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Abstract 

Protein function annotation has been one of the longstanding issues in biological sci-
ences, and various computational methods have been developed. However, the exist-
ing methods suffer from a serious long-tail problem, with a large number of GO fami-
lies containing few annotated proteins. Herein, an innovative strategy named AnnoPRO 
was therefore constructed by enabling sequence-based multi-scale protein representa-
tion, dual-path protein encoding using pre-training, and function annotation by long 
short-term memory-based decoding. A variety of case studies based on different 
benchmarks were conducted, which confirmed the superior performance of AnnoPRO 
among available methods. Source code and models have been made freely available 
at: https:// github. com/ idrbl ab/ AnnoP RO and https:// zenodo. org/ recor ds/ 10012 272
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Background
Protein function annotation has been one of the longstanding issues, which is key for 
discovering new drug target and understanding physiological or pathological pro-
cess [1–3]. With the advance of next-generation sequencing, a large amount of protein 
sequences have been accumulated, and over 200 million sequences have been available 
in UniProt [4]. Compared with the accumulation of protein sequences, the experimental 
annotation of protein functions is much more challenging, which is characterized by its 
natures of time-consuming and labor-intensive [5–7]. So far, only a very small portion of 
protein sequences have been successfully annotated based on experimental evidence [4], 
which asks for the discovery of innovative strategy to greatly accelerate the process of 
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annotation [8]. Thus, many computational methods are developed to facilitate the pro-
gress of this field [9–11], which extensively promote the identification of efficacious drug 
target [12], the revealing of molecular mechanism underlying sophisticated disease eti-
ology [13], and so on.

However, the annotation of protein function using computational method has been 
suffering from a serious “long-tail problem” [14–16] with a large number of functional 
families containing few annotated proteins. These families are categorized to the ones of 
“Tail Label Levels”, while the remaining are to “Head Label Levels”. Based on the current 
Gene Ontology (GO) database [17], the average numbers of proteins (ANP) in those GO 
families (terms) of different GO levels were assessed and statistically described in Fig. 1, 
and the number 2,000 was set as a cutoff of ANP for differentiating ‘Tail Label Levels’ 
from ‘Head Label Levels’. As shown in Fig. 1, the total number (5,323) of GO families 
in ‘Tail Label Levels’ is more than 10 times larger than that (459) of ‘Head Label Levels’ 
[17]. In other words, the protein functional data in GO database follow a long-tailed dis-
tribution where only a few ‘head label’ families and many ‘tail label’ ones present [17]. 
The ‘long-tailed phenomenon’ has been reported to lead to severe degradation of annota-
tion performances due to the serious imbalance problem between the data of head and 
tail [18]. This is also the principal reason for head label families dominating the training 
process, making these families enjoy substantially higher accuracies than those tail label 

Fig. 1 Average number of proteins (ANP) in the GO families of nine different levels (LEVEL 2 to LEVEL 10 as 
shown in Additional file 1: Fig. S3). There was a clear descending trend of ANPs from the top level (LEVEL 2) to 
the bottom one (LEVEL 10). Since the ANP of one family indicated its representativeness among all families, 
this figure denoted a gradual decrease of the representativeness of a family with the penetration into deeper 
level. Therefore, the nine levels could be classified into two groups based on their ANPs: the “Head Label 
Levels” (ANP of their GO families ≥ 2,000) and the “Tail Label Levels” (ANP of their GO families < 2,000). As shown, 
the total number (5,323) of GO families in the “Tail Label Levels” was > 10 times larger than that (459) of the 
“Head Label Levels”, and such kind of data distribution induced a serious ‘long-tail problem’ as described in the 
previous pioneering publication [18]
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ones [18–20]. So far, two types of protein function annotation strategy have been con-
structed, which can be roughly divided into the sequence homology (SH) based ones and 
the machine learning (ML) based ones [21].

