sim-
ilar level of performance with different gene sets suggests that the panels can be fur-
ther optimized to accommodate secondary criteria, such as inclusion of pre-selected 
genes, emphasis on genes with specific features or from specific pathways, etc.

gpsFISH allows to incorporate secondary preferences during gene panel optimi-
zation, by specifying custom gene weights. To illustrate how panel redundancy can 
be used to incorporate secondary preferences with little impact on the classification 
performance, we evaluated the ability to increase the number of technical probes per 
gene. Specifically, many ISH-based assays, including DARTFISH, can include mul-
tiple different probes to enhance detection of any given transcript. The number of 
probes that can be designed to target each gene is determined by gene-specific fac-
tors like gene length. Genes with more probes are preferred, as they can be used to 
improve robustness and sensitivity of detection. To generate a gene panel with high 
number of potential probes, we used the predicted number of probes for each gene 
in the DARTFISH data (Zhang dataset) (Methods) as gene weight during gene panel 
selection. Of note, we capped the probe count at 15 to avoid bias towards a small por-
tion of genes with extremely high number of probes (Additional file 1: Fig. S8A). This 
also agrees with the fact that sensitivity will saturate when we have enough probes 
for a gene. Following this approach, we performed 10 optimizations with and without 
probe count gene weights on the Zhang dataset using “level 1” cell type annotations. 
As expected, the optimizations with gene weight had slightly lower accuracy (Fig. 5B) 
but achieved a significantly higher number of total probes (Fig. 5C).

In another application, we evaluated the ability to account for genes that are 
involved in cell-to-cell communication, specifically those genes with predicted high 
ligand activity. Ligand activity score aims to estimate the likelihood that the ligand is 

Fig. 5 Redundancy in gene space across independent gene panel optimizations enables incorporation of 
customized preferences. A Distribution of overlap of independent gene panels across 10 optimizations within 
each platform at level 1 cell type annotation. B Accuracy of optimized gene panels without vs. with gene 
weight across 10 optimizations. C Total number of probes of optimized gene panels without vs. with gene 
weight across 10 optimizations
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mediating cell interactions within the examined sample [63]. To generate a gene panel 
in a way that prioritizes potentially relevant ligands, we used the ligand activity scores 
estimated from scRNA-seq data from the Moffit dataset (“Methods”) as gene weights 
during gene panel selection. We then performed 10 gene panel optimizations with 
and without ligand activity gene weights on the Moffit scRNA-seq dataset using “level 
1” cell type annotations. While the optimizations with gene weights had slightly lower 
accuracy (Additional file 1: Fig. S9A), they achieved a significantly higher total ligand 
activity (Additional file  1: Fig. S9B). The optimized gene panel included genes with 
high gene weight but low gene expression (Additional file 1: Fig. S9C), demonstrating 
the ability to incorporate lowly expressed genes with preferred features.

These results demonstrate that the redundancy of gene spaces allows one to incorpo-
rate additional customized constraints/preferences based on orthogonal information to 
design gene panels with preferred features without sacrificing the overall cell type clas-
sification performance.

Hierarchical gene selection based on cell type hierarchy

Cell types are organized in a hierarchical manner with broad cell types divided into more 
detailed subpopulations. This hierarchical relationship can be considered when evalu-
ating cell classification errors. For example, failure to distinguish two closely related 
subtypes, such as Th1 and Th17, of cells is likely to be considered less severe than mis-
annotation of a Th cell into a different major cell type such as B cells.

In addition to the default “flat” cell type evaluation, gpsFISH, therefore, implements a 
hierarchical classification option (Fig. 6A, “Methods”), in which correct classifications or 
misclassification between different cell types will receive different credit/penalty speci-
fied by a weighted penalty matrix according to cell type hierarchy. Using this hierarchical 
classification framework, gpsFISH provides flexibility to customize optimization based 
on desired level of cell type granularity.

To evaluate the effect of the hierarchical classification for gene selection, we per-
formed hierarchical gene selection at level 2 cell annotation of all three datasets. Under 
a hierarchical penalty scheme, misclassifications of cells between different level 1 cat-
egories incur a fixed penalty, whereas misclassifications within the same level 1 category 
were given partial credit, proportional to the expression similarity between the called 
and true subtypes (“Methods” Fig. 6B). To quantify to what extent this hierarchical clas-
sification framework reduces misclassifications across broad cell types at level 1, we cal-
culated the percentage of across broad cell type mistakes over all mistakes (“Methods”). 
We observed that the optimized gene panels using hierarchical classification tend to 
make significantly fewer misclassifications across broad cell types at level 1 compared 
to flat classification (Fig. 6C–E). In addition to the three datasets, we used the hierarchi-
cal classification criteria to select gene panel informative of T cell exhaustion-associated 
immune environments in human breast cancer [64]. Based on scRNA-seq annotation, 
we applied gpsFISH to design a gene panel that can identify major cell types at level 1 
cell annotation (Additional file  1: Fig. S10A) and subtypes of T/NK cells and myeloid 
cells at level 2 cell annotation (Additional file 1: Fig. S10B). Using the same hierarchi-
cal penalty scheme as described above, we also observed that the optimized gene pan-
els using hierarchical classification tended to make significantly fewer misclassifications 
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across broad cell types at level 1 compared to flat classification (Additional file 1: Fig. 
S10C). These results indicate that cell type granularity can be controlled through the 
hierarchical classification framework.

