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Abstract 

Copy number alterations (CNAs) are among the most important genetic events in can-
cer, but their detection from sequencing data is challenging because of unknown 
sample purity, tumor ploidy, and general intra-tumor heterogeneity. Here, we pre-
sent CNAqc, an evolution-inspired method to perform the computational validation 
of clonal and subclonal CNAs detected from bulk DNA sequencing. CNAqc is validated 
using single-cell data and simulations, is applied to over 4000 TCGA and PCAWG sam-
ples, and is incorporated into the validation process for the clinically accredited bio-
informatics pipeline at Genomics England. CNAqc is designed to support automated 
quality control procedures for tumor somatic data validation.

Background
Modern cancer genomics studies leverage a combination of tissue bulk sampling and 
genome sequencing [1–3]. This permits the identification of somatic single-nucleotide 
variants (SNVs), insertions and deletions (indels), copy number alterations (CNAs) [4, 
5], driver mutations [6, 7], mutational signatures [8–11], and intra-tumor heterogene-
ity as part of clonal deconvolution [12–18]. Whole-genome sequencing (WGS) and 
whole-exome sequencing (WES) have entered the clinic [19], and the number of public 
databases of tumor genomes is continuously increasing, which presents distinct chal-
lenges to cancer genomic analyses. While SNVs have well-established detection tools 
[4], CNAs, which are a particularly important aspect of the cancer genome [17, 20], are 
challenging to assess since the baseline ploidy of the tumor (the total chromosome copy 
number) as well as the percentage of tumor DNA in the assay (i.e., tumor purity), have to 
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be jointly inferred [21–26]. Of particular difficulty is the detection of CNAs occurring in 
a subset of tumor cells (subclonal CNAs), since this is limited by the current resolution 
of bulk assays [27] and the available software to infer clonal compositions. While sin-
gle-cell approaches can identify small sets of cells with shared CNAs, the resolution and 
quality of that data is still too low to be adopted in the clinic, meaning bulk approaches 
are favored even if they can only detect “large” subclones [27]. Unless the issue of calling 
CNAs in the context of variable tumor purity and intra-tumor heterogeneity are over-
come, the efficiency and quality of tumor molecular profiles will continue to be affected.

To address the issue of inaccurate CNA calling, we developed CNAqc, the first quan-
titative framework to integrate somatic mutations, allele-specific CNAs and estimates of 
tumor purity to quality control (QC) CNA calls generated from WGS and WES assays 
(Fig. 1a). CNAqc maps SNVs and indels to CNA segments and computes the expected 
variant allele frequency (VAF) profile based on the particular copy number state called, 
and tumor purity. Here, the expected VAF of a given mutation varies depending on allele 
copy state, tumor purity, and clonality, peaking at a theoretical value affected by observa-
tional noise [27]. This means that all three genomic features can be assessed simultane-
ously. We apply CNAqc to several different datasets representing different resolutions 
and cancer types. These include 2788 WGS samples from the Pan-Cancer Analysis of 
Whole Genomes (PCAWG) cohort [28], with median coverage 45 × and somatic data 
generated by more than six tools plus a consensus algorithm, and 235 WGS samples from 
the Genomics England 100,000 Genomes Project [19], with median coverage 100 × and 
data generated by Illumina’s DRAGEN latest pipeline (v3). Moreover, we tested our tool 
on 1464 WES samples from The Cancer Genome Atlas (TCGA) cohort [29] and, finally, 
with 10 WGS samples from two multi-region colorectal cancers at median coverage 
80 × . Results show that CNAqc can achieve excellent performances with little computa-
tional costs. Moreover, the tool is flexible to work with data from many different callers, 
and we find it capable of improving even over pipelines that develop consensus-calling 
strategies, often adopted in large cohort studies.

Results
The CNAqc framework

QC of sample purity and copy number segments

CNAqc performs QC of allele-specific CNAs and sample purity estimates prior (Fig. 1a). 
It adopts different algorithms depending on a classification of the CNA, based on the 
complexity and clonality of the segment. The complexity involves the number of allelic 
modifications required to generate a certain CNA from a wildtype diploid heterozy-
gous reference, the clonality captures the proportion of cancer cells harboring a CNA. 
CNAqc considers simple segments to be diploid heterozygous (1:1), monosomy (1:0), 
copy-neutral loss of heterozygosity (CNLOH, 2:0), trisomy (2:1), or tetrasomy (2:2), all 
of which can be acquired through one copy number aberration event (Fig.  1b; Addi-
tional file 1: Fig. S1a). These are the most frequently observed CNAs in PCAWG [28] 
and allow CNAqc to make inferences with precision (simple CNAs in PCAWG: ~ 80% 
of ~ 600,000 total segments, covering ~ 93% sequenced bases; Additional file 1: Fig. S1b). 
Simple CNAs are also detectable in bulk sampling datasets, where they also account 
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for the majority of subclonal segments (~ 70% in PCAWG; Additional file 1: Fig. S1c-f ). 
Other less frequent CNAs (3,0, 4:1, 5:2, etc.) are more complex to model and QC, as they 
are acquired via multiple mutation steps, e.g., to achieve a 3:0 one single-copy gain is 
required on top of a CNLOH.

Bulk sampling makes the true extent of subclonal CNA heterogeneity diffi-
cult to estimate, as only major subclones can be detected with current sequencing 

Fig. 1  The CNAqc framework for clonal and subclonal CNAs. a CNAqc integrates mutations, allele-specific 
CNAs, and tumor purity π to quality control (QC) clonal and subclonal tumor aneuploidy. Given an input 
purity error tolerance ǫ > 0 , CNAqc computes a score � ∈ R that leads to a pass ( |�| ≤ ǫ ) or fail status. The 
score magnitude � can be used to (i) adjust π and re-parametrise the copy number caller or (ii) to select 
among alternative ploidy and purity estimates (e.g., a diploid versus a tetraploid solution). b CNAqc considers 
clonal simple CNAs, defined as 1:0 (LOH), 1:1 (heterozygous diploid), 2:0 (copy-neutral LOH), 2:1 (triploid), and 
2:2 (tetraploid) states, the most prevalent segments in PCAWG, a large pan-cancer cohort of primary tumors. 
All other CNAs are called complex. c,d VAFs for mutations sitting on 1:1 and 2:1 segments, when π = 1 . For 
2:1, there are two peaks of clonal mutations (33% and 66% VAF). Multiplicities determine whether a mutation 
sits on the amplified segment. e CNAqc equations predict VAF peaks for any CNA, the distance between data 
and expected peaks is at the core of our approach. The color scale ranges from 0 to 1 (low to high VAF) for 
the expected peaks. For complex CNAs, multiplicities range from 1 to the copies of each allele; for subclonal 
CNAs, peaks depend also on clone size, and the evolutionary (linear/ branching) model of evolution. f QC 
for mutations in a 2:1 segment with ~ 90% sample purity. The vertical dashed lines are expected VAF peaks 
matched in the shaded area, obtained normalizing ǫ for segment ploidy, mutation multiplicity, and purity. 
Black dots are peaks detected by CNAqc; if they fall within the bandwidths, the QC result is pass (green status 
bar). QC results are computed per peak, per type of segment, and at the sample level
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resolution. CNAqc supports both clonal or subclonal CNAs, and all QC algorithms 
were designed using the same logic: given a set of major ( nA ≥ 1 ) and minor ( nB ≥ 0 ) 
allele states, with nA ≥ nB and a tumor purity of 0 < π ≤ 1, and SNVs that overlap the 
CNAs, the VAF distribution will contain peaks at expected intervals which depend on 
the percentage of cells harboring the CNA (Fig. 1c,d and Additional file 1: Fig. S2 for 
two examples). Said differently, CNAqc mathematically links nA and nB with the VAF 
of overlapping SNVs given clonality and tumor content. Deviations from expected 
VAF peaks indicate errors, which can be quantified and used to suggest adjustment 
of the input parameters or data. It is possible to QC clonal and simple CNAs using 
this logic and simple algorithms, though subclonal and complex CNAs require more 
exhaustive assessments because they depend on the percentage of cells associated 
to a segment, and the evolutionary steps a CNA has taken. Overall, by combining 
many segments from the tumor genome, CNAqc determines a pass or fail QC result 
per sample, which can be used to (i) re-parametrise the copy number caller, or to (ii) 
select among alternative copy number pro file s returned by an algorithm (e.g., a 100% 
pure diploid tumor versus a 50% pure tetraploid).

The key CNAqc equation (Fig.  1e; Online Methods) predicts a VAF peak for a 
mutation as: 1 ≤ m ≤ nA alleles out of nA + nB total and is present in a proportion 
0 < c ≤ 1 of tumor cells ( c = 1 for a clonal mutation). The expected peak is a function 
of the mutation multiplicity m andc

In real data vm(π , c) is observed with noise that, for sequencing, is well captured 
by binomial or beta-binomial distributions [30]. For CNA segments and at least two 
alleles ( nA > 1 ≥ nB ), the multiplicity m phases mutation mapping on amplified and 
non-amplified segments. For example, for a 2:1 trisomy segment ( nA = 2 , nB = 1 ), 
mutations on the amplified allele have m = 2 and have been acquired before trisomy. 
Equation (1) shows that, for a CNA segment, there could be multiple expected VAF 
peaks as a function of m (Fig.  1d). As presented below, this equation can be gener-
alized for subclonal CNAs, assuming two subclones and given type of evolutionary 
relationship. CNAqc is the only method we are aware of that can consider both linear 
and branching evolutionary models: the two subclones B and C emerge linearly (i.e., 
nested, A → B → C) from an unobserved ancestor A, or a branching event (A → B | 
C) of a common ancestor (Fig. 1e, Additional file 1: Fig. S3).

CNAqc detects VAF peaks using fast peak detection algorithms (Additional file 1: 
Fig. S4) that adopt both nonparametric kernel density estimation and binomial mix-
tures to measure vm(π , c) against data. These algorithms compute an error between 
data peaks and expected peaks and require a threshold ǫ > 0 (in Euclidean space) on 
error magnitude to determine if a peak is matched. To make ǫ interpretable, how-
ever, CNAqc formalizes its link to tumor purity π and implements a non-linear error 
propagation to link π with ǫ (Fig. 1f; Online Methods). This allows the user to input 
ǫ in terms of purity units, which are interpretable and intuitive. The overall QC of a 
bulk sample is determined from all clonal simple CNAs, and a sample score � ∈ R 
that is a linear combination of the errors accumulated across segments. Because of 

(1)vm(π , c) =
mcπ

2(1− π)+ π(nA + nB)
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its interpretability, the score reflects corrections to purity π (e.g., +3% , −7% ) that are 
useful for automatic decision making. For example, for heterozygous diploid muta-
tions and 2.5% purity tolerance ( ǫ = 0.025) in a sample with π = 0.6 (input purity 
60% , clonal VAF peak 30% ), CNAqc will accept data peaks in [27.5%; 32.5%] , and a 
purity estimate in [55%; 65%].

QC of cancer cell fraction (CCF) estimates

In cancer genomics, detecting CNAs along with estimating sample purity and ploidy is 
performed as part of cancer cell fraction (CCFs) analyses. Many pipelines that interpret 
tumor evolutionary trajectories utilize CCFs which, at their core, rely on the estimation 
of m from the data. CNAqc implements the first algorithm to assess the quality of multi-
plicity estimates and, in turn, of CCF estimates, from VAFs.

For a mutation with observed VAF v , CNAqc defines the CCF (Online methods) by 
solving Eq. (1) for c [17]

Note that the binomial noise affecting v propagates to cm(π , v) ; therefore, for a dip-
loid clonal mutation and pure tumor, the CCF c1(1, v) = 2v spreads around 1 because 
v spreads around 0.5. After QC, subclonal deconvolution algorithms can denoise c by 
clustering. The real challenge to applying Eq. (2) is therefore phasing m from VAFs. For 
simple CNAs, this restricts to estimating if m = 1 or m = 2. CNAqc uses a binomial mix-
ture to phase m from VAFs, and the entropy H(z) of the mixture latent variables z to 
identify a VAF range where m cannot be phased reliably because both m = 1 and m = 2 
seem likely. This information-theoretic approach allows CNAqc to provide a confidence 
measure over m , and therefore cm(π , v).

As for general CNA/purity-based QC, a final status (pass or fail) can also be deter-
mined for CCFs, which help discriminate for which mutations a CCF score cannot be 
unequivocally computed from VAFs. For this task, other algorithms are also present to 
aid CCF identification regardless of entropy (Online Methods).

Other features of CNAqc

CNAqc provides functions to visualize copy number segments, read counts, CCFs, and 
peak analysis for clonal and subclonal CNAs (Figs. 2 and 3). For example, in Fig. 3c we 
show results from QC of complex CNAs for a sample with > 3 allele copies, and a large 
subclonal CNA on chromosome 11, intermixing a 2:1 (21% of cells) and a 2:2 subclone 
(79% of cells), compatible with both linear and branching evolution. Moreover, the tool 
contains auxiliary algorithms to smooth segments and detect patterns of over-fragmen-
tation from breakpoints distributions, helping to prioritize additional analysis to deter-
mine events of chromothripsis, kataegis or chromoplexy [5, 17].