SH-based strategy has long been used for protein function annotations [22], and many 
tools have been constructed (such as BLAST and GoFDR) [23, 24], but the accuracy of 
sequence alignments drops off rapidly in cases where the sequence identity/homology 
falls below certain critical point [25]. To deal with this issue, ML-based strategy has 
been proposed, which learns protein function irrespective of sequence homology [26–
31], including DeepGOPlus, PFmulDL and NetGO2 [14–16]. These tools apply machine 
learning frameworks to achieve good protein annotation, such as NetGO2 in “4th criti-
cal assessment of functional annotation” (CAFA4) challenge [16]. However, due to the 
overwhelming domination of proteins in the ‘Head Label Levels’ (the average number of 
proteins in the family of Head Label Levels equals to 4,210, which is about 5 times larger 
than that (886) of Tail Label Levels, as shown in Fig.  1), it is still extremely challeng-
ing for existing methods/tools to improve the prediction accuracies for the families in 
Tail Label Levels, and the “long-tail problem” in protein functional annotation remains 
unsolved [32].

Herein, an innovative strategy, entitled ‘AnnoPRO’, for protein function annotation was 
therefore constructed. First, a sequence-based multi-scale protein representation ena-
bling the conversions of protein sequences to both feature similarity-based images and 
protein similarity-based vectors was proposed. This representation is unique in not only 
capturing the intrinsic correlation among protein features, but also taking the global rel-
evance among protein sequences into consideration, which can favor the applications 
of some deep learning strategies popular in image classification. Second, a hybrid deep 
learning framework of dual-path encoding was constructed for annotating the protein 
function. Since this framework was inspired, in part, by a method [33] used for image 
classification to cope with ‘long-tail problem’, AnnoPRO was expected to significantly 
improve the annotation performance for the GO families in the ‘Tail Label Levels’. 
Finally, multiple case studies using many benchmark datasets were conducted, which 
further confirmed the superiority of our new strategy among the existing ones. All in all, 
the AnnoPRO performed well and would become an essential complement to existing 
methods in protein function prediction.

Results and discussion
A new hybrid deep learning framework for protein function annotation

Herein, a hybrid deep learning framework was constructed to enable protein function 
annotations, which consisted of three consecutive modules (M1 to M3). As shown in 
Fig.  2, these modules included: (M1) the sequence-based multi-scale protein repre-
sentation realizing the conversion of all protein sequences to feature similarity-based 
images (ProMAP) and protein similarity-based vectors (ProSIM). Particularly, at feature 
similarity scale, the similarities among protein features were utilized to transform the 
‘unordered’ vector of 1,484 protein features to an ‘ordered’ image-like representation; at 
protein similarity scale, the pair-wise similarities between any two proteins were used to 
transform the ‘independent’ vector of 1,484 protein features to a ‘globally-relevant’ vec-
tor of 92,120 dimensions. (M2) the dual-path protein encoding based on a pre-training. 
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Using the ProMAP and ProSIM generated for all proteins, a dual-path encoding was 
constructed based on a seven-channel Convolutional Neural Network (7C-CNN) and 
Deep Neural Network of five fully-connected layers (5FC-DNN) to pre-train the fea-
tures of all CAFA4 proteins by integrating their annotation data of GO families. (M3) 
the functional annotation by a LSTM-based decoding. The protein features pre-trained 
using the dual-path encoding layer in M2 were concatenated and then fed into a long 
short-term memory recurrent neural network (LSTM) to enable a multi-label annotation 
of proteins to 6,109 functional GO families using the hybrid deep learning. The details of 
this hybrid deep learning framework were further elaborated in Materials and Methods.

In the hybrid deep leaning framework, the sequence-based multi-scale protein rep-
resentation was one of the key modules (M1). As shown in Fig.  3, the way how the 
conversion of all sequences to feature similarity-based images (ProMAP) and protein 
similarity-based vectors (ProSIM) was described. On the one hand, a method realizing 
image-like protein representations was proposed (ProMAP) for capturing the intrinsic 
correlations among protein features. As illustrated in Fig. 3a, a template map for each 
protein sequence was first constructed by a consecutive process of ‘protein represen-
tation’ (using PROFEAT [34]), ‘similarity calculation’ (using Cosine Similarity [35]), 