Discussion and conclusions
Accurate cell type classification is crucial for understanding the spatial relationship of 
cells in complex tissues. We implemented gpsFISH, a method for gene panel design of 
targeted spatial transcriptomics. By accounting for platform effects between scRNA-seq 
and targeted spatial transcriptomics technologies, gpsFISH is able to find more robust 
and informative gene panels and achieve better cell type classification.

Fig. 6 Gene panel selection with cell type hierarchy. A Schematic of hierarchical gene selection using cell 
type hierarchy. A weighted penalty matrix is constructed using cell type hierarchy information quantified 
by pairwise distance between cell types. Additional penalty can be specified according to the cell type 
hierarchy. The weighted penalty matrix is then multiplied element-wise with the original confusion 
matrix to get the weighted confusion matrix for fitness evaluation. B Original (left) vs. weighted (right) 
confusion matrix of the same optimized gene panel from Moffit dataset at level 2 cell type annotation with 
dendrogram showing the cell type hierarchy. Diagonal values of the confusion matrix are removed for better 
visualization of misclassifications. C–E Percentage of across broad cell type (level 1) misclassifications over all 
misclassifications for flat vs. hierarchical classification on the Moffit (C), Codeluppi (D), and Zhang (E) dataset. 
Each dot represents one cell type with dots representing the same cell type connected. Wilcoxon paired test 
is performed between the percentages from flat vs. hierarchical classification and the p value is shown
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Different technology has different patterns of platform effects. Specifically, we decom-
posed platform effects into two components: multiplicative and additive platform 
effects. While the multiplicative effect has been considered in deconvolution contexts 
(e.g., RCTD [47]), neither type of platform-specific distortions have been considered by 
other gene selection methods. Among other things, the additive platform effect enables 
gpsFISH to describe situations where specific genes show no expression in scRNA-seq 
data, but is detected in spatial transcriptomics data (dots forming the vertical line in 
Fig.  1A, B). This observation is common for osmFISH (Codeluppi dataset) and MER-
FISH (Moffit dataset) and cannot be modelled using only multiplicative platform effect.

Comparing the three targeted spatial transcriptomics platforms, we found highest 
levels of additive platform effects in DARTFISH, followed by osmFISH and MERFISH 
(Fig. 1G). More specifically, DARTFISH had the lowest µc , indicating the highest level 
of signal reduction compared to MERFISH and osmFISH (Additional file  1: Fig. S2E). 
Signal reduction increases the possibility of good marker genes from scRNA-seq los-
ing cell type specificity in spatial transcriptomics data (dots forming the horizontal line 
in Fig. 1C), which is a main scenario where platform effects affect gene panel selection. 
Higher level of signal reduction for DARTFISH agrees with our result that the perfor-
mance improvement of gpsFISH over other gene selection methods is the largest in the 
Zhang dataset compared to the other two datasets, indicating the necessity to account 
for additive platform effects, especially for targeted spatial transcriptomics technologies 
with higher level of signal reduction.

In addition to additive platform effect, multiplicative platform effect also contributes 
to the systematic difference of transcripts detection rate across technologies, posing a 
challenge when transferring cell type information from scRNA-seq to spatial transcrip-
tomics technologies. Comparison of three targeted spatial transcriptomics platforms 
shows osmFISH has the highest level of multiplicative platform effect, followed by MER-
FISH and then DARTFISH (Fig. 1F). Higher level of multiplicative platform effect leads 
to poorer cell type classification when there is no or a low level of partial annotation 
compared to a high level of partial annotation (Fig. 4A, B, Additional file 1: Fig. S5 and 
Additional file 1: Fig. S6), especially for evaluation without platform effect re-estimation 
due to distorted expression profiles between scRNA-seq and targeted spatial transcrip-
tomics technologies. For evaluation with platform effect re-estimation, a low level of 
partial annotation provided limited statistical power to accurately estimate gene-specific 
platform effects, thus not able to increase the classification performance. This reduced 
performance is gone when we have more than one cell type included in the partial anno-
tation, indicating partial annotation of a few cell types is enough to enhance cell type 
classification if multiplicative platform effects are accounted for.