An important feature of CNAqc is its flexibility and speed. The tool has been 
designed and tested in a variety of settings and pipelines, also against alternative 
subclonal deconvolution methods which can also detect peaks from VAF data. Tests 
with hyper-mutant tumors with thousands of mutations (e.g., Fig.  3) were used to 
measure the wall-time performance of our method. Notably, CNAqc was able to 

(2)cm(π , v) =
v[(nA + nB − 2)π + 2]

mπ
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load and process ~ 500,000 mutations in ~ 60 s (peaks-based QC) on a standard lap-
top, which was orders of magnitude faster than alternative methods. For example 
(Additional file  1: Fig. S5), for our range of tests, variational inference and Monte 
Carlo methods were from 4/16 times to 100 times slower than CNAqc.

Fig. 2  Analysis of a hepatocellular carcinoma sample with PCAWG consensus calls. a CNAqc visualization: 
allele-specific CNAs (ploidy 2, purity ~ 85%) with major and minor allele counts per segment. This sample 
harbors two driver SNVs hitting genes CTNNB1 and ALB, sitting in diploid heterozygous segments (1:1). 
b–d Read counts for SNVs visualized as variant allele frequencies (VAFs) and depth of sequencing (DP). 
Cancer cell fractions (CCF) obtained by CNAqc suggest that the two drivers are clonal (CCF spread around 
1). e Peak detection QC for simple clonal CNAs, as in Fig. 1f. Peaks are checked independently, and the final 
QC depends on the number of mutations per peak, and whether the peak is matched. The sample-level 
QC is a linear combination of results from each CNA; here calls are passed (green plot; numbers represent 
mutational burden). f,g CCF estimation for mutations mapping to triploid 2:1 segments, obtained using the 
entropy-based and the rough methods. CCF values of clonal mutations spread around 1, CCFs and VAFs are 
colored by mutation multiplicity. The entropy profile (dashed line) delineates crossings of binomial densities 
where CNAqc detects multiplicity uncertainty from VAFs; the entropy method detects uncertainty in 20% of 
the SNVs. The alternative method in panel g assigns multiplicities regardless of entropy. In both cases, the 
CNAqc CCF estimates pass QC with default parameters
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Simulations, single‑cell validation and parameters calibration

CNAqc algorithms and parameters were validated by synthetic simulations, and 
controlled bioinformatics experiments with single-cell data (Online methods).

Validation of error metrics and automatic tool parameterization

We used synthetic data to show that the error metrics implemented in CNAqc work 
as expected for both purity/CNA and CCF QC algorithms, and to parametrise the 
algorithm to work best considering coverage and purity of the input assay (sequenc-
ing parameters).

From ~ 20,000 synthetic tumors with variable coverage (30 × to 120 ×) and known 
purity (0.4 to 0.95), we ran CNAqc with input purity corrupted by a known error, and 
observed that the proportion of rejected (fail QC) samples approached 100% when 

Fig. 3  Analysis of a skin melanoma sample with PCAWG consensus calls. a CNAqc visualization as in panel 
a of Fig. 2. This sample presents high aneuploidy (mean ploidy 3.69), with most of the genome in triploid 2:1 
segments, a very large mutational burden (~ 300,000 mutations) and large subclonal CNAs on chromosome 
11. The CNAqc visualization shows the relative subclone proportions as shifts of the y-axis for the segment, 
as in Battemberg [15]. b CNAqc validates the calls by peak detection. Note that most of the signal is due 
to ~ 80,000 mutations mapping to 2:1 segments (~ 75% of total). c CNAqc validates 18 out of 20 expected 
peaks in complex CNAs (3:0, 3:1, 3:2, 3:3, 4:0, and 4:2). d CNAqc validates subclonal CNAs on chromosome 11, 
where two subclones with 2:1 genome (21% of cells) and 2:2 genome (79% of cells) are detected, using both 
linear and branching models of evolution
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the error exceeded ǫ . These tests showed that the performance of CNAqc is affected 
by sample purity and simulated coverage (Additional file 1: Fig. S6 and S7). Therefore, 
from > 350,000 other synthetic tumors, we regressed false positive rates (FPR), i.e., the 
probability of passing a sample that should fail, against coverage and purity. In this 
way, CNAqc can suggest, for a desired upper bound on FPR (e.g., maximum 10% of 
false positives), the best ǫ considering the coverage and purity of the input dataset 
(Additional file 1: Fig. S8).

Validation of purity adjustments with single‑cell data

We artificially created pseudo-bulk datasets from single-cell datasets with associated 
low-pass data (Fig. 4a) and used that to validate purity-adjustment metrics implemented 
in CNAqc.

We collected mutations and CNAs from single-cell low-pass whole-genome data of 
ovarian cancer cell lines [31, 33]. From 3 tumor clones with distinct CNAs (Additional 

Fig. 4  Validation of CNAqc with single-cell low-pass DNA sequencing. a Pseudo-bulk CNAs from single-cell 
low-pass data of an ovarian cell line [31]. This profile is obtained from pooling CNAs across several diploid 
tumor subclones. This artificial bulk with known ground truth is then used to validate CNAqc (Additional 
File 1: Fig. S9). b QC of LOH and diploid heterozygous segments from panel a, using true tumor purity 
(100%). c Quality control of complex 3:0 segments (cluster I; Additional File 1: Fig. S9). d Correlation between 
purity adjustments suggested by CNAqc and errors created artificially for single-cell data. By construction, 
the desired correction sits on the diagonal because the true purity is 100%; the tool achieves R2 = 0.88 , 
correlation test p-value p < 10

−16 . e Advanced QC of subclonal CNAs from admixing of tumor subclones 
with mirrored allelic imbalance, as originally detected in [32]. In this test, two triploid subclones with mirrored 
alleles (AAB versus ABB) are admixed. CNAqc can validates these calls and identify the true branching 
patterns of evolution (AB → AAB | ABB), which is characterized by a peak of shared mutations at around 50% 
VAF
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file  1: Fig. S9), we created a pseudo-bulk dataset and consensus clone-level CNAs 
(Online Methods), which we validated using CNAqc with true 100% purity (Fig.  4b,c, 
Additional file 1: Fig. S10). We then pooled clonal segments across the 3 subclones to 
create a larger population and observed that the purity adjustment proposed by CNAqc 
with miscalled input purity follows ǫ linearly ( 0.88 ≤ R2 ≤ 0.99 ; p < 10−16 ; Fig.  4d, 
Additional file 1: Fig. S11).

Validation of subclonal CNAs and CCFs

CNAqc validated subclonal CNAs and CCFs in artificial datasets from mixed single-
cell data and real data, showing its ability to retrieve the tumor subclonal evolution and 
implement QC accordingly.

We validated two subclones with trisomy and tetrasomy artificially mixed from low-
pass data (Additional file  1: Fig. S12). Then, using 10 × data [32] and a pseudo-bulk 
mixture of 2 subclones with a trisomy and mirrored allelic imbalance (Additional file 1: 
Fig. S13), we tested the evolution-based QC of complex subclonal CNAs. This test was 
particularly interesting because the two clones have the same segment ploidy (3), but 
the joint presence of AAB and ABB genotypes (mirrored allelic imbalance) can only 
be explained by branching from an AB ancestor (Online Methods). CNAqc validated 
these subclonal CNAs identifying the expected AB → AAB | ABB model for the clones 
(Fig. 4e, Additional file 1: Fig. S14).

Moreover, we computed CCFs from VAFs in pseudo-bulks and, from a cluster of cells 
with a triploid amplification, CNAqc did flag as uncertain the same mutations for which 
we could not compute multiplicity from single-cell data (Additional file  1: Fig. S15). 
Finally, we compared CCFs computed by CNAqc to standard subclonal deconvolution 
tools. On real data, CCFs by CNAqc were consistent with standard methods (Additional 
file 1: Fig. S16) but, importantly, the uncertainty metrics from CNAqc did identify spuri-
ous subclonal clusters explained by miscalled CCFs, showing the importance of using 
QC metrics to avoid propagating errors in downstream analyses (Additional file 1: Fig. 
S17).

Large‑scale WGS pan‑cancer PCAWG calls

The PCAWG cohort ( n = 2778 samples, 40 tumor types) contains WGS samples at 
median depth 45 × and purity ~ 65%, comparable to our simulations. This cohort comes 
with copy number and mutation data generated from 6 state-of-the-art algorithms, as 
part of a curated consensus [16]. Excluding samples with lack of data or too few muta-
tions (Methods), we ran CNAqc on 2589 samples in less than 1 h with a standard com-
puter, confirming the speed of our QC.

Overall PCAWG consensus calls for clonal simple CNAs (n = X segments) were passed 
in 2339 out of 2589 samples (~ 90%) with 3% error purity tolerance ( ǫ = 0.03 ), confirm-
ing the quality of the consensus copy number data (Fig. 5a). As with simulations, the QC 
pass rate was determined by tumor purity and depth of coverage (Fig. 5b). We observed 
paradigmatic examples with low mutational burden that failed QC (Additional file 1: Fig. 
S18), or rare cases with excessively high purity (~ 100%) that, upon re-analysis, were bet-
ter fit with very low tumor content (Additional file 1: Fig. S19). Similarly, we validated 
cases with very high purity > 95% (Additional file 1: Fig. S20). We also examined complex 
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clonal CNA segments with at least 150 mutations (610 samples from esophageal, liver, 
melanoma, ovarian, pancreatic and breast cancers; Fig. 5c). The most prevalent CNAs 
were 3:1, 3:2, and 3:0 (15, 13, and 10%), for which CNAqc matched > 60% of peaks on 
average (Online Methods).

We applied CNAqc to 538 cases with subclonal CNAs called by Battenberg (Fig. 5d) 
with at least 150 mutations per segment, which were found mostly across esophageal, 

Fig. 5  Analysis of the PCAWG consensus calls with CNAqc. a QC for simple CNAs in n = 2589 PCAWG 
samples (median coverage 45 ×), using consensus CNAs and mutation calls. The plot shows the percentage 
of cases with pass status, split by segment type, multiplicity, and tumor type, with sample size shown with 
the asterisks. b Proportion of cases that pass QC, split by purity (low, mid and high) and median depth of 
sequencing (removing outliers with depth < 24 × or > 129 ×). c QC for n = 570 PCAWG samples with complex 
CNAs and > 150 mutations per segment, with tumor types ranked by number of cases. Numbers report the 
absolute number of cases. d Best evolution model used to analyze n = 538 PCAWG samples with subclonal 
CNAs and > 150 mutations per segment, with tumor types ranked by number of cases. e Regression of tumor 
purity against the proportion of segments with unassigned CCF values using the entropy method in CNAqc
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liver, melanoma, pancreatic, and gastric cancers. Interestingly, some of these tumor 
types also carried complex CNAs, suggesting pervasive chromosomal instability. The 
most frequent clonal compositions (listed as clone 1–clone 2) were 1:0–1:1 (~ 33%), 
1:1–2:1 (~ 31%); 2:1–2:2 (19%), 2:0–2:1 (~ 9%), and 1:0–2:0 (~ 7% of cases). For each 
segment, we determined the best fitting model by assessing the percentage of matched 
peaks, avoiding assigning a model if less than 50% of the expected peaks were matched. 
Overall, CNAqc assigned a model to ~ 87% of the subclonal CNAs (Additional file 1: Fig. 
S21 and S22). Interestingly, subclones 1:0–2:0, 1:1–2:1, and 2:1–2:2 were generally bet-
ter explained by linear (A → B → C) evolution implying a temporal ordering among the 
subclones (in 39, 48, and 52% of cases, including for subclones 2:1–2:2 in triploid 2:1 or 
tetraploid 2:2 tumors). This inference can be explained biologically. For example, 1:0–2:0 
subclones could emerge as a CNLOH gain (2:0), after a loss (1:0) from a diploid ancestor 
(1:1). Similarly, 2:1–2:2 subclones can follow a linear amplification path where alleles are 
progressively gained over time. Conversely, subclones 2:0–2:1 were better explained by 
branching models (38%), implying the independent formation from a common ancestor. 
This is intuitive, because, for instance, the evolution from CNLOH to trisomy cannot be 
linear. In general, these statistics also reflected in tumor types, with 2:0–2:1 subclones 
in esophageal adenocarcinomas explained by both models, while 2:1–2:2 subclones are 
better explained by linear models for liver and pancreatic cancers, and melanoma.

Finally, we computed CCFs on the entire PCAWG cohort. As with our simulations, 
the percentage of unassigned CCFs negatively correlated with sample purity (Fig.  5e). 
The CCFs produced by CNAqc (Additional file  1: Fig. S16) were comparable to those 
computed by Ccube, the official PCAWG tool to compute CCFs [34]. Comparing CCFs 
and peak-based analyses, we could conclude that, while peaks could be detected for all 
PCAWG samples, multiplicity phasing would have required higher coverage and purity 
to reduce uncertainty.