Fig. 2 The hybrid deep learning framework of three consecutive modules (M1 to M3) adopted in this study. 
(M1) the sequence-based multi-scale protein representation realizing conversion of all protein sequences 
to feature similarity-based images (ProMAP) and protein similarity-based vectors (ProSIM). (M2) the dual-path 
protein encoding based on pre-training. Using the ProMAP and ProSIM generated for all the sequences, 
a dual-path encoding strategy was constructed based on a seven-channel Convolutional Neural Network 
(7C-CNN) and Deep Neural Network of five fully-connected layers (5FC-DNN) to pre-train the features of 
all CAFA4 proteins by integrating their annotation data of GO families. (M3) the functional annotation by 
a LSTM-based decoding. The protein features pre-trained using the dual-path encoding layer in M2 were 
concatenated and then fed into a long short-term memory recurrent neural network (LSTM) to enable a 
multi-label annotation of proteins to 6,109 functional GO families using the hybrid deep learning
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‘dimensionality reduction’ (using UMAP [36] or PCA [37]), ‘coordinate allocation’ (using 
Jonker-Volgenant algorithm [38]), etc. Then, ProMAP was produced for each protein by 
mapping the intensities of all protein features to their corresponding locations in the 
constructed template map (illustrated on the right side of Fig. 3b). On the other hand, 
an approach considering the global relevance among proteins was proposed (ProSIM) 
to convert the ‘independent’ vector to a ‘globally-relevant’ protein representation. As 
illustrated in Fig. 3a, a protein distance matrix (PDM) was first generated by following 

Fig. 3 A schematic illustration of the procedure used in this study facilitating sequence-based multi-scale 
protein representation. The way how sequences were converted to feature similarity-based image (ProMAP) 
and protein similarity-based vector (ProSIM) was shown. (a) generation of feature/protein distance matrix 
and ‘template map’; (b) production of ProSIM (based on PDM) and ProMAP (based on template map) for 
each protein. On the one hand, a method realizing the image-like protein representation was constructed 
(ProMAP) to capture the intrinsic correlations among protein features. As illustrated, a template map for each 
protein was first constructed by a consecutive process of ‘protein representation’ using PROFEAT, ‘similarity 
calculation’ using cosine similarity, ‘dimensionality reduction’ using UMAP or PCA, ‘coordinate allocation’ using 
Jonker-Volgenant algorithm, etc. Then, ProMAP was produced for each protein by mapping the intensities 
of all protein features to their corresponding locations in the constructed template map (illustrated on the 
right side of Fig. 3b). On the other hand, an approach considering the global relevance among proteins 
was proposed (ProSIM) to convert ‘independent’ vector to a ‘globally-relevant’ protein representation. As 
shown, a protein distance matrix (PDM) was first generated by following the consecutive process of ‘protein 
representation’ using PROFEAT and ‘similarity calculation’ using cosine similarity. Finally, ProSIM was generated 
for each protein by retrieving directly from each row of the newly generated PDM (shown in the left side of 
Fig. 3b)
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a consecutive process of ‘protein representation’ (using PROFEAT [34]) and ‘similarity 
calculation’ (using Cosine Similarity [35]). Finally, ProSIM was generated for each pro-
tein by retrieving directly from each row of the newly generated PDM (as shown in the 
left side of Fig. 3b). All in all, these newly proposed strategies could capture the intrinsic 
correlation among protein features and consider the global relevance among sequences. 
The detailed description was explicitly provided in the Materials and Methods.

Comparing the overall performances among AnnoPRO and existing tools

In this study, a total of 92,120 protein sequences were first collected from the competi-
tion of ‘4th critical assessment of functional annotation’ (CAFA4, released on Oct 21, 
2019) [20], and these data were adopted to construct the annotation model (Training 
and Validation). Second, a process identical to that of ‘CAFA4’ for constructing the 
“Independent Testing Dataset” was used, which led to a total of 5,623 SwissProt proteins 
[4] with experimentally-validated functional annotation between Oct 22, 2019 and May 
31, 2022. As reported, such methodology above for data partition had been frequently 
adopted by previous studies [14, 16, 39] to develop the functional annotation models and 
realizing the systematic comparison among existing methods/tools.