Redundancy across independent optimizations allows incorporation of customized 
preferences into gene selection. However, gene weight needs to be carefully specified to 
ensure no sacrifice on overall gene panel performance. For the result in Fig. 5B and C, we 
capped the number of probes for each gene at 15. For cutoffs lower than 15, gene weight 
difference between genes are small, leading to gene panels with similar performance but 
also similar total number of probes. However, for cutoffs higher than 15, the optimiza-
tion will bias towards a small group of genes with high probe count, resulting in local 
minimum during optimization. This does achieve panels with significantly higher total 
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number of probes, but the classification accuracy is dropped (Additional file 1: Fig. S8B-
C). This emphasizes the need to test different ways for gene weight specification in order 
to get the expected result without sacrificing performance.

Similarly, in our test of hierarchical gene selection, we specified the weighted penalty 
matrix directly from cell type hierarchy. Although we reduced misclassifications across 
broad cell types, the overall accuracy is slightly lower than flat classification (Additional 
file 1: Fig. S11). This shows that partial credit of misclassifications needs to be given care-
fully, especially when there are many similar subpopulations within the same broad cell 
type like in the Moffit dataset. In real usage, it is suggested to prune the weighted penalty 
matrix constructed from the cell type hierarchy to remove unnecessary partial credit. 
Gene panel selection using flat classification can be run first to help adjust the weighted 
penalty matrix constructed using cell type hierarchy. In addition, the hierarchical clas-
sification provides a generic framework to fine tune emphasis of classification on cer-
tain cell types. Here we showed its usage to incorporate cell type hierarchy, but it is not 
restricted to cell type hierarchy. Customized weighted penalty matrix can be constructed 
using other information that provides preferences towards different classifications.

A major goal of spatial transcriptomics is to understand the spatial distribution of cell 
types and their corresponding cellular environment. gpsFISH facilitates this by selecting 
more informative and robust gene panels and providing ways for better cell type annota-
tion. We also provide options to account for various custom preferences. As more tar-
geted spatial transcriptomics data are generated, we expect that gpsFISH can facilitate 
the study of cellular organization of complex tissues under different biological contexts.

Methods
Datasets

In our study, we used three datasets that have both scRNA-seq and targeted spatial tran-
scriptomics data from the same tissue. Information regarding the three datasets is sum-
marized in Additional file 2: Table S1. Further processing details are discussed below.

Moffit dataset

scRNA-seq data was downloaded from Gene Expression Omnibus (GEO) [65] under 
accession code GSE113576. MERFISH data was downloaded from Dryad [66]. Of note, 
the MERFISH data from Dryad is normalized and batch corrected. We undid the vol-
ume normalization and batch correction to get the original data.

In the scRNA-seq data, we first filtered out cells annotated as “Ambiguous” and 
“Unstable”. We then used information in the Additional file 2: Table S1 of the original 
study to assign cell types. “Cell class (determined from clustering of all cells)” column 
was used as level 1 cell type annotation. “Neuronal cluster (determined from clustering 
of inhibitory or excitatory neurons)” and “Non-neuronal cluster (determined from clus-
tering of all cells)” were used as level 2 cell annotation. Normalization was performed as 
described in the original study.

Only MERFISH data from naïve mice was used (to match scRNA-seq data). In addi-
tion, we also filtered out cells annotated as “Ambiguous” and “Unstable”. Fos gene and 
five blank genes were filtered out. One hundred thirty-five genes imaged in the combi-
natorial smFISH imaging were kept. Following the naming of cell types in Fig. 3D of the 
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original study, we modified the cell type annotation of MERFISH data to make it con-
sistent with the scRNA-seq data. Specifically, at level 1 cell type annotation, cells anno-
tated as “Endothelial 1,” “Endothelial 2,” “Endothelial 3” were merged into “Endothelial.” 
“Astrocyte” was changed to “Astrocytes”. “OD Immature 1” and “OD Immature 2” were 
changed to “Immature_oligodendrocyte.” “OD Mature 1,” “OD Mature 2,” “OD Mature 
3,” and “OD Mature 4” were changed to “Mature_oligodendrocyte.” “Pericytes” was 
changed to “Mural.” At cell type level 2, “Endothelial 1,” “Endothelial 2,” and “Endothelial 
3” were changed to “Endothelial_1,” “Endothelial_2,” and “Endothelial_3,” respectively. 
“Ependymal” was changed to “Ependymal_1”. “OD Immature 1” and “OD Immature 2” 
were changed to “Immature_oligodendrocyte_1” and “Immature_oligodendrocyte_2”, 
respectively. “OD Mature 1,” “OD Mature 2,” “OD Mature 3,” and “OD Mature 4” were 
changed to “Mature_oligodendrocyte_1,” “Mature_oligodendrocyte_2,” “Mature_oligo-
dendrocyte_3,” and “Mature_oligodendrocyte_4,” respectively.