High‑resolution WGS calls at Genomics England

The Cancer Programme of the 100,000 Genomes Project was a transformational UK 
government project designed to incorporate WGS into NHS clinical service. Genomics 
England, in partnership with NHS England, generated whole-genome analysis for over 
16,000 fresh frozen tumor samples, with a median coverage of 100 × . These data pro-
vide an ideal retrospective test set for CNAqc, which is now being routinely applied in 
the validation process of the clinically accredited bioinformatics pipeline at Genomics 
England.

We gathered a subset of the WGS data (n = 235 samples from [35]) with mutation and 
CNA calls generated by the Illumina DRAGEN (Dynamic Read Analysis for GENom-
ics; > v3.9) platform [36]. These tumors split into groups of distinct subtypes, with the 
largest groups being pediatric tumors (PT, n = 17), acute lymphoblastic leukemia (ALL, 
n = 104), acute myeloid leukemia (LAML, n = 29), breast cancers (BRCA, n = 41) and 
sarcomas (SARC, n = 44). This test is of particular importance because these samples are 
used to optimize the CNA calling pipelines implemented at Genomics England, which 
serve both clinical reporting and research.

Results from CNAqc (run using the same parameters as for PCAWG) show a high-
quality variant call set with pass rates in all cancer types above 90% (Fig.  6a). In 
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comparison, in lower-coverage PCAWG data some tumor types reached only ~ 70% 
pass rate (even if consensus calling was used). For tumor types with large numbers 
of samples and CNAs, the pass rates for Genomics England data with variant call-
ing done by DRAGEN are much higher than the PCAWG consensus (Fig.  6b). For 

Fig. 6  Analysis of the Genomics England DRAGEN calls with CNAqc. a QC from simple CNAs in n = 235 
Genomics England samples (median coverage 100 ×), using DRAGEN data. The plot is like panel a in Fig. 5 
for PCAWG. b Proportion of cases that pass QC, comparing Genomics England and PCAWG, for three tumor 
types: BRCA (breast cancer), LAML (acute myeloid leukemia), and SARC (sarcoma). c–e QC for subclonal CNAs 
in ALL (acute lymphocytic leukemia), BRCA, and SARC (c), complex CNAs in BRCA, SARC, and PT (pediatric 
tumors) (d), and proportion of segments with unassigned CCF values against purity. Plots are as in panels 
c–e in Fig. 5 for PCAWG. f–h Example QC of clonal simple (g) and subclonal CNAs (h) for a SARC sample with 
associated segmentation (f), where DRAGEN detects aneuploidy as well as a subclonal CNA involving an LOH 
event associated with 410 distinct mutations (in 31% of the tumor cells). These estimates are validated by 
CNAqc which detects, in the data, VAF peaks
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instance, for breast tumors (BRCA), we achieved a pass rate of > 95% (n = 45 seg-
ments) with the Genomics England dataset whereas in PCAWG only ~ 75% of seg-
ments passed QC (n = 232 segments). Similarly, for sarcoma tumors (SARC), we 
achieved a pass rate of > 90% (n = 47 segments) with the Genomics England dataset 
whereas in PCAWG only ~ 75% (n = 20 segments). In general, with 100 × data we 
could also achieve a high pass rate for subclonal CNAs (Fig. 6c), as well as complex 
clonal CNAs (Fig. 6d). In the case of breast cancers, we could identify subclonal LOH 
events validated in 35 out of 36 cases, and the same happened for 32 cases among 
sarcomas. Overall, all the QC computations reported higher success rates with the 
Genomics England dataset as compared to PCAWG (example fits in Fig. 6g,h). This 
trend was confirmed also when we computed CCFs, where we reached ~ 15% of 
unknown estimates when tumor purity in Genomics England samples was ~ 50% while 
in the PCAWG dataset at ~ 50% purity ~ 40% of the mutations could not be assigned a 
reliable CCF. The increased coverage in the Genomics England cohort allowed better 
estimates of tumor CNAs and tumor purity, providing a strong motivation for con-
sidering the depth of coverage of a sequencing assay as a key aspect when designing 
specific analyses.

Large‑scale WES pan‑cancer TCGA calls

The statistical signals used by CNAqc are spread through the whole tumor genome, but 
many assays are limited to sequence, upon capture, only the whole-exome (WES). We 
used data from TCGA to show (i) that the performance of CNAqc is robust also with 
WES data and that (ii) consensus procedures for purity estimation were imprecise in 
many TCGA samples.

First, we collected data for n = 48 lung TCGA adenocarcinomas [29], a tumor type 
with high aneuploidy, for which the sample purity and segments are available from pop-
ular bioinformatic tools (ESTIMATE [37], LUMP [38], and ABSOLUTE [39]), as well 
from a TCGA consensus purity estimation (CPE) obtained by immunohistochemistry 
analysis and the joined tools. We selected the lowest and highest-purity cases to capture 
different levels of data quality (Online Methods) and applied CNAqc successfully to rank 
fits from all callers (Additional file 1: Fig. S23). Strikingly, we found some cases where 
CNAqc failed all purity estimates, including CPE, but passed the one by ABSOLUTE 
(see Additional file  1: Fig. S24 for an example with 80% CPE, failed, and 69% ABSO-
LUTE, passed), which is known to use a mutation-based heuristic to improve fits quality 
(Methods).

To investigate the frequency of this type of errors, we extended this test to n = 1464 
TCGA samples from multiple tumor types, retaining cases with at least 200 mutations 
(Online Methods; Additional file 1: Fig. S25 and S26). We generalized our finding with 
901 cases (60% of 1464) where CPE purity was failed by CNAqc, while the purity pro-
posed by ABSOLUTE often passed QC. We assessed that, had we used CNAqc to select 
the best purity instead of consensus, 785 out of 901 cases (~ 88%) would have passed 
QC, obtaining a purity estimate more precise than the TCGA consensus. This shows 
convincingly that CNAqc can recover a good purity/CNA estimate, even when a consen-
sus approach is invariably confused, i.e., most consensus inputs misscall purity.
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QC‑powered automatic copy number calling pipeline

We used CNAqc to assemble the first automatic copy number calling pipeline (Addi-
tional file 1: Fig. S27) to iterate CNA calling until QC is passed (or for a maximum num-
ber of steps). This pipeline leverages the Sequenza clonal CNA caller [22] and combines 
CNAqc purity-adjustment scores together with ranking of alternative solutions deter-
mined by the Sequenza algorithm. By the generality of CNAqc, this approach could be 
extended trivially to other CNA calling algorithms.

We used the Sequenza-CNAqc pipeline to generate clonal copy number data for two 
colorectal cancer patients with multi-region WGS data associated. From a total of 10 
samples with median coverage ~ 80 × and purity ~ 80% (Additional file 1: Fig. S29), the 
pipeline automatically generated calls that passed QC. Moreover, the tool was also able 
to identify the true CNA profile when artificially miscalled copy number profiles were 
given in input.

Discussion
Cancer precision medicine, boosted by the large-scale adoption of bulk sequencing in 
the clinic, will increasingly rely on landmark cancer genomics programs [19, 28, 40]. This 
poses data quality under the spotlight, advising against manual curation and consensus 
approaches that either do not scale or bring substantial bioinformatic overheads. There-
fore, automatic procedures to quality control (QC) mutation calling pipelines are highly 
desired [4, 41, 42].

To the best of our knowledge, CNAqc is the first framework to formalize QC algo-
rithms for bulk assay, leveraging SNVs and indel mutations, along with allele-specific 
CNAs, tumor purity, and estimations of clonality. CNAqc can be used to process and 
QC the most common CNAs found in human cancers, using distinct algorithms based 
on clonality and the complexity of CNAs under scrutiny. In particular, CNAqc can delin-
eate the evolutionary history of subclonal CNAs and quantify the likelihoods of the 
underlying evolutionary processes, implementing a QC algorithm inspired by tumor 
evolution principles. The evolutionary model implemented is however simple, and in 
future releases, it could be improved to support multiple observations from the same 
tumor (multi-region data), or longitudinal data. Importantly, all algorithms presented in 
our framework have been validated in controlled single-cell experiments and synthetic 
simulations. CNAqc can also support downstream analysis using innovative algorithms. 
In fact, CNAqc is the first model to compute per-mutation CCFs within an informa-
tion-theoretic uncertainty model for the estimation of mutation multiplicities. This is 
biologically very relevant for downstream analyses that rely on CCFs, which are at the 
cornerstone of all copy number timing [17] and tumor evolutionary inference analyses 
[12–18].

CNAqc was used to analyze bulk WGS and WES data from TCGA, PCAWG, and 
Genomics England. Notably, this included copy number and mutation data generated 
from more than 10 widely used bioinformatic pipelines, as well as with consensus calls 
in TCGA and PCAWG. Our analysis proved that sequencing coverage impacts the 
rate of successful copy number calling, with a clear advantage observed when com-
paring ~ 100 × WGS from Genomics England against earlier PCAWG cohorts, both 
in terms of clonal and subclonal copy number detection, as well as CCF computation. 
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Particularly interesting results emerged comparing consensus approaches that com-
bine predictions of distinct algorithms. Consensus-based methods are popular in bio-
informatics and rely on the assumption that by gathering data from many tools we can 
improve the quality of our predictions. While these strategies have obvious computa-
tional overhead, the sensitivity of such procedures is largely dependent on the quality of 
its input methods. Strikingly, we found that in ~ 60% of TCGA samples (from a scrutiny 
of ~ 1500 samples), the consensus was not robust to confounders impacting individual 
tools, and CNAqc was required to identify and fix imprecise consensus purity estimates. 
In general, the possibility that QC-based methods could substitute or at least augment 
consensus approaches would make somatic calling pipelines faster and simpler to organ-
ize or maintain. In this respect, we released the first automatic CNA calling pipeline that 
joins a popular copy number calling algorithm with CNAqc.

The quality of QC by CNAqc depends on the capacity to detect VAF peaks, which 
creates issues when a sample has low purity (e.g., below 20%), low coverage (e.g., below 
30 ×), low mutational burden or when there is significant tumor contamination in a ger-
mline sample [43, 44]. Most of these limitations are “technological” and can be over-
come with higher depth of sequencing and upfront assessment of tumor content. That 
said, there is an intrinsic limit to how well bulk sequencing designs can capture sub-
clonal copy numbers, especially at the scale of single cells [45–48]. This limitation of 
bulk assays may place focus on alternative emerging technologies such as tissue laser 
capture, though in the short to long term this challenge does not reduce the importance 
of assessing data quality from widespread bulk sampling.

Conclusions
Generating high-quality copy numbers and mutation data is a necessity for successfully 
interpreting cancer genomes [12–14, 17, 49–56]. CNAqc can help to assess whether the 
quality of the sequencing data is sufficient to ask specific research questions related to 
tumor aneuploidy, evolution, and general molecular profiling.

With the ongoing implementation of large-scale sequencing efforts, CNAqc offers a 
modular solution to augment established pipelines, aiding the self-tuning of bioinfor-
matics parameters based on quality scores. To our knowledge, this is the first stand-
alone tool which combines a tumor-evolution perspective with common types of cancer 
mutations to automatically control the quality of a sequencing assay.

Methods
CNAqc

Taxonomy

CNAqc supports the two most popular human reference genome assemblies GRCh38 
and hg19 and distinguishes between different types of allele-specific CNAs:

•	 “Simple clonal CNAs”: clonal segments including states of heterozygous diploid (AB 
or 1:1), monosomy loss of heterozygosity (LOH) (A or 1:0), copy-neutral loss of het-
erozygosity (LOH) (AA or 2:0), triploid amplification (AAB or 2:1), and tetraploid 
amplification (AABB or 2:2);
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•	 “Complex clonal CNAs”: clonal segments with any combination of major and minor 
allele copies (e.g., 3:2, 4:0, 6:1). These are complex because, in the most general case, 
they are acquired with multiple subsequent events of acquisition or loss of alleles, 
from a baseline wildtype 1:1 state (normal);

•	 “Subclonal simple CNAs”: simple segments in 2 subclones, with known proportions.

This taxonomy is inspired by the frequency that these events have in the PCAWG 
cohort (Additional file 1: Fig. S1a.), where 36% of clonal CNAs are 1:1, 15% are 2:1, 11% 
are 1:0, 8% are 2:2, and 8% are 2:0. Note that for sex chromosomes we expect, in absence 
of aneuploidy, chromosome X to be 1:1 for females and 1:0 for males. Simple CNAs in 
PCAWG are > 75% of the whole set of > 600,000 segments, and span 93% of all CNA-
covered bases (Additional file 1: Fig. S1b.). In the same cohort, most CNAs are clonal, 
and on average, simple CNAs cover ~ 80% of the overall genome per sample (Addi-
tional file 1: Fig. S1c-d.). At the subclonal level, Battenberg segments with simple CNAs 
are ~ 70% of the overall subclonal ones (Additional file 1: Fig. S1e-f.). We note that the 
CNAqc limitation of handling 2 subclones is consistent with the capacity of popular sub-
clonal callers such as Battenberg, ReMixT, and CloneHD, which can only detect these 
configurations of subclonal copy numbers [15, 26, 57].