To assess the overall performance of our new strategy, a comparison among the 
performances of AnnoPRO and eight popular methods (such as: DiamondBLAST [24], 
DeepGO [40], DeepGOCNN [14], DeepGOPlus [14], TALE [41], PFmulDL [15], NetGO2 
[16], NetGO3 [31]) was conducted. The strategies of these methods to partition data had 
been described in the above paragraph, and their processes of model construction were 
illustrated in Supplementary Method S1. As shown in Table 1, among those eight popu-
lar methods, DeepGOPlus, PFmulDL, and NetGO3 gave the best performances on the 
GO data of BP, CC, and MF, respectively (highlighted by the underline. DiamondBLAST 
provided a better  Fmax than NetGO3 on MF, but its AUPRC was much lower than that 

Table 1 A comparison among the performances of AnnoPRO and eight available methods/tools

The values indicating the best performances among all methods/tools were highlighted in BOLD, and AnnoPRO performed 
consistently the best in all Gene Ontology (GO) classes (BP, CC, MF) under both evaluating criteria  (Fmax, AUPRC). All 
methods/tools were ordered according to their publication dates. BP: biological process; CC: cellular component; MF: 
molecular function;  Fmax: protein centric maximum F-measure; AUPRC: area under the precision-recall curve. The tools 
marked by an asterisk (*) indicated that their source-codes for model construction were not fully provided, which made 
it impossible for us to train models on experimental functional annotations that appeared before Oct 22, 2019, and their 
performances (evaluated by  Fmax and AUPRC) were assessed by directly uploading those experimental function annotations 
asserted between Oct 22, 2019 and May 31, 2022 to the online server of those annotation tools. Among those eight existing 
methods/tools, the best performing ones under each category were highlighted by underline

Method/Tool Date of Publication BP CC MF

Fmax AUPRC Fmax AUPRC Fmax AUPRC

DiamondBLAST Nov, 2014 0.549 0.183 0.550 0.186 0.729 0.112

DeepGO Feb, 2018 0.362 0.213 0.501 0.434 0.384 0.325

DeepGOCNN Jan, 2020 0.369 0.294 0.516 0.460 0.382 0.362

DeepGOPlus Jan, 2020 0.593 0.561 0.588 0.502 0.628 0.627

TALE Mar, 2021 0.391 0.307 0.562 0.587 0.472 0.458

NetGO2* Jul, 2021 0.497 0.434 0.574 0.508 0.667 0.674

PFmulDL Mar, 2022 0.324 0.257 0.590 0.608 0.412 0.371

NetGO3* Dec, 2022 0.540 0.500 0.579 0.535 0.687 0.726

AnnoPRO This Study 0.609 0.574 0.746 0.749 0.763 0.755
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of NetGO3, thus NetGO3 was considered to have the best performance on MF). These 
results showed that there was no existing tool performing consistently the best under 
all GO classes (BP, CC, and MF). However, as shown in Table 1, comparing with other 
methods, AnnoPRO provided the best performance (highlighted in BOLD) under all GO 
classes. Particularly, when comparing with the three best performing methods (Deep-
GOPlus, PFmulDL, and NetGO3), the percentages of performance enhancement var-
ied from 2.7% to 15.7% (as assessed by  Fmax) and from 2.3% to 22.2% (as assessed by 
AUPRC), which illustrated a dramatical elevation in the performances of protein func-
tional prediction by the new AnnoPRO strategy proposed in this study.