After the processing above, additional filters were applied on the raw and normalized 
scRNA-seq data before gene panel selection. Genes with maximum cell type average 
expression lower than 1 were filtered out. In addition, long non-coding RNAs were also 
removed. As a result, 2886 and 5100 genes were used for gene panel selection at level 1 
and 2, respectively. For platform effects estimation, the subset of the raw scRNA-seq and 
MERFISH data with cells from overlapping cell types were used.

Codeluppi dataset

scRNA-seq data was downloaded from GEO under accession code GSE60361. Annota-
tion data was downloaded from [67]. osmFISH and corresponding annotation data was 
downloaded from [68].

For scRNA-seq data, cell labels in row 9 of the annotation were used as level 1 cell 
type annotation, and row 11 were used as level 2 cell type annotation. However, the level 
1 cell type annotation is too broad (only 5 major cell types). Therefore, we regenerated 
level 1 cell type annotation by merging similar cell types at level 2 following descrip-
tions from the original study. Specifically, in generating data for gene panel selection at 
level 1, “S1PyrDL,” “S1PyrL23,” “S1PyrL4,” “S1PyrL5,” “S1PyrL5a,” “S1PyrL6,” “S1PyrL6b,” 
and “ClauPyr” were merged into “S1_Excitatory.” “CA1Pyr1,” “CA1Pyr2,” “CA1PyrInt,” 
“CA2Pyr2,” and “SubPyr” were merged into “Hippocampus_Excitatory.” Sixteen sub-
classes of interneurons (“Int1” to “Int16”) were merged into “Interneuron.” “Astro1” and 
“Astro2” were merged into “Astrocyte.” “Mgl1” and “Mgl2” were merged into “Micro-
glia.” “Pvm1” and “Pvm2” were merged into “Pvm.” Six subpopulations of oligodendro-
cytes (“Oligo1” to “Oligo6”) were merged into “Oligodendorcyte.” “Vend1” and “Vend2” 
were merged into “Endothelial.” To make cell type labels consistent between scRNA-seq 
and osmFISH, “Peric” was changed to “Pericyte.” “Choroid” was changed to “Ventricle.” 
“Epend” was changed to “Ependymal.”

To generate the data for platform effect estimation, cell type labels were modified 
slightly differently to reflect the correspondence between cell types in scRNA-seq 
and osmFISH as shown in Fig. 2C and D of the original study. Specifically, three CA1 
subclasses (“CA1Pyr1,” “CA1Pyr2,” “CA1PyrInt”) were merged into “Hippocampus_
Excitatory.” Sixteen subclasses of interneurons (“Int1” to “Int16”) were merged into 
“Interneuron.” Two subclasses of microglia (“Mgl1” and “Mgl2”) were merged into 
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“Microglia.” Two subclasses of perivascular macrophages (“Pvm1” and “Pvm2”) were 
merged into “Pvm.” Subclasses of S1 pyramidal cells were also merged: “S1PyrL4” 
and “S1PyrL5a” were merged into “S1_Excitatory_L45a,” “S1PyrL5,” and “S1PyrL6b” 
were merged into “S1_Excitatory_L56b.” In addition, to make the cell type labels 
consistent between scRNA-seq and osmFISH, we changed “Astro1” and “Astro2” to 
“Astrocyte1” and “Astrocyte2,” respectively. We changed “Oligo6” to “Oligo_Mature,” 
“Oligo5” to “Oligo_MF,” “Oligo1,” to “Oligo_COP,” “Vend1” to “Endothelial1,” “Vend2” 
to “Endothelial2,” “Peric” to “Pericyte,” “Choroid” to “Ventricle,” “Epend” to “Ependy-
mal,” “S1PyrL23” to “S1_Excitatory_L23,” and “S1PyrL6” to “S1_Excitatory_L6.” Cell 
types with fewer than 50 cells were removed.