These assumptions serve to limit the computational complexity of the problems 
approached in CNAqc [27]. Simple CNAs are evolutionarily acquired in one step from a 
heterozygous germline diploid state. For instance, from a wildtype 1:1 a tumor cell might 
either amplify one allele and reach a 2:1 trisomy, or lose an allele and reach a 1:0 LOH. 
With slightly more complex biological mechanisms, states such as 2:0 or 2:2 can also be 
reached in a single evolutionary step. Complex CNAs require instead articulate model-
ling; for instance, a 4:0 might be the final endpoint of a tumor undergoing whole-genome 
doubling, then further amplifying to 4:2 and eventually reaching 4:0. CNAqc attempts 
some degree of evolutionary inference at the level of subclonal CNAs, where it uses sim-
ple CNAs to determine whether the subclones have evolved linearly or branching out 
of a common ancestor. For instance, if the subclones are 1:0 and 2:0, CNAqc will try to 
determine whether the tumor branched from 1:1 with 1:0 and 2:0 siblings 0 (1:1 → 1:0 | 
2:0), or if the tumor jumped from 1:1 to 1:0 and then from 1:0 to 2:0 0 (1:1 → 1:0 → 2:0), 
modelling 1:0 and 2:0 as nested, or vice versa (1:1 → 2:0 → 1:0). In this formulation, there 
is also some degree of simplification, at least as far as what CNAs are supported to make 
reasonable inferences.

CNAqc is conceptualized to work with high-resolution—i.e., high purity and cover-
age—whole-genome and whole-exome sequencing (WGS) data (see “Analysis of patient 
data”). For clonal CNAs, the method pools mutations from segments with the same 
copy numbers (e.g., all 2:1 segments), either across the whole genome or per chromo-
some. Subclonal segments are instead analyzed without any pooling to support algo-
rithms (e.g., Battenberg) that compute segment-specific CCFs. CNAqc uses the signal of 
mutations to analyze the data; therefore, a challenge with WES or low-resolution WGS 
data is the reduced mutational burden and noise in the VAF, which decreases the signal 
strength. The key determinant to detect VAF peaks is therefore the number of mutations 
per copy state, which can be affected by genomic or microsatellite instability, or by the 
presence of endogenous mutant factors such as smoking or UV light. These conditions 
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can facilitate the application of WES data. At the level of subclonal CNAs, the problem 
is also present since the number of mutations per segment is smaller compared to the 
clonal counterpart.

In general low-purity or low-coverage data impact the QC performance with false 
positives and negatives rates. In terms of how this impacts the automatization of the 
QC step, in our best practices we randomly check samples if the median coverage is 
lower than 50 × and the purity is below 50%. These cutoffs have been determined by 
cross-referencing simulation results, as well as by the large-scale application of our 
tool to both WGS and WES data.

Simple clonal CNAs

Expected VAF peaks for clonal CNAs

A bulk is a mixture of tumor and normal cells present in proportion π > 0 and 
(1− π) , respectively. Each mutation is present in a percentage 0 < c ≤ 1 of tumor 
cells, the cancer cell fraction (CCF) of the mutation; to introduce our framework, we 
consider clonal mutations (with c = 1 ). We use a model to describe the position of a 
clonal VAF peak in the data, assuming the input clonal segments and purity are cor-
rect. This equation links all segments with the same allele-specific CNA.

In this manuscript, we denote nA : nB segments with nA and nB copies of the major 
and minor alleles (e.g., 1:1 has nA = nB = 1 ; 1:0 has nA = 1, nB = 0 ). With m ≥ 1 we 
denote the multiplicity (or copies) of a mutation in the tumor genome: for simple 
CNAs 1 ≤ m ≤ 2 , whereas for complex 1 ≤ m ≤ nB ≤ nA . As in ASCAT [21], mπ is 
the expected proportion of reads attributed to a mutation with multiplicity m . How-
ever, while ASCAT uses germline single-nucleotide polymorphisms (SNPs), our 
approach uses somatic mutations. While the conceptualization is similar and already 
appears in [27] for reasons other than QC, using mutations has two advantages. 
First, VAFs are orthogonal to B-allele frequencies (BAFs) often used by CNA callers. 
Second, certain genome configurations cannot be detected from BAFs while they 
can be clearly detected from VAFs. As an example, consider a whole-genome dupli-
cation (WGD) where the BAF is the same as a 1:1 heterozygous diploid state because 
WGD duplicates both A and B alleles (see below). Conversely, the VAF distribution 
is bimodal, with one mode for mutations accumulated before WGD (e.g., in a 1:1), 
and one for those subsequent to WGD.

For segments nA : nB , the proportion of all tumor reads is π(nA + nB) , where 
nA + nB is the ploidy of the segments (to be distinguished from the ploidy of the 
overall tumor). For a healthy diploid normal and tumor clonal mutations sitting on 
nA : nB segments,

is our expectation for VAF peak. To simplify notation, we sometimes use vm(π) to 
represent peaks of clonal mutations (where c = 1 ). Equation (1), which we use below 
to compute also CCFs, describes our belief about VAF peaks assuming the segmen-
tation and purity π are correct, and “phasing” mutations on the amplified or non-
amplified alleles via m . As an example, for π = 1 and a clonal heterozygous diploid 

(1)vm(π , c) = mπc/[2(1− π)+ π(nA + nB)]
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segment ( 1 = nA = nB ), since m = 1 then VAF peaks at vm(1) = 0.5 . Instead, for WGD 
( 2 = nA = nB ), clonal mutations in single ( m = 1 ) or double ( m = 2 ) copy give 
v1(1) = 0.25 and v2(1) = 0.5 . We note that Eq. (1) holds for both SNVs and indels but, 
as best practice, we often apply it to SNVs to avoid noisy VAF measurements of indels, 
which are prone to well-known alignment issues.

Peaks detection algorithm (Additional file 1: Fig. S4)

CNAqc implements a kernel-based and a mixture-based strategy to detect VAF peaks. 
The former first smooths VAFs via kernel density estimation with fixed bandwidth, and 
then uses external R packages for peak detection to determine density peaks above 1/20 
(empirical cut) of the maximum observed peak. The latter uses a finite Dirichlet mixture 
with binomial likelihood, as implemented in the BMix [30] package (https://​carav​agn.​
github.​io/​BMix/). The latter strategy is inspired by subclonal deconvolution methods, 
and computes the density for w clusters (default w < 5 ), with model-selection to opti-
mize w using the Integrated Classification Likelihood score [30]; the likelihood is

where πi are the mixing proportions of the mixture (not to be confused with sample 
purity). Here we use a binomial likelihood for rx successes determined as the number 
of reads with the mutant covering mutation x , nx is the total trials given by sequenc-
ing depth at the locus, and pi the binomial probability. If data was perfect, pi should 
match expected VAF peaks from Eq. (1). A key advantage of BMix over other deconvolu-
tion tools is the fast maximum likelihood implementation, with full access to the model 
parameters.

Peak‑based score metrics

The peak-matching algorithm (Additional file 1: Fig. S4) pools at the genome or chro-
mosome-level all mutations from segments with the same nA : nB . As output, it deter-
mines a score per-mutation multiplicity, which is propagated to the sample with a linear 
combination weighted by the number of mutations in a segment. Note that by mapping 
scores along the genome, CNAqc can QC even specific portions of the tumor genome. 
The scores have a sign to reflect purity adjustments to fit Eq.  (1) better, and the sam-
ple-level score is compared with a user-defined ǫ > 0 to determine an overall pass or 
fail status. ǫ is in units of sample purity and represents the maximum error we tolerate. 
For example, for ǫ = 0.05 , if the true purity was 60%, CNAqc would pass estimates in 
[55%, 65%], and fail others. Mathematically, the range associated to ǫ , as well as ǫ itself 
are adjusted to account for ploidy and mutation multiplicity, converting error measures 
from VAFs to purity units (see below).

In the most general formulation we detect n peaks d1, ..., dn from VAF, which we 
need to match to peaks predicted by Eq.  (1). The mapping strategy is subject to some 
degree of freedom, and in CNAqc we decided to match every expected peak vm(π) to 
a data-peak d∗ by minimizing the geometric distance d∗ = argminD|di − vm(π)| where 
di ∈ D . The choice of the peaks to consider (set D ) has two options: we might either 

(1.1)f (X |π , p ) =

x∈X

w

i=1

πiBin(rx|nx, pi )

https://caravagn.github.io/BMix/
https://caravagn.github.io/BMix/
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consider all data peaks (i.e., D = {d1, ..., dn} ), or only peaks to the right of vm(π) (i.e., 
D = {di > vm(π)|i = 1, .., n}). The most general and default strategy is the first, but the 
second is of particular help when we search for miscalled breakpoints. For instance, 
if the caller has returned a diploid segment that is actually stretching over a miscalled 
LOH segment, then the second strategy will detect the VAF peak of the miscalled LOH 
and inform us of the error.

Whatever is the peak-matching strategy, distances in VAF space need to be propagated 
to purity space, because the input tolerance ǫ is in units of purity. This VAF-purity map-
ping depends on the particular CNA segment we consider, and mutation multiplicity. 
Considering clonal mutations ( c = 1 ), we are interested in the error propagation, in VAF 
space, on expected peaks given an expected error ǫ of the input purity. In order to do this, 
we have to linearize the function vm(π) that maps purity π to the expected peaks in VAF 
space. This is achieved by performing a first-order Taylor expansion of the finite increment 
�vm(π , ǫ) = vm(π + ǫ)− vm(π) , which requires to compute the first derivative of vm(π) 
with respect to π . We obtain, by denoting p = nA + nB , the following

This means that, for a given purity error ǫ , the error on VAFs �vm(·) depends on π and 
m . Consider, for instance, a 2:1 segment for a tumor with purity 90%, ǫ = 0.05 (5%) cor-
responds to an error in the VAF of approximately �v1(π = 0.9, ǫ = 0.05) = 0.01(1%) 
and �v2(π = 0.9, ǫ = 0.05) = 0.02(2%) for the VAF peaks with multiplicity m = {1, 2} 
respectively.

By inverting Eq. (1), one can express the purity as a function of the VAF, ploidy, and mul-
tiplicity and derive the error propagation formula from the VAF to the purity space. Using 
the same approach as above, we can treat the purity as a function of the VAF by inverting 
Eq. (1) with respect to π and setting c = 1 . We treat now vm as a variable, and π as a func-
tion of vm for a given m. The formula for π is

Then, to derive a purity variation function �π(vm,�vm) = π(vm +�vm)− π(vm) , we 
assume an error �vm on peaks position and truncate the Taylor expansion of π(vm) at the 
first order to get the error propagation formula

This makes sense, and If we replace in this formula Eq. (1) and (1.2) of vm and �vm we 
obtain the original error ǫ in purity space

Peaks are matched by including a VAF tolerance σ (e.g., 2%, in units of purity), which 
helps ameliorate the fact that we do not explicitly model noise affecting peak detection. The 

(1.2)�vm(π , ǫ) ≈
∂vm

∂π

ǫ = 2mǫ/{[2(1− π)+ πp]2}

(1.3)π(vm) = 2vm/[m+ (2− p)vm]

(1.4)�π(vm,�vm) ≈
∂π

∂vm
�vm = 2m�vm/[m+ vm(2− p)]2

(1.5)

2m�vm

[m+ vm(2− p)]2
=

2m 2mǫ

[2(1−π)+πp]2

[m+
mπ(2−p)

2(1−π)+πp ]
2
=

4m2
ǫ

[m[2(1− π)+ πp] +mπ(2− p)]2
= ǫ
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tolerance is used so that a comparison of whether a point is inside an interval, becomes a 
problem of measuring the overlap among the intervals. The intervals

are created with centre at d∗ with size 2 σ , and tested for overlap with the interval. 
The clonal peak for multiplicity m is matched by d∗ only if the intervals overlap, i.e., 
|IVAFm ∩ Im| > 0.

The QC status per copy state with two possible multiplicity values is defined by tak-
ing the status of the peak associated with the largest number of mutations nm , i.e., as 
majority voting weighted by mutation counts. The value of nm is determined by binning 
the VAF distribution with 100 bins from 0 to 1 (size 0.01), and counting the number of 
mutations per bin of the matched peak. In this way, CNAqc passes a copy state if the tall-
est of its peaks is a pass, and is associated with more mutations than any failed peak. The 
sample-level QC status is based on an error metric that uses the actual distance between 
the centers of the intervals, d∗ and vm , which is given by d∗ − vm and described below.