To have an in-depth understanding on the significant elevation in the annotation per-
formance of AnnoPRO, an ablation experiment [42] was further conducted to assess the 
performance changes induced by depriving some key AnnoPRO modules. As described 
in Additional file 1: Fig. S1, “No ProMAP” indicated that seven-channel convolutional 
neural network (7C-CNN) was made absent from the Module 2 in Fig. 2, and “No Pro-
SIM” presented that deep neural network of five fully-connected layers (5FC-DNN) was 
deprived from the Module 2 in Fig. 2. As shown, both strategies (ProMAP and ProSIM) 
adopted in this study for multi-scale protein representation contributed substantially to 
the performances of AnnoPRO (13.6 ~ 24.2% for AUPRC; 4.6 ~ 22.4% for  Fmax). On the 
one hand, ProMAP facilitated the discovery of the intrinsic correlations among protein 
features by transforming the ‘unordered’ vector to an ‘ordered’ image-like representa-
tion. On the other hand, ProSIM took the global relevance among protein sequences 
into consideration by converting the ‘independent’ vector to a ‘globally-relevant’ protein 
representation. Moreover, as shown in Additional file 1: Fig. S1, “No LSTM” represented 
that Long Short-Term Memory recurrent neural network was removed from Module 3 
in Fig. 2, and “SC map” denoted that “Transformation” step in Module 2 in Fig. 2 was 
deprived and only single-channel (not multi-channel) ProMAP was considered. In con-
clusion, it is clear to see that the deprivation of any key module will result in significant 
decrease in the annotation performance, which indicated that all the key modules col-
lectively contributed to the good performance of AnnoPRO.

When realizing the image-like protein representation (as illustrated in Fig.  3), 
there were two methods applied for ‘dimensionality reduction’, which included uni-
form manifold approximation and projection (UMAP) [36] and principal component 
analysis (PCA) [37]. UMAP was reported to produce arbitrary shapes and distort 
distances in 2D, which could be severely biased and lead to misinterpretation [43]. 
Since the image-like protein representation was novel and essential for AnnoPRO, it 
is needed to assess the contributions of UMAP and PCA to annotation performances. 
Herein, two models AnnoPROUMAP and AnnoPROPCA were thus constructed based on 
UMAP and PCA, respectively (the procedure for model construction and evaluation 
is described above). As shown in Additional file 1: Fig. S2, the performances (assessed 
by  Fmax and AUPRC) of these models are roughly the same across three GO classes 
(BP, CC, MF). Particularly, AnnoPROUMAP showed a slightly better predictive perfor-
mance compared with AnnoPROPCA (0.6 ~ 1.9% for  Fmax; 1.4 ~ 2.1% for AUPRC). All 
in all, although concerns were raised about the limitations of UMAP [43], the per-
formance evaluation conducted in this study showed that the application of different 
dimensionality reduction methods (UMAP vs PCA) might not significantly alter the 
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performance. Therefore, both methods (UMAP and PCA) were integrated into the 
AnnoPRO software package (https:// pypi. org/ proje ct/ annop ro/0. 1rc2/) and the online 
server (https:// idrbl ab. org/ annop ro/).

Level‑based performance comparison among AnnoPRO and existing tools

Based on those analyses above, three recently-published methods (DeepGOPlus, 
PFmulDL, and NetGO3) were found to perform better than others and reported as 
“state-of-the-art” by previous publication [44]. Therefore, a comparison among the 
level-based performances of AnnoPRO and these SOTA methods was conducted. 
The so-called level-based performances were based on the hierarchical GO families 
shown in the first section of Materials and Methods and the definition in Additional 
file 1: Fig. S3. As shown in Fig. 4, the level-based performances were given using AUC 
value in predicting the testing data, and the performances of AnnoPRO, DeepGOPlus, 
NetGO3, and PFmulDL were shown by light red, light green, orange, and light blue, 
respectively (also provided in Supplementary Table S1). For GO families in ‘Head 
Label Level’ (LEVEL 2 and LEVEL 3 in Additional file  1: Fig. S3), the performance 
of AnnoPRO was as good as that of other methods (1.4 ~ 4.1% improvements in most 
cases, but 0.1% decline in one case). For GO families in ‘Tail Label Level’ (LEVEL 4 to 
LEVEL 10 in Additional file 1: Fig. S3), AnnoPRO provided the consistently superior 