For osmFISH data, we first filtered out invalid cells based on the “Valid” column 
of the annotation data. Then, similar to scRNA-seq data, we modified cell type 
labels according to Fig.  2C and D in the original study, which shows correspond-
ence between cell types in scRNA-seq and osmFISH. Specifically, “Astrocyte Gfap” 
was changed to “Astrocyte1.” “Astrocyte Mfge8” was changed to “Astrocyte2.” “Hip-
pocampus” was changed to “Hippocampus_Excitatory.” “pyramidal L4” was changed 
to “S1_Excitatory_L45a.” “Pyramidal L5” was changed to “S1_Excitatory_L56b.” 
“Pyramidal L6” was changed to “S1_Excitatory_L6.” “Perivascular Macrophages” was 
changed to “Pvm.” “Oligodendrocyte COP” was changed to “Oligo_COP.” “Oligoden-
drocyte Mature” was changed to “Oligo_Mature.” “Oligodendrocyte MF” was changed 
to “Oligo_MF.” “Endothelial 1” was changed to “Endothelial1,” and “Endothelial” was 
changed to “Endothelial2.” “Pericytes” was changed to “Pericyte.” “Vascular Smooth 
Muscle” was changed to “Vsmc,” “C. Plexus” was changed to “Ventricle.” “Pyrami-
dal L2-3” and “Pyramidal L2-3 L5” were merged into “S1_Excitatory_L23.” “Inhibi-
tory Cnr1,” “Inhibitory CP,” “Inhibitory Crhbp,” “Inhibitory IC,” “Inhibitory Kcnip2,” 
“Inhibitory Pthlh,” and “Inhibitory Vip” were merged into “Interneuron.”

scRNA-seq data was normalized using the count_normalize function in the scran 
package. Similar to the Moffit dataset, the raw and normalized scRNA-seq were fur-
ther filtered before gene panel selection using the same filters.

Six thousand one hundred twenty-three and 9052 genes were used for gene panel 
selection at levels 1 and 2, respectively. For platform effect estimation, the subset of 
the raw scRNA-seq and osmFISH data with cells from overlapping cell types were 
used.

Zhang dataset

Raw and normalized scRNA-seq data from kidney were obtained from [60]. They 
were further filtered before gene panel selection using the same filters. Two thousand 
nine hundred twenty and 3796 genes were used for gene panel selection at levels 1 
and 2, respectively.

The DARTFISH data is unpublished. It can be found in Zenodo [69]. We annotated 
the cells in the DARTFISH data manually using curated marker genes (Additional 
file  3: Table  S2) at subclass level (third column). For platform effect estimation, the 
subset of the raw scRNA-seq and DARTFISH data with cells from overlapping cell 
types were used.
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Tietscher dataset

Raw scRNA-seq data and metadata were obtained from [64]. Cells annotated as doublet or 
low-quality cells in the metadata were removed. Cell type labels in the “cell_type” column of 
the metadata were used as level 1 cell type annotation. Cells annotated as “T/NK cell” and 
“myeloid” were further divided into metaclusters. Therefore, cell type labels in the “Tcell_
metacluster” and “myeloid_metacluster” columns of the metadata were used as level 2 cell 
type annotation. Both “myeloid” cells and “T/NK cell” have a metacluster named “prolifer-
ating”. To distinguish them, “myeloid” cells with the metacluster label “proliferating” were 
changed to “M-proliferating” and “T/NK cell” cells with the metacluster label “proliferat-
ing” were changed to “T-proliferating.” For cells with no metacluster labels, we used their 
cell type labels in the “cell_type” column. Genes in the scRNA-seq data were further filtered 
before gene panel selection using the same filters. Six thousand nine hundred nine and 5268 
genes were used for gene panel selection at levels 1 and 2, respectively.

Platform effects estimation using a Bayesian model

We assume the observed number of molecules yij in the spatial transcriptomics data for 
gene i in cell j follows a zero-inflated negative bimonial (ZINB) distribution with:

where π is the zero inflation parameter which is assumed to be constant across genes 
and cells. µij is the mean parameter determined by a global intercept α , true expression 
level of gene i in cell j denoted as �ij , and the cell depth (total number of molecules) of 
cell j from spatial transcriptomics data as CDSP

j :

To account for platform effects, we assume the true expression level �ij is a random vari-
able defined by:

where γi is a gene-specific coefficient representing multiplicative platform effects, and ci 
is a gene-specific intercept representing additive platform effects. xij represents the rela-
tive expression of gene i in cell j calculated from scRNA-seq data:

where cij is the number of count for gene i in cell j from the scRNA-seq data, and N  is 
the total number of genes. When fitting the Bayesian model, in order to match measure-
ment between scRNA-seq data and targeted spatial transcriptomics data, we used cell 
type average relative expression to replace individual cell-level relative expression:

where Mk is the number of cells in cell type k.

(1)yij ∼ ZINB µij , θij ,π
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(
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For the dispersion parameter θij of the ZINB distribution, we assume it is also depend-
ent on �ij:

where β is the intercept.
A Beta prior distribution is assumed for π . For α , β , and ci , we assume they follow nor-

mal distribution. γi is assumed to follow a log-normal distribution:

where the hyperparameters are assumed to follow Cauchy and half Cauchy distribution:

scRNA-seq and targeted spatial transcriptomics data from overlapping genes and over-
lapping cell types were used as input. Additional filters were applied on the MERFISH 
data to reduce the total number of cells for more efficient estimation. Specifically, cells 
with cell depth lower than 100 were filtered out. Cell types with fewer than 1000 cells 
were filtered out. Then we subsampled each cell type to keep at most 1000 cells for each 
cell type. Variational inference in Stan was used for model fitting.