An error metric is assembled across simple clonal CNAs to determine a sample-
level score. Consider wk the normalized number of mutations mapped to copy state k , 
rescaled by 2 if the CNA is supposed to have two peaks. For every copy state and multi-
plicity, we have a pass or fail status from peak detection. We split pass ( Pk ) from fail ( Fk ) 
peaks, and define two scores by linear combination

where the subscript denotes the copy state (i.e., 1:0), and d∗k denotes the peak matched 
for multiplicity m in state k . We define the CNAqc overall sample score �

as a linear combination of terms that can be either positive or negative, depending on 
whether the matched peaks are on the right or left of the expected peaks. The sample 
score � is a weighted mean since by construction all the wk sum to one, and the terms 
constitute a partition. The overall sample status is finally taken by comparing �PASSk  and 
�
FAIL
k  and selecting the status corresponding to the largest.

Complex clonal CNAs

Complex clonal CNAs are also QCed by a peak detection algorithm, but with a proce-
dure that is simpler than the one proposed for simple clonal CNAs. So, while the sam-
ple-level QC is determined by simple CNAs, this procedure helps understanding if more 
complex states of aneuploidy inferred by a copy number caller are supported by data.

The procedure implemented in CNAqc works by matching VAF peaks, using a subset 
of the algorithms discussed above. Expected peaks are considered by applying Eq.  (1) 
with mutation multiplicity ranging from 1 to the maximum between the major and 
minor allele counts of the considered segment (e.g., for a 4:2 copy state multiplicities 
from 1 to 4 are tested). Somatic mutations, as in the previous analysis, are pooled among 

(1.6)IVAFm = [d∗ − σ , d∗ + σ ]andIm = [vm −�vm, vm +�vm]

(1.7)�
PASS
k =

∑

dm∗ ∈Pk
wk

(

dm∗ − vkm

)

, �FAILk =
∑

dm∗ ∈Fk
wk(d

m
∗ − vkm)

(1.8)� =
∑

k∈Pk
�
PASS
k +

∑

k∈Fk
�
FAIL
k
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segments with the same CNA, either across the whole genome or at the chromosome 
level.

To make this analysis faster, peaks in complex CNAs are inferred solely by the KDE 
heuristic, matching with the “closest” modality adopted for simple CNAs. Moreover, for 
every expected peak, the input parameter (purity tolerance) is used without performing 
any conversion from purity to VAF space. For complex CNAs, a table is compiled with 
every expected data peak, which depends on the mutation multiplicity, and a pass or fail 
status. No segments-level or sample-level scores are assembled in this case.

Subclonal CNAs

CNAqc can QC subclonal CNAs for 2 subclones with relative proportions ρ1 and ρ2 
satisfying ρ1 + ρ2 = 1 , and with simple CNAs. Compared to clonal segments, the QC 
of subclonal CNAs requires one to elicit the evolutionary trajectory of the subclones, 
because VAF peaks depend on the particular phylogenetic relationship between the sub-
clones. In particular, VAF peaks depend on whether subclones originate upon branching 
from an unobserved ancestral state, or whether they evolve linearly. If they branch, they 
are siblings; otherwise, only one descends directly from the ancestral state. For instance, 
if the subclones are 1:0 and 2:0 with ancestral 1:1 it could either be that an heterozygous 
diploid cell, upon division, originated two distinct types of LOH (branching model 1:1 → 
1:0 | 2:0), or could be that the diploid ancestor first loses one allele (generating 1:0), and 
then amplifies the remaining allele (linear model 1:1 → 1:0 → 2:0). One might also think 
that longer paths (e.g., 1:1 → 2:1 → 2:0 → 1:0) are less likely and assume that the shortest 
one is followed in most situations.

Fixing the time in which one subclone separates from the other is crucial for deter-
mining the multiplicity of the mutations accumulated before the split, which are shared 
across the subclones. Suppose, for instance, that subclones originated independently 
from a 1:1 cell: only mutations present in the original clone (ancestral mutations) will 
be shared, and subsequent CNAs will alter their multiplicity independently in each sub-
clone. Conversely, if subclones evolved together up to a certain configuration before one 
of the two acquired a further alteration and expanded independently, the multiplicity of 
shared mutations will depend on that of the last shared copy state.

In order to account for the multiplicity of both shared and private mutations, CNAqc 
implements a recursive tree-generation algorithm that first (i) reconstructs the evolu-
tionary tree (linear versus branching) that led a starting cell to develop into two sub-
clones, and then (ii) computes multiplicities based on the tree. The starting state is a 1:1 
diploid cell (default), but can be changed. The algorithm simulates progression from the 
initial to the final states by performing single-allele duplication, deletion, and mutation 
accumulation. Branching and linear scenarios are considered separately, and for every 
progression from X to Y only the shortest path is retained. Given paths, shared and pri-
vate mutation multiplicities are determined based on the ordering of the amplifications 
and deletions, and the expected peaks are determined.

Consider two subclones nA,1: nB,1 and nA,2: nB,2 , the expected peak for a shared muta-
tion with multiplicity m1/m2 is
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The total multiplicity of mutations shared is the sum of the total multiplicities. Private 
mutations found solely on subclone i ∈{1, 2} have multiplicity m ∈{1, 2} , and the expected 
peaks are

Additional file 1: Fig. S3 shows the application of Eqs.  (1.8) and (1.9) to an example 
of a bulk sample containing two subclones (Additional file  1: Fig. S3a), and the result 
of linear and branching models (Additional file 1: Fig. S3b) are compared. The two sub-
clones have proportions ρ1 = 0.75 andρ2 = 0.25 , and the tumor purity isπ = 0.8 . In 
the example of Additional file  1: Fig. S3c, the subclones have CNAs nA,1: nB,1 = 1 : 1 
andnA,2: nB,2 = 1 : 0 , and have three expected peaks:

•	 v{m1=1,m2=1} , for shared mutations;
•	 vm1=1 , for private mutations on the first subclone and;
•	 vm2=1 , for private mutations on the second subclone.

Since the multiplicities are either 1 or 0, expected peaks for the linear and the branch-
ing models are equivalent, though they correspond to different mutation groups. For 
example, a shared peak at 37% VAF comes from

and two private peaks instead come at vm1=1 = 0.28 and vm2=1 = 0.09.
More interesting is the case of two 2:1 and 2:0 subclones (Additional file 1: Fig. S3d), 

where the tumor purity is again π = 0.8 and the subclone proportions ρ1 = 0.75 and 
ρ2 = 0.25 , but here the branching and linear models have different peaks. The branching 
model (AB → AAB | BB) has the amplification and the deletion of the same allele (A) for 
the two subclones, and the amplification of the other (B) in one of the subclones. In this 
way, the major allele of one subclone (B) is the minor allele in the other. Five peaks are 
expected, of which only v{m1=1,m2=2} = 0.38 is shared and corresponding to mutations 
present on the ancestral allele, while vm1=2 = 0.46 , vm1=1 = 0.23 , and vm2=2 = 0.15 and 
vm2=1 = 0.08 , correspond to private peaks for the subclones.

Instead, the second branching model (AB → ABB | BB) sees the independent amplifi-
cation of the same allele (B) in the two subclones. Private peaks remain as in the above 
model, but shared peaks have a different position with v{m1=2,m2=2} = 0.61 . Finally, in 
the only possible linear model (AB → AAB → AA) the 2:0 subclone arises from the 2:1 
upon loss of the minor allele. This scenario is quite different from the previous two, 
as the number of expected peaks becomes four, two of which ( v{m1=2,m2=2} = 0.61 , 
v{m1=1,m2=1} = 0.31 ) are shared and two ( vm1=1 = 0.23 , vm2=1 = 0.08 ) are private.

(1.8)v{m1,m2} =
(m1ρ1 +m2ρ2)π

2(1− π)+ π(ρ1(nA,1+nB,1)+ ρ2(nA,2+nB,2))

(1.9)vmi =
miρiπ

2(1− π)+ π(ρ1(nA,1+nB,1)+ ρ2(nA,2+nB,2))

v{m1=1,m2=1} =
(m1ρ1 +m2ρ2)π

2(1− π)+ π(ρ1(nA,1+nB,1)+ ρ2(nA,2+nB,2))
=

(0.75+ 0.25)0.8

2(1− 0.8)+ 0.8((2)0.75+ 0.25))
= 0.37,
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CCF estimation

In the field, many algorithms are available to compute CCFs [21, 27] and, some of the 
most effective ones (e.g., PyClone, Ccube), carry out simultaneous subclonal deconvolu-
tion along with CCF computation [34, 58]. The actual CCF value of a mutation should be 
obtained from denoised VAFs, i.e., VAFs removed of the binomial observational noise, 
which is the principle of tools like PyClone [13, 58]

However, Roth et al. and Gillis and Roth [13, 58] reported per-mutation CCFs, which 
are CCF estimates that retain the observational noise originating from VAFs. These 
values are more complicated to be interpreted because they are more prone to misin-
terpretation of the actual denoised CCF, as we discussed in section “Simulations, valida-
tion, and comparison to deconvolution tools”. For this reason, we developed in CNAqc 
a per-mutation CCF computation strategy that is able to QC these types of estimates. 
This functionality should be used as a source of orthogonal validation for deconvolution-
based CCF computation algorithms that report this type of metric.

From VAFs to per‑mutation CCFs

The equation to compute CCFs in CNAq converts the VAF (observed) v > 0 of a muta-
tion with multiplicity m (to be estimated) into the CCF c as follows

Per-mutation CCFs derive from VAFs and for this reason harbor the same observa-
tional noise. For example, an heterozygous clonal diploid mutation in a pure tumor has 
50% theoretical VAF and CCF c = 1 , because 100% of cells harbor the mutation. If it sits 
on a 2:1 segment, its theoretical VAFs are either 33%—m = 1 out of 3 copies—or 66%—
m = 2 out of 3 copies—but still c = 1 . However, since VAFs are observed with binomial 
noise, their observed values spread around the theoretical ones (e.g., around 33%), then 
CCFs are subject to the same noise rescaled by Eq. (2). This leads to a contradiction with 
the term “fraction” which by definition cannot exceed 1 but, for per-mutations CCFs 
converted by Eq. (2), VAF-associated noise spreads CCF values around their theoretical 
estimate. In this sense, the CCF of a clonal mutation spreads around c = 1 using Eq. (2), 
as already reported in other popular papers—see, e.g., Figs.  12 and 13 in Methods of 
[16]. Nonetheless, subclonal deconvolution methods, e.g., [13] can filter out binomial 
noise and return values that range in [0,1]. However, this computation is carried out 
after CNAqc, as it goes beyond the idea of performing QC.

CCF computation algorithms in CNAqc

Tumor subclonal deconvolution algorithms, e.g., PyClone [13], denoise CCFs by com-
puting cluster-level rather than per-mutation CCFs (i.e., per-clone/per-cluster CCFs). 
Instead, CNAqc determines per-mutation CCFs for mutations mapped to simple clonal 
CNAs, and a pass or fail status for the CCFs, determined by a metric to filter out muta-
tions with uncertain estimates. In this way, per-mutation CCFs by CNAqc can be used 
to QC tumor evolution inferences that leverage CCF clusters, for instance [30, 59]. A 
limitation of CNAqc compared to other methods is to consider a subset of CNAs; this 
is motivated by the difficulty in phasing, from VAFs, mutation multiplicities from any 

(2)cm(π , v) = v[(nA + nB − 2)π + 2]/mπ
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CNA segment (complex and subclonal). Notably, the computations by CNAqc are how-
ever much faster, compared to analogous deconvolution tools [13, 15].

CNAqc offers two approaches to compute per-mutation CCFs: (i) an entropy model that 
uses binomial mixtures peaked at VAFs from Eq. (1) that phases mutation multiplicity using 
the mixture latent variables (capturing uncertainty from the latents), (ii) a rough model that 
uses the mixture, but does not model uncertainty. The former model, if there is too much 
uncertainty on the multiplicity of a mutation, can leave it undetermined (as its CCF), and 
return NA; this is how uncertainty is reported in CNAqc. The rough method, instead, will 
always assign a multiplicity m ∈ {1, 2} . The final QC status of some segments (e.g., all 2:1) 
is determined from the proportion of mutations with available CCF, with the idea to pass 
QC only if the number of assignable CCFs exceeds a user-defined threshold (default 10%). 
Therefore, the latter computation method will always pass QC because it does not imple-
ment uncertainty.

We first detail the rough approach; we describe the case of 2:0, 2:1, and 2:2, the others 
being trivial. To initialise a mixture:

(1)	 We build two binomial densities from the theoretical expectations of the VAF 
peaks, i.e., v1 and v2 , depending on the copy state, as defined in Eq. (1). This will cre-
ate, for instance, one binomial with parameter p = 0.33 and one with p = 0.66 for 
a pure ( π = 1 ) tumor and 2:1;

(2)	 We fix the number of binomial trials to the median coverage of the mutations, and 
compute the 1 and 99% quantiles of the data distributions to obtain a VAF range 
around each peak.

(3)	 Finally, we count mutations that, according to VAF, map to either one or the other 
computed range. The number of mutations n1 andn2 , associated to multiplicity 
m = 1 andm = 2 , is then used to obtain the mixing proportions π1 = n1/(n1 + n2) 
and π2 = 1− π1 to complete the model.