Fig. 4 A comparison among the performances of AnnoPRO and three representative methods. The 
performances were represented using AUC values in predicting the experimentally validated new protein 
functions that were not included in CAFA4 data, and the performances of AnnoPRO, DeepGOPlus, NetGO3 
and PFmulDL were highlighted in light red, light green, orange and light blue, respectively. For GO families 
in the ‘Head Label Levels’ (LEVEL 2 and LEVEL 3 provided in Additional file 1: Fig. S3), the performance of 
AnnoPRO was roughly as good as that of the other three methods (1.4 ~ 4.1% improvements in most cases, 
but 0.1% decline in one single case). For the GO families in the ‘Tail Label Levels’ (LEVEL 4 to LEVEL 10 shown 
in Additional file 1: Fig. S3), AnnoPRO demonstrated the consistently superior performance among four 
methods (1.7 ~ 28.2% improvements in all cases). Particularly, 13 (61.9%) out of all 21 improvements were over 
5%, and 6 (28.6%) out of 21 improvements were more than 10%. Therefore, AnnoPRO was identified superior 
in significantly improving the annotation performances of the families in ‘Tail Label Levels’ without sacrificing 
that of the ‘Head Label Levels’, which was highly expected to make contribution to solving the long-standing 
‘long-tail problem’[18] in functional annotation

https://pypi.org/project/annopro/0.1rc2/
https://idrblab.org/annopro/
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performance among all methods (1.7 ~ 28.2% improvement in all cases). Particularly, 
13 (61.9%) out of all 21 improvements were over 5%, and 6 (28.6%) out of those 21 
improvements were larger than 10% (as illustrated in Fig. 4).

Furthermore, as illustrated in Fig.  4, DeepGOPlus and NetGO3 performed well in 
LEVEL 2 and LEVEL 3, but experienced a dramatic decline of performance from LEVEL 
4 to LEVEL 10. This clearly showed that the “long tail problem” remained a serious issue 
for the protein function annotation using existing methods (significantly declined from 
95.1% to 69.3% for NetGO3 and from 91.8% to 81.8% for DeepGOPlus). The PFmulDL 
was a method that could largely enhance the performances for the GO families in ‘Tail 
Label Level’, but AnnoPRO provided a much better performances in all levels than 
PFmulDL (as shown in Fig. 4). In other words, AnnoPRO was the first method reported 
to achieve superior performance in protein annotations for GO families in ‘Tail Label’ 
levels without sacrificing that in ‘Head Label’ ones, which was therefore expected to 
highly contribute to the final solution of the long-standing ‘long-tail problem’.

Performance comparison based on the proteins from a variety of species

Sequence variation among the orthologs of various species may induce subtle, or even 
substantial, changes in protein structure, which may lead to proteins with similar 
sequence showing different functions [45–47]. This leads to great difficulty in functional 
annotations for orthologous proteins [48], and it is therefore of great interests to com-
pare the capacities of AnnoPRO and the state-of-the-art methods/tools (DeepGOPlus, 
PFmulDL and NetGO3) from this perspective. In this study, the species origins of 92,120 
proteins from CAFA4 (adopted as ‘Training’ and ‘Validation’) were first assessed, and 17 
species were found (homo sapiens, mus musculus, drosophila melanogaster, etc.). In the 
meantime, the species origins of 5,623 proteins (used as ‘Independent Testing’) were also 
found, which discovered a total of 1,014 species (despite those 17 species, there were 
many other species: bos taurus, camellia sinensis, canis lupus familiaris, gallus gallus, 
mycobacterium tuberculosis, oryza sativa, etc.). Second, the 5,623 proteins were further 
divided into two groups. One group included 1,859 proteins (titled ‘SameSP’) from those 
17 species covered by Training and Validation datasets, and another had 3,764 proteins 
(titled ‘DiffSP’) from the remaining 997 species unique in ‘Independent Testing’ dataset. 
Third, the performances of AnnoPRO and those two state-of-the-art methods (DeepGO-
Plus and PFmulDL; NetGO3 was not included here since its source code for model con-
struction was not provided) were evaluated based on the two groups of ‘Independent 
Testing’ data, and the evaluating results were provided in Table 2.