Simulation of spatial transcriptomics measurements from scRNA‑seq data with platform 

effects

We used fitted Bayesian models to simulate spatial transcriptomics measurements from 
scRNA-seq data. Specifically, α,β ,π ,µc, σc,µγ , σγ were randomly sampled from their 
estimated posterior distribution. ci and γi were randomly sampled from their corre-
sponding normal and log-normal distribution for each new gene that is not observed 
in the data used to fit the Bayesian model. If a gene is already seen during fitting the 
Bayesian model, we can either use the empirical ci , and γi estimated during model fitting 
(used in this study) or randomly sample them from the corresponding normal and log-
normal distribution. CDSP

j  was randomly sampled from empirical cell depth distribution 
from observed targeted spatial transcriptomics data. xij was calculated from scRNA-seq 
data. It can be cell type average as we used in model fitting or calculated within each 
individual cell. In our study, the latter was used when simulating spatial transcriptomics 
measurements to maintain the cell-level heterogeneity in scRNA-seq data. Finally, the 

(4)ln
(

θij
)

= β + �ij

π ∼ Beta(1, 1)

α ∼ Normal(0, σα)

β ∼ Normal
(

0, σβ
)

ci ∼ Normal(µc, σc)

γi ∼ LogNormal(µγ , σγ )

µc,µγ ∼ Cauchy(0, 5)

σα , σβ , σc, σγ ∼ HalfCauchy(0, 5)
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generated values were plugged into Eqs. (1), (2), (3), and (4) to generate spatial transcrip-
tomics measurements.

Simulation of spatial transcriptomics measurements from scRNA‑seq data 

without platform effects (naïve simulation)

We provided a naïve way to simulate spatial transcriptomics measurements without 
platform effects as control. During the simulation without platform effects, cell depth 
of simulated spatial transcriptomics cell were randomly sampled from the empirical 
cell depth distribution of observed targeted spatial transcriptomics data. Of note, the 
empirical cell depth distribution was adjusted proportionally based on the ratio between 
relative expression of new genes for simulation and relative expression of overlapping 
genes used in fitting the Bayesian model. After having the simulated cell depth for each 
cell, the number of molecules for each gene within each cell was sampled from a mul-
tinomial distribution with size equal to the simulated cell depth and probability equal 
to each gene’s relative expression in that cell. At the end, genes were randomly selected 
given the probe failure rate. Then, simulated molecule count of selected genes were set 
to 0 to reflect probe failure.

Genetic algorithm for gene panel selection

We used genetic algorithm as the framework for gene panel selection. Each individual in 
a population is one candidate gene panel. We set the gene panel size to 200 genes. Each 
population contains 200 individuals.

The first step of genetic algorithm is to initialize a population of candidate gene panels. 
The genes can be either randomly selected from all candidate genes or selected based on 
their differential expression between cell types. In this study, we took a hybrid approach. 
Ninety-five percent of the 200 gene panels were initiated randomly from all candidate 
genes to maintain population diversity. The rest 5% were initialized using DEGs for each 
cell type. DE analysis was performed using Pagoda2. Genes with AUC greater than 0.7 
were considered significant.

The second step is to evaluate the fitness of each candidate gene panel in the popula-
tion. Here we define fitness as the average classification accuracy over 5 cross-valida-
tions. Classification was performed on simulated spatial transcriptomics measurements 
from scRNA-seq data. Cell type annotation from scRNA-seq data was used as ground 
truth. The accuracy was calculated based on the original confusion matrix for flat clas-
sification and weighted confusion matrix for hierarchical classification. We provided 
two classifiers, random forest and naïve Bayes. In this study, we used naïve Bayes due 
to its fast speed and relatively similar level of accuracy compared to random forest. To 
improve the efficiency, scRNA-seq data was subsampled to reduce the number of cells 
for large cell types and resampled to increase the number of cells for small cell types. 
Specifically, for level 1 cell type annotation, cell type size was capped at 1500 cells. The 
lower bound was set as 1000 cells for Moffit dataset and 500 for Zhang and Codeluppi 
dataset. For level 2 cell type annotation, 250 and 500 were used as the cell type size range 
for Moffit dataset. The range for Zhang and Codeluppi dataset was 300 and 900.