With these parameters, denoting by Bin(x|vm) the binomial likelihood for mutation x 
with multiplicity m , we can compute the mixture likelihood

In a mixture model, we have latent variables z as a matrix of mutations by clusters, for 
which we define, the probability of assigning read counts data for mutation n to component 
i ∈ {1, 2}

With these latents, every row of matrix z is a categorical random variable reporting the 
probability of assigning m = 1 or m = 2 to a mutation, for which we define the entropy

The entropy is maximal if zn,1= zn,2 , i.e., the mutation is equally likely in single and dou-
ble copy, and is therefore uncertain to be assigned. As opposite, the entropy is minimal if 
zn,1 = 1 and zn,2 = 0 , or vice versa. If the entropy is low, the mutation is then difficult to 

(2.1)f (X|vm) =
∏

x∈X

∑

m
πmBin(x|vm)

(2.2)zn,i = f (X |vi)/[f (X |v1)+ f (X |v2)]

(2.3)H(zn) = −zn,1log(zn,1)− zn,2log(zn,2)
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phase to single- or double-copy mutations, using VAFs. The shape of the entropy resem-
bles—by construction—a growing curve with a central spike, which we use to create a 
simple criterion to discriminate high from low entropy. The geometric intuition of this cri-
terion is that at the crossing of binomial densities peaked at m1 and at m2 , if the H(zn) is 
high we cannot confidently phase mutation multiplicities. The amount of binomial overlap 
depends on coverage and purity, which is the technical reason CCFs are more “uncertain” 
for low-resolution data.

CNAqc uses a simple peak detection heuristic (similar to the one for QC) to inspect 
H(zn) and determine peaks {h1, h2} around the spike. Every mutation in the range

cannot be confidently assigned multiplicity values and are therefore undetermined using 
the entropy method. Their per-mutation CCFs is also reported as an NA value (Not 
assigned).

The rough approach works as opposite, as it determines the midpoint 
o = v1 + (v2 − v1)π1 between the two expected theoretical VAF peaks v1 and v2 , given 
the mixing proportion π1 of the first mixture component. The midpoint is computed by 
weighting each of the two peaks proportionally to the number of mutations that appear 
underneath each peak, which we compute like with the entropy method. The midpoint 
is a cut: x < o are phased to a single copy, values above to two copies. This procedure 
requires data with good general quality because it assumes that all mutations can be 
phased correctly by a hard VAF split, a fact that depends largely on coverage and purity.

When multiplicities have been determined, per-mutation CCFs are computed by using 
Eq. (2).

Other features

Genome fragmentation detection

Some recently identified patterns of somatic CNAs can be attributed to the presence of 
highly fragmented tumor genomes, termed chromothripsis and chromoplexy, or local-
ized hypermutation patterns, termed kataegis [60]. While these can be identified using 
dedicated tools, CNAqc offers a simple statistical test to detect the presence of potential 
over-fragmentation in a region of interest, a prerequisite that could point to the presence 
of such patterns. CNAqc analysis does not substitute dedicated tools, but provides pre-
liminary information to determine what parts of the genome might be run with ad hoc 
methods.

At the level of chromosome arms (1p, 1q, 2p, 2q, etc., or subsets), CNAqc uses the 
length CNA segments to classify “long” and “short” fragments with a cut parameter 
µ > 0 (default 0.2), and a segment longer than a fraction µ (rescaled to 100) of the arm is 
considered long. Recent evidence from large pan-cancer studies can be used to calibrate 
this parameter to cancer-specific values [5].

Then, a null hypothesis is used to compute a p-value using a binomial test based on k , 
the number of trials given by the total segments in the arm, and the observed number 
of short segments s . The binomial distribution for H0 is defined by µ , and the null is 
the probability of observing at least s short segments. CNAqc defines a one-tailed test 

(2.4)INA = [h1, h2]
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for whether the observations are biased towards short segments, adjusting the p-value 
for family-wise error rate by Bonferroni, i.e., dividing the desired α-value by the number 
of tests. This test is applied to a subset of chromosome arms with a minimum number 
of segments and that “jump” in ploidy by a minimum amount (empirical default values 
estimated from trial data). The arm-level jump is determined as the sum of the difference 
between the ploidy of two consecutive DNA segments. These covariates are similar to 
those used to infer CNA signatures from single-cell low-pass WGS [11].

Segment smoothing

Smoothing is an operation that can be carried out, at the level of clonal segments, before 
testing for over-fragmentation. This operation does not affect the ploidy profile of the 
calls, but reduces the amount of breakpoints that otherwise inflate the p-value of the 
binomial over-fragmentation test in CNAqc.

We implemented this operation to reduce the number of segments reported by a 
caller, because we observed that in real data several callers break contiguous segments 
even without actual copy number changes (i.e., the same numbers for the major and 
minor alleles are reported, but a breakpoint is present to break a segment). These types 
of behaviors are arguably linked to the segmentation algorithm of the caller, and its abil-
ity to call segments over a certain genome length. Therefore, in CNAqc, by smoothing 
we merge two contiguous clonal segments if they have exactly the same allele-specific 
profile. The smoothing procedure is controlled by a distance parameter with 1 megabase 
as default value, which avoids merging segments that are above that distance apart.

Chromosome‑level analyses

CNAqc can perform QC-based analysis at the chromosome level, namely for each chro-
mosome separately. This functionality can be useful to spot samples where the estimate 
of the bulk purity is correct, but there are large segments with miscalled allele-specific 
segments (e.g., large sections of the genome that are called triploid while they should be 
diploid).

We explain the advantage of this functionality by modifying the calls for the PCAWG 
hepatocellular carcinoma ca5ded1c-c622-11e3-bf01-24c6515278c0. First, we retrieved 
SNVs mapped to diploid (1:1) and triploid (2:1) segments; genome-wide allele-specific 
consensus CNAs are characterized by ploidy 2 and a purity of ~ 85%. We then simulated 
the unlikely case in which a copy number caller fails to call the diploid regions as such, 
and instead assigns them a triploid 2:1 state (Additional file 1: Fig. 2a-c).

Genome-level peak analysis computes a quality score for pooled 2:1 segments, fail-
ing the whole-triploid solution at the correct purity, and proposing a purity correction 
of ~ 7% (Additional file 1: Fig. 2c). For this weird case, however, the chromosome-level 
CNAqc analysis can identify the source of error (Additional file 1: Fig. 2d). In this case, 
we easily verify that CNAqc fails the triploid solution for each chromosome that con-
tains mostly non-triploid segments—chromosomes 2, 3, 4, 6, 7, 10, 11, 13, 14,15, 16, 
18, 19, 20, and 21—while CNAqc passes the ones containing a significantly large trip-
loid region—chromosomes 1, 5, 8, and 17. While these types of errors in the data are 
unlikely because a copy number should detect different input depth ratios and B-allele 
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frequencies, this type of analysis can be helpful to inspect, at narrower resolution, the 
quality of the input segments.

Simulations, validation, and comparison to deconvolution tools

Peak detection (base simulations)

We tested CNAqc on a synthetic dataset of ~ 20,000 tumors, generated to mimic data 
that we observed in real patient tumors. We first simulated synthetic VAFs from clonal 
CNAs generated with breakpoint distributions following Poissons (6 segments per 
chromosome, on average, and a Dirichlet copy state concentration 1 for 1:0, 1 for 2:0, 
6 for 1:1, 2 for 2:1, and 1 for 2:2). Then we simulated Poisson-distributed coverage with 
median depth 30 × , 60 × , 90 × , and 120 × , and set purity to 0.4, 0.6, 0.8, or 0.95. The 
idea of this test was to simulate a tumor with purity π and run CNAqc with an input 
purity that contained a positive or negative error ϕ , i.e., we imputed CNAqc purity 
π + ϕ . Then, for different values of the input tolerance ǫ , i.e., the maximum purity error 
we want to tolerate in CNAqc, we run the tool with default peak-matching parameters 
and perform quality control. Ideally, when the input error ϕ is lower than tolerance ǫ , 
CNAqc should pass the sample.

We performed QC applying an error on the purity in range [0; 0.2] with intervals of 
length 0.02, setting a tolerance on the purity error ranging in [0.01; 0.05] with intervals 
of length 0.004. We tested CNAqc on 100 simulated tumors for any combination of all 
the parameters and consistently observed that, as the purity error ϕ exceeds tolerance ǫ , 
the proportion of failures approaches 100% (Additional file 1: Fig. S6). For instance, set-
ting a tolerance parameter of 2%, we can accept a purity error of 5% at most. Over this 
threshold, the proportion of failed samples reached maximum at ~ 7%. One can check 
this behavior for the samples of purity 0.95 and coverage 90 × : for a tolerance of ~ 2%, 
the proportion of rejected samples is close to 0% when the purity error is smaller than 
5%, it increases to 70–75% for a purity error of ~ 5/6%, while for a purity error of ~ 10% 
the fail proportion is 100%. From the test, we also observed that the ability of CNAqc to 
detect samples with incorrect purity improves consistently as we increase coverage, with 
this effect more evident for samples with high purity. For the same tumors, we also com-
puted CCFs and the proportion of mutations for which CNAqc could not phase multi-
plicity (for 2:0, 2:1, 2:2). We see the percentage of unassignable mutations (Additional 
file 1: Fig. S7) to decrease as we increase coverage and purity, meaning that the computa-
tion of CCFs and multiplicities depends on these parameters. The observed trend was 
expected, since at low coverage and purity we have the overlaps between clonal clusters 
which makes it harder to phase multiplicity from VAFs.

Validation with single‑cell copy number data

We validated the methodologies implemented in CNAqc by adopting complementary 
single-cell copy number data. We collected low-pass single-cell data using the Direct 
Library Preparation (DLP +) protocol from an ovarian cancer cell line [31]. DLP + is an 
amplification-free library preparation protocol to generate high-resolution single-cell 
WGS data suitable for cell-level calling of both CNAs and SNVs. We used this type of 
data to assemble monoclonal and polyclonal pseudo-bulk populations and validate all 
the functionalities of CNAqc.
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We first clustered cells with similar allele-specific CNAs which we computed using 
SIGNALS [33]. These clusters correspond to monoclonal populations composed of 
100% tumor cells and are characterized by specific CNAs (Additional file  1: Fig. S9). 
Then we obtained SNVs per cell, generated also in [31]. From cluster assignments and 
read counts per cell, we generated a pileup of read counts per clone (sum of both ref-
erence and alternative allele counts for all cells in a cluster/clone) mimicking a WGS 
assay for each tumor clones. We then selected clusters G (111 cells), H (77 cells), and I 
(177 cells) because among the larger clusters they are the ones with the least noisy VAFs 
and the most common monosomy and tetrasomy segments. We used CNAqc to QC the 
expected purity of 100% (purity by assembly) per clone (Additional file 1: Fig. S10). As 
expected, our model assigned a pass score to all datasets, for both simple and complex 
CNAs (3:0 and 4:0).

Then, we tested how accurate the predictions of CNAqc are in terms of purity 
correction estimates, if one uses a wrong input purity. From the cases above (true 
purity 100%), we imputed a purity in the form 1− ϕ , where ϕ models the error, and 
measured the R2 correlation between ϕ and � ∈ R , the purity adjustment returned by 
CNAqc (Additional file 1: Fig. S11). Peak analysis was run multiple times decreasing 
input purity from 100 to 90% (1% step, 15 repetitions per point). The tested samples 
from Additional file 1: Fig. S9 using (a) a pileup of clonal CNAs common to clusters 
G, H, and I (Additional file 1: Fig. S12), in 1:0 and 2:0 regions, (b) cluster G restricted 
to 1:0 segments, (c) cluster H restricted to 1:0 segments, and (d) cluster I restricted to 
1:0 and 2:0 segments. In every case, we measured that the proposed correction is in 
perfect agreement with the input mismatch (correlation coefficient 0.88 < R2  < 0.99, 
p-value p < 2.2e − 16), therefore showing that purity correction estimates in CNAqc 
are precise.