The third step is selection and mutation. The selection strategy we used is tourna-
ments. Specifically, randomly selected candidate gene panels face each other 1 vs. 1. The 
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one with a higher fitness value was used as parent. In addition, candidate gene panels 
with higher fitness values were more likely to be selected in the tournaments. After hav-
ing the parent gene panels, uniform crossover was performed to generate the offspring 
gene panels. Duplicated genes after uniform crossover were replaced by randomly 
sampled genes in the parent candidate gene panels but not in the offspring gene panel. 
Mutation was then performed to maintain gene diversity and prevent premature con-
vergence. We set the mutation rate to 1%. When gene weight was provided, genes with 
higher weight were (1) more likely to be selected during crossover, (2) less likely to be 
mutated if it is already in the population, and (3) more likely to be introduced into the 
population through mutation if it is not in the current population.

Finally, the same process was repeated for the offspring population. The candidate 
gene panel with the highest fitness value for one iteration was considered as the opti-
mal gene panel. If the iteration after it has a candidate gene panel with higher fitness 
value, the optimal panel will be replaced by this new candidate gene panel. Otherwise, 
the optimal panel will stay the same. The iterative process will end either when it reaches 
a given number of iterations, or the accuracy does not improve more than a threshold 
for a given number of iterations. In our study, we ran all the optimizations for at least 
500 iterations to ensure convergence although in all cases the optimization converged a 
lot earlier.

If a list of pre-selected genes, e.g., canonical marker genes based on previous knowl-
edge, is provided, genes in the list will be included in each candidate gene panel as well 
as the final optimal gene panel.

Evaluating the impact of planform effect on the spatial transcriptomics measurement 

simulation and cell type classification

For each of the three datasets, the scRNA-seq expression of genes in the optimized gene 
panel at level 2 cell type annotation was used as input for spatial transcriptomics meas-
urement simulation with platform effect using the fitted Bayesian model of each data-
set. We modified each Bayesian model as follows to represent different levels of additive 
and multiplicative platform effect: for σc and σγ , we replaced their empirical distribution 
with a value from 0 to 3, respectively. At each level of σc and σγ , fivefold cross-validation 
using Naïve Bayes as the classifier was performed on the simulated spatial transcriptom-
ics measurements to obtain the average classification accuracy over cross-validations. 
To evaluate spatial transcriptomics measurement simulation and cell type classification 
when there is no platform effect, spatial transcriptomics measurement simulation with-
out platform effect was used instead of spatial transcriptomics measurement simulation 
with platform effect. For the artificial increase of the average level of noise ( µγ ) for the 
Codeluppi dataset, we added 1 to the posterior distribution of µγ.

Hierarchical classification using cell type hierarchy

During genetic algorithm optimization, a weighted penalty matrix can be provided to 
assign partial credit or extra penalty to classification between certain cell types. The 
weighted penalty matrix is a square matrix with each row and each column represent-
ing one cell type. For each value pij ( i  = j ) in the weighted penalty matrix, if pij > 1 , an 
extra penalty is given to misclassifying cells from cell type j to cell type i . If pij < 1 , a 
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partial credit is given to misclassifying cells from cell type j to cell type i . pij = 1 means 
no penalty or partial credit. In hierarchical classification, the weighted penalty matrix 
was incorporated to the confusion matrix by element-wise multiplication to provide a 
weighted confusion matrix. The accuracy of the weighted confusion matrix was used to 
evaluate the fitness of candidate gene panels.

Essentially, the weighted penalty matrix can be constructed arbitrarily by user’s prefer-
ence. In this study, we constructed the weighted penalty matrix from cell type hierarchy. 
First, pairwise distance between cell types was calculated. Specifically, average expres-
sion profile of each cell type was calculated using normalized count by taking average 
expression of all cells in each cell type. Top 1000 genes with highest standard deviation 
were used to calculate pairwise Pearson correlation coefficient. One minus the pairwise 
Pearson correlation coefficient was used as pairwise distance between cell types. Second, 
the pairwise distance matrix was normalized by the largest distance so the values range 
from 0 to 1. Third, the pairwise distance matrix was then adjusted based on cell type 
hierarchy. Specifically, a level of cell type annotation was selected as reference. For cell 
types below the reference level that are from the same cell type at the reference level, the 
pairwise distance (between 0 and 1) between them was kept unchanged to reflect partial 
credit to wrong classifications among them. For cell types below the reference level that 
are from different cell types at the reference level, the pairwise distance between them 
was changed to a user-defined value where 1 means no extra penalty and greater than 
1 means extra penalty. In this study, we used 1 for no extra penalty and level 1 cell type 
annotation was used as reference. Finally, the diagonal value was changed to 1 to reflect 
no extra credit to correct classifications. This weighted penalty matrix was used for hier-
archical classification in our study.