Finally, we measured accuracy to QC subclonal CNAs (Additional file 1: Fig. S10) 
by merging some clusters from previous tests into larger clones with more mutations; 
this was necessary since single clusters were quite small and had few SNVs mapping 
on subclonal CNAs. We pooled cells from clusters G, H, and I in Additional file 1: Fig. 
S9 and retained clonal CNAs common to all clusters, plus subclonal segments where 
clusters H and I have the same CNA and differ from cluster G. Then, we mixed all 
the cells (111 for G, 77 for H and 177 for I), obtaining a mixture with ~ 70% cells from 
merged cluster H + I, and ~ 30% from cluster G. CNAqc could easily validate clonal 
CNAs as in the previous tests. In this sample we performed QC of 2 subclonal CNAs 
on chromosomes 4 and 11, harboring 323 and 271 SNVs each (Additional file 1: Fig. 
S10). CNAqc detected the expected peaks, therefore supporting the presence of sub-
clonal CNAs: we could validate a mixture of 1:1/2:2 populations, and a mixture of 
1:1/2:1 populations. In both cases, peaks from the linear and branching evolution 
models were observed, making it hard to decide precisely what evolutionary model 
explains best the origin of these populations. In order to stress test the evolution-
ary modelling underneath our QC procedure for subclonal CNAs, we also took fur-
ther data from [32] and generated allele-specific CNAs for these cells using SIGNALS 
[33]. This time we also phased alleles (Additional file 1: Fig. S11), which allowed us to 
identify a sample with clear subclonal CNAs and allelic imbalance, consistent with 
the original publication. In particular, we found a set of cells with monoclonal 2:1 
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chromosome 1, and polyclonal chromosomes 2–4 (2 clones). On chromosomes 3 and 
4, the populations were found to be triploid and tetraploid, while on chromosome 
2 they were found to be triploid with mirrored allelic imbalance, as reported in the 
original publication. In practice, on chromosome 2, one population (58% of cells) had 
genotype AAB and the other (42% of cells) was ABB, where A and B are the alleles of 
the unobserved ancestral diploid population (or, in our notation, they were 2:1 and 
1:2). CNAqc could validate the subclonal CNAs in all the chromosomes (Additional 
file 1: Fig. S12). The case of chromosome 2 was particularly interesting, because the 
tool compared the evolutionary models.

1.	 A1B1 → A1A2B1 | A1A2B1 (branching with imbalance)
2.	 A1B1 → A1A2B1 | A1B1B2 (branching with mirrored imbalance)
3.	 A1B1 → A1A2B1 → A1A2B1 (linear with imbalance)

Models 1 and 3 predict the same peaks, with shared mutations peaking at 0.667 and 
0.333, and private mutations peaking at 0.192 and 0.141. Model 2 instead predicted 
shared mutations (in 3 alleles out 6 due to imbalance) with peaks (2*0.58 + 1*0.42)/
(0.58*3 + 0.42*3) = 0.57 and (1*0.58 + 2*0.42)/(0.58*3 + 0.42*3) = 0.47. The data distribu-
tion showed a clear peak at VAF around 50%, and CNAqc was therefore able to vali-
date the subclonal segment and identify the correct branching evolution model A1B1 → 
A1A2B1 | A1B1B2 with mirrored allelic imbalance.

Finally, we sought to use single-cell data also to validate mutation multiplicity phasing 
in CNAqc, while accounting for uncertainty in the estimate. One limitation of the data 
at hand was that the multiplicity of input mutations at the single-cell level is unknown. 
Therefore, we opted to validate CNAqc computations by checking if mutations flagged 
as uncertain from the pseudo-bulk are also difficult to phase at the single-cell level, 
which seemed a reasonable test for these data. Using single-cell data for cluster A (Addi-
tional file 1: Fig. S9), we computed per-cell VAFs for mutations in 2:1 regions with good 
mappability and quality scores. Second, we computed per-cell multiplicity per mutation: 
as with bulk, we assigned one copy ( m = 1 ) if the single-cell VAF was closer to 0.33 than 
to 0.66, and two copies ( m = 2 ) for the opposite case (closer to 0.66 than to 0.33). We 
used a majority score from all cells to vote for multiplicity and resist noisy VAFs from 
single cells (caused by low coverage per cell < 5 reads, not shown). We also registered the 
proportion of cells that vote for single or double copy. Then, we computed VAFs from 
the pseudo-bulk of these segments (Additional file  1: Fig. S15a) and identified muta-
tions which CNAqc phased as uncertain in terms of multiplicity. We compared CNAqc 
assignments from bulk to majority voting with single cells, after classifying consensus 
in three ranges: > 85% (high), > 50% (intermediate), and < 50% (low). Results (Additional 
file 1: Fig. S15b) show that CNAqc assignments of multiplicity from pseudo-bulk match 
assignments from single cells for 83% of mutations, and for 98% of mutations with con-
sensus > 85% among single cells, while CNAq considers uncertain the phasing of a set 
containing 13% of the mutations (40% of mutations with low single-cell consensus). 
Notably, only for 3% of the mutations CNAqc phasing fails to match consensus-based 
phasing. Finally, we computed the histograms of voting values split by CNAqc mutation 
assignment (one copy, two copies, and uncertain, Additional file  1: Fig. S15c), and we 



Page 30 of 40Antonello et al. Genome Biology           (2024) 25:38 

observed mean voting support 70% for mutations assigned one copy, 61% for two cop-
ies and 43% for uncertain mutations. Overall, these analyses show that the mutations 
flagged as uncertain by CNAqc are largely the same for which single-cell multiplicities 
are difficult to estimate.

 Automatic‑calibration via false positive rate curves

The result of sample-level QC (pass or fail) depends on the maximum purity error ǫ > 0 
specified by the user. CNAqc offers a function to automatically determine what purity 
error parameter should be used, for a particular combination of coverage and tumor 
purity, in order to minimize the false positive rate (FPR) of the tool, as determined by 
simulations.

To calibrate this functionality (Additional file  1: Fig. S8a), we sampled 100 distinct 
tumor genome segmentations, spanning sample purity 0.15 ≤ π ≤ 0.9 and median cov-
erage 20 ≤ cov ≤ 120 . For each tumor and each purity/coverage value, we tested the 
input purity error 0.01 ≤ ǫ ≤ 0.1 (1–10%) discretized by 1%, and for each of these values 
we sampled 10 datasets mimicking a CNAqc input run with tumor purity of the form 
π + ǫ + ϕ where ϕ ∼ U [0, 0.03] . So, we have imputed to the tool a purity that is close to 
the true one ( π ) modulo the tolerance ( π + ǫ ), but positioning the tool in the scenario 
in which the actual input should be failed because ϕ > 0 . Note that since the error mar-
gin is 3%, this borderline scenario represents a configuration in which CNAqc should 
fail a sample, but the task is difficult because the input is “close” to the cut point where 
the sample could be passed (theoretically). In this way, we could compute the FPR for 
each value of purity/coverage as a function of ǫ , which were used to fit a generalized 
linear model (GLM) for every purity/coverage value (Additional file 1: Fig. S8a). Results 
from these tests give the expected results; in particular, we clearly observe gradients for 
both purity and coverage, and the slope of the regression correlates with data quality 
(higher resolution data allows lower FPR for broad values of ǫ ). For instance, with cov-
erage 20 and purity 0.15, the lowest FPR is still 30% at ǫ = 0.01—because data quality 
impacts peak matching—and peaks at 60% at ǫ = 0.1 . For better quality (e.g., coverage 
120, purity 0.9), instead, FPR is well below 10% even with very stringent ǫ = 0.01 , and 
remains substantially low for larger ǫ.

The algorithm to determine which ǫ minimizes FPR for a particular combina-
tion of coverage and tumor purity, works as follows. First, one selects the maximum 
FPR accepted µ > 0 (default 10%); the GLM fits of the training set are used to invert 
the FPR and determines the largest ǫ with desired FPR below µ (Additional file 1: Fig. 
S8b,d). If the regressed ǫ exceeds some input range of values (determined by the user), 
the regressed value is capped. All the regressed values are then interpolated with a 2D 
Akima non-smoothing spline that gives good fits to curves with a second derivative that 
changes rapidly [61]; the required point estimate for ǫ is determined from the interpola-
tion of the spline values (Additional file 1: Fig. S8c,e). The interpolation is carried out 
only in the range of values of the training set, and constraints on ǫ required by the user 
are finally enforced (e.g., so that one can determine the ǫ which associates with FPR 
µ < 0.7 while requiring no purity errors below 5%).
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Comparison to deconvolution methods

Some of the functioning of CNAqc is inspired by the design of subclonal deconvolu-
tion methods [13, 15, 17, 27, 30, 51, 59, 62]. Therefore, we sought to compare CCFs 
by CNAqc with the one obtained by Ccube (default parameters), a CCF computation 
method developed by the PCAWG Evolution and Heterogeneity Working Group [34].

In Additional file 1: Fig. S16 (panel a), we show the correlation among the CCF values 
computed by Ccube and CNAqc (entropy method) in PCAWG. In the plot, we annotate 
the proportion of cases, split by copy state and mutation multiplicity, where the esti-
mates are different after rounding to the second digit. We observe that the tools report 
the same CCF for ~ 99% of the analyzed mutations, whenever CNAqc identifies a reliable 
CCF value. We remark that a feature of CNAqc is reporting the percentage of muta-
tions where the CCF cannot be unequivocally determined. In the above statistics, the 
CCF values are therefore computed only for mutations where the uncertainty is not pre-
sent in CNAqc. The information regarding uncertainty is however very helpful to inte-
grate CNAqc with other tools for CCF computations, as we show with two examples 
from our test. In Additional file 1: Fig. S16 (panels b–g), we report an example PCAWG 
case where the CCFs are in perfect agreement (1 out of 307 mutations in 2:2 segments 
with different CCF). In Additional file 1: Fig. S17, instead, we show a case where CNAqc 
detects uncertainty in 14% of input triploid mutations, informing of potential challenges 
in using CCFs for those mutations. In that case, the uncertainty is explained by the inter-
mixing between two clonal picks in triploid 2:1 segments. Ccube assigns multiplicity 2 
to a group of clonal SNVs at the right tail of the lowest clonal pick. The consequent CCF 
distribution breaks the expected clonal peak around ~ 1, alluding to the presence of two 
close CCF clusters. This is due to Ccube assigning some single-copy mutations m = 2 
and vice versa. The entropy-based method by CNAqc highlights 14% of 2:1 mutations 
as uncertain, including the ones mistaken by Ccube. In turn, CNAqc assigns a FAIL sta-
tus to these mutations with default values (cutoff > 10%). Notably, the CCF distribution 
returned by CNAqc, which uses 86% of total mutations once the 14% unassignable are 
removed, is correctly peaked at ~ 1.

Errors in CCFs can affect downstream subclonal deconvolution, which in turn inflates 
evolutionary statistics (e.g., number of subclonal clusters, clonal complexity). In this 
example, miscalled multiplicities generate a spurious cluster in the CCF distribution fit 
by Ccube, which leads to subclonal cluster 2 (panel g, Additional file 1: Fig. S17). Even 
after removal of 14% CCFs flagged as uncertain by CNAqc, Ccube still assigns the wrong 
mutation multiplicity to a significant number of variants and infers the spurious CCF 
cluster (panel h, Additional file 1: Fig. S17). For this reason, reporting a FAIL status in 
CNAqc informs that multiplicity computation in this sample is highly confounded by 
intermixing of VAFs, cautioning the interpretation of downstream deconvolution 
analyses.

Wall‑time performance against deconvolution methods

In order to understand how performance scales with sample size, we compared the 
wall-clock time of CNAqc against common deconvolution tools. We chose SciClone 
[14], Ccube [34], and Pyclone-vi [58] to represent a diverse set of popular algorithms for 
deconvolution. To build the dataset, we subsetted all the mutations in diploid regions 
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from a melanoma sample of the PCAWG cohort (patient id DO220877) leading to a total 
of 207,508 mutations. This is the PCAWG sample with highest mutational burden in the 
cohort. Then, we sampled N = {500, 1000, 25000, 5000, 1000, 25000, 50000} SNVs; this 
process was repeated 10 times to have 10 replicates for each N. The CNAqc analysis for 
peak detection was run with default parameters. Similarly, default parameters were also 
used for SciClone (default one-dimensional deconvolution) and Ccube (but with numO-
fRepeat = 1); Pyclone-vi was run with beta-binomial likelihood, number of clusters from 
1 to 10 and 30 repetitions (Additional file 1: Fig. S5).

CNAqc was the fastest tool, capable of processing up to 500,000 mutations in ~ 60 s, 
while tools based on variational inference were about an order of magnitude slower. The 
latter two algorithms ranged from being 4 to 16 times slower than CNAqc for our range 
of tests (consider the log-scale in the plot y-axis), and the performance gap increased 
with larger N. Notably, SciClone took an average of 2  h to process 50,000 mutations, 
which is 128 times slower than CNAqc as suggested by a log difference of 5. In all tests, 
CNAqc, Ccube, and Pyclone-vi scaled approximately exponentially, while SciClone 
showed a jump from 25,000 to 50,000 mutations. All simulations were performed on 
a machine with 36 Intel(R) Xeon(R) Gold 6140 CPUs @ 2.30 GHz and 220 GB of RAM 
(Ubuntu 20.04 LTS, Python 3.8.2 and R 4.1.0).

Analysis of patient data

WGS data at PCAWG​

We performed QC of the entire Pan-Cancer Analysis of Whole Genomes (PCAWG) 
cohort [28]. First, we collected the sample list (file pcawg_sample_sheet.tsv) at [63] with 
2955 identifiers from PCAWG (2834 unique donors), and removed samples for which 
consensus CNAs were unavailable, identifying 2778 (2658 unique donors) WGS samples 
from 20 primary sites in 48 distinct projects. Then, we filtered samples that did not carry 
at least 20 mutations on each of the called copy number configurations, considering sim-
ple clonal segments, to compile our final list of working samples. We note that among 
the samples we did analyze and that passed QC, there were 75 samples that, for distinct 
reasons, were originally graylisted by the consortium. We report all the samples that we 
included, excluded a priori (no consensus copy number calls available) and filtered (less 
than 20 mutations) in Supplementary Table S1.

Results for the analysis for simple and complex CNAs are shown in Fig. 5 and Addi-
tional file 1: Fig. S28. Tumor types with higher prevalence of complex CNAs are esopha-
geal adenocarcinoma (ESAD), liver cancer (LIRI), melanoma (MELA), ovarian cancer 
(OV), pancreatic cancer (PACA), and breast cancer (BRCA); liver and pancreatic cancers 
account for the majority of the samples of the cohort. Among these CNAs, those with 
ploidy beyond 6 are rare and more frequent in those tumor types with a higher number 
of CNAs. One may argue that this pattern might be linked to a general tendency of those 
tumor types to acquire these kinds of anomalies. The mean matched peaks for segments 
with ploidy ≤ 6 is above 50% in most cases and tends to be lower for segments with 
higher ploidy (increasing again in the final part of the spectrum), a phenomenon that 
could be due to the lack of an evolution-based QC for complex CNAs in our tool.

Results for subclonal CNAs are shown in Additional file 1: Fig. S19 and S20. The top 5 
tumor types carrying the most subclonal CNAs are esophageal adenocarcinoma (ESAD), 
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liver cancer (LIRI), melanoma (MELA), pancreatic cancer (PACA), and breast cancer 
(BRCA). Four out of five of these tumor types also carry clonal complex copy numbers, 
supporting the hypothesis of some biological mechanism involved in CN instability in 
these types of tumors. To match peaks in subclonal CNAs, we computed all possible 
evolutionary models from a 1:1 starting state. We determined which model (linear or 
branching) best explains the data from the highest percentage of matched peaks; in case 
of a tie an “ambiguous” flag was assigned and, if no model could match at least 50% of 
peaks, “none” was assigned. By imposing this restriction, we were able to assign > 87% of 
segments to a model. The first thing we notice from Additional file 1: Fig. S21 is that the 
most frequent subclonal CNA is either the loss or the acquisition of a single allele, cor-
responding to 1:0–1:1 and 1:1–2:1. This is not surprising as these events are explainable 
with a deletion of a single allele in one cell duplication. Other CNA combinations must 
instead be explained by at least two independent losses or duplication events, making 
them less likely. The less frequent combination is 1:0–2:0, possibly due to the fact that a 
duplication and a deletion event occurring on the same allele seem unlikely, unless the 
tumor has a high instability and predisposition to achieve CNLOH. The same pattern 
repeats across tumor types, with tumors tending to have more simple subclonal events 
also showing a higher number of complex events, supporting the hypothesis that some 
tumor types are more prone to develop CNAs [5, 17].

In most cases, a linear modelling of the dynamics of the formation of the subclones 
(meaning that the second subclone arises from the first) seem to better explain the data 
with respect to a branching modelling in which both subclones independently originate 
from a diploid ancestor. There are two exceptions to this statement; first, for subclones 
with 1:0–1:1 karyotypes (i.e., a 1:0 subclone and a 1:1 subclone), where there is no dif-
ference in the peaks expected by the linear and branching models; therefore, the models 
are indistinguishable. This is evident from Additional file 1: Fig. S21b and S21c, where in 
all tumors the number of matched peaks for this combination of subclonal karyotypes is 
equivalent. The second exception is for 2:0–2:1 subclones, in which the branching model 
seems to explain the data better. The reason for this might be that, while both models 
require at least three steps for the two subclones to develop the karyotype 2:0–2:1 from 
a diploid 1:1 ancestor, the branching model can take into account both the path in which 
the major allele is the same in both clones, or is the major in one clone is the minor in 
the other. The linear model’s shortest path, followed by assumption in CNAqc, can only 
include the first of the two scenarios.

WGS data at Genomics England

We further validated CNAqc by performing control of 235 samples obtained from the 
Genomics England Consortium [19] using the Illumina DRAGEN™ pipeline [64]. We 
started from data released in [35], using 301 patients for which we had complete DRA-
GEN™ calls available and removed those belonging to tumor types with less than 10 sam-
ples associated. Since by default the tool can identify putatively heterogeneous regions 
but does not give an estimate of the number and prevalence of subclonal populations we 
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had to derive those quantities using some heuristics. We developed a simple procedure 
to estimate subclone proportions by assuming the presence of two populations, follow-
ing the same heuristics implemented in the popular tool BATTENBERG [15]. Without 
loss of generality, we will define the integer solution of DRAGEN™ in terms of minor 
and total copy number as subclone 1.

We started from the floating point estimates for:

•	 The minor allele (mCNF);
•	 The total copy number (CNF);
•	 Minor allele frequency (MAF);

and determined:

•	 Integer minor and total allele copy number for subclone 1 ( mCN1 and CN1);
•	 Integer minor and total allele copy number for subclone 2 ( mCN2 and CN2)

We proceed as follows:

1.	 Set a grid of values for mCN2 , default 0 to 10;
2.	 Estimate subclonal proportion of the segment using the formula

3.	 Estimate CN2 by

4.	 Calculate the MAF error, given η1 = mCN1

CN 1
 and η2 = mCN2

CN 2

5.	 Choose the mCN2 with the lowest MAF error MAFerr

6.	 Filtered negative solutions where CN2 < 2mCN2 as well as solutions where 
MAFerr < ǫ , with ǫ = 0.1 (default threshold)

The intuition of this procedure is as follows. Given the assumption of a two subclone 
population and a maximum mCN2 of 10, we need just mCN1 to determine ρ1 using the 
formula at point 2, together with the mCNF  . To provide an example, let us assume a seg-
ment with mCN1 value of 1, a mCNF  of 1.8, a CN1 = 3 , a CNF = 4.2 and, MAF = 0.4 
we will test mCN2 = [2, 3, 4, 5, 6] and assume purity π = 1 for simplicity (note that we 
skipped 1 as it implies a division by zero). For the 5 values of mCN2 we get respectively 
ρ1 values of [0.8,0.4,0.26, 0.2, 0.16], by applying the formula at step 3 we estimate CN2 , 
which in this case is [5, 7–9, 11]. We can clearly see how some solutions do not make 
sense (2 mCN > CN  ) and get filtered in step 6. The estimated MAF errors in this case 
are [0.05, 0.01, 0.05, 0.11, 0.12], so we will choose the one with the lowest error, namely 
mCN2 = 3 and 7, this setting corresponds to two subclones one at frequency 80% with 

ρ1 =
mCNF −mCN1

mCN2 −mCN1

CN2 =
CNF − (1− ρ1) ∗ CN1

ρ1

MAFerr = |MAF − π [ρ1 ∗ η1 + (1− ρ1) ∗ η2] − (1− π) ∗ 0.5|
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karyotype 1:2 and one at 20% with karyotype 3:4. As the absolute error is lower than 0.1, 
we accept the solution.

Upon converting DRAGEN™ continuous estimates into clone-level CNAs, we set 
all the parameters as in the analysis of PCAWG to allow for a fair comparison among 
Genomics England and PCAWG cohorts.

WES data at TCGA​

We collected WES data from n = 48 lung adenocarcinoma samples available in TCGA 
LUAD [29], selecting the 24 ones with top and bottom consensus purity estimate (CPE) 
by TCGA. We report example cases in Additional file 1: Fig. S23, where QC values are 
obtained by using somatic SNVs, CPE purity, and default CNAqc parameters. The case 
in panel (a), sample TCGA-53–7624-01A, is 84% pure and the inferred ploidy is correct, 
but purity is slightly overestimated. The case in panel (b) is 82% pure, but with a similar 
pattern. The case in panel (c) is an example of a VAF distribution that is low resolu-
tion because the sample has 30% purity, and in this case, it is difficult to assess if the 
small peak matched by CNAqc is a noise artifact. The case in panel (d) is 83% pure, with 
good calls and the one in panel (e) is 32% pure and passed because most of the tetraploid 
mutations are correct, but it contains a poorly peaked VAF distribution in triploid states 
(2:1, 47% of the mutational burden). In this last case, CNAqc struggles to detect peaks 
from VAF; this is another example of low-resolution VAF distribution.

We used CNAqc to select among multiple purity estimates provided by different 
TCGA callers, focusing on the LUAD case (a) from Additional file 1: Fig. S23. In TCGA, 
we obtain purity estimates from CPE, which is the consensus among ABSOLUTE, ESTI-
MATE, IHC, and LUMP. For this sample, ESTIMATE, IHC, and LUMP provide similar 
purity and determine the value for CPE. However, we fail that estimate with CNAqc and 
instead pass only ABSOLUTE (69% purity, Additional file 1: Fig. S24). We extended this 
test to 1464 TCGA samples from 10 distinct tumor types (Additional file 1: Fig. S25 and 
S28) with suitable data for CNAqc (i.e., at least 200 somatic mutations). We obtained 
samples from the cohorts Bladder Urothelial Carcinoma (BLCA), Breast Invasive Carci-
noma (BRCA), Colorectal Adenocarcinoma (COAD), Glioblastoma (GBM), Head-Neck 
Squamous Cell Carcinoma (HNSC), Kidney Renal Clear Cell Carcinoma (KIRC), Lung 
Squamous Cell Carcinoma (LUSC), Rectum Adenocarcinoma (READ), and Uterine Cor-
pus Endometrial Carcinoma (UCEC).

First, we computed QC with CNAqc with maximum tolerated purity error 5% 
( ǫ = 0.05 ) for all possible purity values for the ABSOLUTE, ESTIMATE, IHC, and 
LUMP tools, as well as for consensus CPE purity. We report in panel (a) of Additional 
file 1: Fig. S25 cases split by QC status (maximum tolerated purity error 5%) as deter-
mined from the run with TCGA consensus purity. Strikingly, as in Additional file 1: Fig. 
S24, we immediately observe a number of cases in which, while CNAqc fails the CPE 
estimate, there are at least ≥ 1 method different from CPE that proposes an acceptable 
purity. Notably, for 901 cases where the CPE purity is failed by CNAqc (60% of 1464), 
upon splitting the status by tool in panel (b), we note for instance that ABSOLUTE often 
provides a purity estimate that would pass the sample, similarly to the case shown in 
Additional file 1: Fig. S24. This is particularly true for samples from the HNSC, LUAD, 
COAD, LUSC, and BRCA cohorts. Indeed, it is worth noticing that ABSOLUTE gives 
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the user the opportunity to include information coming from the VAF of SNVs to sup-
port the CNA inference. This feature is probably the reason why its estimates often 
are more accurate and consistent with the QC-based approach of CNAqc. Conversely, 
methods such as ESTIMATE very often provide failed purity estimates for the samples 
(especially from the HNSC, LUAD, LUSC, and BRCA cohorts). If we were to rank and 
select the best purity as determined by CNAqc instead of using consensus estimates 
reported by TCGA, 785 out of 901 cases (~ 88%) would be rescued, avoiding using a 
consensus purity that contains an error that is larger than 5%. Overall, this shows that 
CNAqc can be used to select among multiple purity estimates even from WES, avoiding 
at least in principle the need of consensus calling.

WGS multi‑region colorectal cancer

A common design of modern cancer genomics studies requires collecting multiple, 
spatially separated, samples from the same tumor. We have sought out to test CNAqc 
on previously published WGS multi-region data of primary colorectal adenocarcino-
mas [30, 54]. We gathered data for 2 patients, for a total of 10 samples with median 
coverage ~ 80 × , purity ~ 80% (Fig. 6); for these samples, we generated mutations and 
CNAs with Platypus [54] and Sequenza [22]. Since Sequenza can return multiple 
solutions to the CNA inference problem, we tested if CNAqc could select the best 
tumor segmentation as compared to published calls obtained by the CloneHD [26] 
algorithm.

Sequenza with default parameters returned a main solution close to CloneHD, 
proposing an alternative tetraploid solution with halved purity. We used it to re-run 
Sequenza, and also generated another low-purity alternative solution. We used CNAq 
to compare these 3 runs; for sample Set7_57 from patient Set7 (Fig.  6a) CNAqc 
selected the correct diploid solution with 80% purity, suggesting only a small purity 
adjustment that did not change the quality of the QC (Fig. 6b, 6c). Interestingly, peak 
detection scores from CNAqc invariably failed both the tetraploid and low-purity 
solutions (Fig. 6d, e), showing how CNAqc can be used to select among alternative 
solutions proposed by a copy number caller. An equivalent result was also obtained 
for 6 WGS samples of patient Set_6 (Additional file 1: Fig. S30) and, in general, CNA 
profiles seemed rather homogenous across all samples.

Summarizing, multi-region data is of particular interest to understand the spatial 
heterogeneity of a tumor, because the evolutionary history across samples will be 
shared, but there will be sample-specific variations (e.g., multiple non-normal CNA 
states). At the moment, CNAqc can only treat every sample as independent, as we 
show in this example, and in the future it would be interesting to extend the frame-
work to model explicitly multi-region datasets. 
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