Calculating the percentage of across broad cell type mistakes over all mistakes

We performed 5 optimizations with flat classification and hierarchical classification for 
all three datasets, respectively. Average confusion matrix over 5 optimizations for each 
data was calculated. After that, for each cell type, we counted the total number of mis-
classifications and among all the misclassifications, what proportion of them misclassi-
fies cells to cell types at level 2 that do not belong to the same cell type at level 1.

Gene panel selection using RankCorr and scGeneFit

The same scRNA-seq data from the three datasets after filtering were used as input. For 
RankCorr, raw scRNA-seq data before normalization was used as suggested. The lamb 
parameter was tuned to make sure the output marker gene list has 200 genes. For scGen-
eFit, normalized scRNA-seq data was used by following the examples on its GitHub 
page. Panel size was set to 200.

Evaluation of optimized gene panel

To evaluate optimized gene panels, we first simulated spatial transcriptomics measure-
ments with platform effects based on the gene panel’s expression profile in scRNA-seq 
data. Then this simulated spatial transcriptomics data was split into training and testing 
data. The training data contains cells from a subset of cell types whose cell type labels are 
known. This was used as the partial annotation of the simulated spatial transcriptomics 
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data. The testing data contains cells from all cell types (excluding cells in the training 
data), which is considered as part of the simulated spatial transcriptomics data that has 
not been annotated yet. We varied the number of cell types in the training data from 
zero to all the cell types to reflect different levels of partial annotation. When there was 
no partial annotation, scRNA-seq data was used as the final training data for classifier 
training. When there was partial annotation, information in the partial annotation was 
included in the final training data. After that, a classifier (naïve Bayes or random for-
est) was trained using the final training data and applied on the testing data for cell type 
classification evaluation. Since the testing data was simulated from scRNA-seq data, the 
cell type labels in scRNA-seq data were used as ground truth. Classification accuracy 
was used as the metric to evaluate a gene panel. At each level of partial annotation, we 
repeated the same calculation 10 times. To separately evaluate the impact of platform 
effects on gene panel selection and cell type classification, within the same framework 
described here, we designed two different strategies to evaluate a gene panel by varying 
whether platform effect distortions that can be learned from partial annotation exam-
ples are used to produce more realistic training data for cell type classification.

Evaluation with platform effect re‑estimation

This evaluation strategy was designed to focus on the performance of the optimized gene 
panels, and not on the differences in the cell type classification (evaluation) stage. In 
this strategy, partial annotation was first used to estimate gene-specific platform effects 
using the Bayesian model. We then used these estimated gene-specific platform effects 
to simulate an updated spatial transcriptomics training data, which will be combined 
with the partially annotated spatial transcriptomics data and then used for training cell 
type classifiers for all the methods being evaluated. Only cell types not already avail-
able in the partially annotated spatial transcriptomics data were simulated. When partial 
annotation was available for 5 or fewer cell types, the final training data combined the 
partially annotated and simulated spatial transcriptomics training data with scRNA-seq 
data. When more than 5 cell types were available, training was performed on the par-
tially annotated and simulated spatial transcriptomics training data only. The final train-
ing data and testing data were normalized by the total number of transcripts within each 
cell and scaled by 10,000. It was then log transformed after adding 1 pseudocount. This 
normalized training and testing data were used for classifier training and testing.

Evaluation without platform effect re‑estimation

In this evaluation strategy, only gpsFISH is able to make use of the platform effects 
information in the partial annotation (as described above). All the other methods 
used the partial annotation according to their own method design. Specifically, for the 
control which used naïve simulation during gene panel selection, the empirical cell 
depth distribution of the complete testing data was used to simulate a spatial tran-
scriptomics training data without platform effect. This simulated spatial transcrip-
tomics training data was used in the same way as described above to get the final 
training data. For RankCorr, scGeneFit, and the random panel, since the gene selec-
tion was solely based on scRNA-seq data, cells in the partial annotation were directly 
combined with the scRNA-seq data of cell types not already available in the partial 
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annotation. The combined data were used as the final training data. Same normaliza-
tion was performed on the final training data and testing data before classifier train-
ing and testing.

Calculate the number of probes for each gene for the DARTFISH data

During the generation of the DARTFISH data, ppDesigner [70] was used to calculate the 
number of probes that can be designed to target each gene.

Calculate ligand activity for genes in the Moffit data

Ligand activity was computed for all candidate genes in the scRNA-seq data from the 
Moffit dataset using NicheNet [63]. Excitatory neurons were used as sender cells and 
inhibitory neurons were used as receiver cells. The area under the precision–recall curve 
(AUPR) value was used as the measure of ligand activity and further used as gene weight. 
For candidate genes with no AUPR value, a baseline value of 0.001 was assigned.
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