As shown in Table 2, the AnnoPRO performed the best in the vast majority of the Gene 
Ontology classes (BP, CC, MF) under both evaluating criteria  (Fmax, AUPRC), and those 
values indicating the best performance among those three methods (AnnoPRO, Deep-
GOPlus, and PFmulDL) were highlighted in BOLD. Particularly, for the SameSP group of 
independent testing data, AnnoPRO showed superior performance in both CC and MF 
with significant elevations in  Fmax and AUPRC (elevated by 0.13 to 0.43), and AnnoPRO 
demonstrated equivalent performance in BP comparing with DeepGOPlus with slightly 
lower  Fmax and AUPRC (lower by 0.002 and 0.004, respectively); for the DiffSP group 
of data, the performances of AnnoPRO stayed the best in CC and MF with significant 
elevation in  Fmax and AUPRC (elevated by 0.06 to 0.47), and the AnnoPRO performed 
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better in the BP comparing with DeepGOPlus  (Fmax and AUPRC were elevated by 0.06 
and 0.08). All in all, the results indicated that AnnoPRO gave good predictive perfor-
mances on independent data whose species origins were covered by training-validation, 
and its predictive performances on independent data whose species origins were distinct 
from that of training-validation, became even better when comparing with state-of-the-
art methods. In other words, the AnnoPRO showed good capacity on predicting the 
proteins that have little representativeness in training-validation data, which was very 
valuable for the function annotation of novel proteins from the species not covered by 
both ‘Training’ and ‘Validation’ datasets during model construction.

Functional annotation of the homologous proteins with distinct functions

As reported, a small variation in sequence could lead to vastly different functional out-
comes [49], which made the annotation of homologous proteins with distinct functions 
a great challenge and a fascinating direction for the researchers in related research com-
munity. In order to evaluate the predictive performances of AnnoPRO and three state-of-
the-art methods on such kind of proteins, two pairs of homologous proteins of distinct 
functions were then analyzed: growth differentiation factors (GDF8 and GDF11) and 
heat shock proteins (HSPA1A and HSPA2).

Case study 1 on different growth differentiation factors

Growth differentiation factors (GDFs) belong to the transforming growth factor β 
(TGFβ) family, which regulate the aspects of central nervous system (CNS) formation 
[50]. GDF11 (UniProt ID: GDF11_HUMAN, and UniProt accession: O95390) is a pro-
tein in the GDF family, which shares over 60% sequence similarity with GDF8 (myosta-
tin, MSTN, UniProt ID: GDF8_HUMAN, and UniProt accession: O14793) and more 
than 90% sequence identity in the active domain [51]. As well-known, the interaction 
between GDF8 and follistatin-288 (FS288) formed complex to bind heparin, which 
defined the molecular mechanisms underlying GDF8’s key GO family: ‘heparin binding’ 
(GO:0008201) [52]. Different from GDF8, the varied residues in GDF11 made it una-
ble to interact with FS288, and it therefore suffered from the loss of ‘heparin binding’ 

Table 2 A comparison among those performances of AnnoPRO and two state-of-the-art methods 
(DeepGOPlus and PFmulDL) on predicting two groups of ‘Independent Testing’ data (SameSP and 
DiffSP) 

SameSP had 1,859 proteins from 17 species covered by ‘Training’ and ‘Validation’ datasets of this study; DiffSP included 3,764 
proteins from the remaining 997 species unique in ‘Independent Testing’ data of this study. Those values indicating the best 
performance among all three methods were highlighted in BOLD, and AnnoPRO performed the best in the vast majority of 
the Gene Ontology (GO) classes (BP, CC, MF) under both evaluating criteria  (Fmax, AUPRC). BP biological process, CC cellular 
component, MF molecular function

Method BP CC MF

Fmax AUPRC Fmax AUPRC Fmax AUPRC

SameSP DeepGOPlus 0.612 0.593 0.539 0.470 0.668 0.698

PFmulDL 0.347 0.286 0.573 0.603 0.436 0.402

AnnoPRO 0.610 0.589 0.759 0.772 0.835 0.829
DiffSP DeepGOPlus 0.538 0.469 0.684 0.622 0.517 0.429

PFmulDL 0.261 0.176 0.593 0.580 0.354 0.273

AnnoPRO 0.602 0.552 0.742 0.741 0.749 0.739
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function [53]. The sequences between GDF8’s and GDF11’s active domains were aligned 
in Fig. 5a, where varied residues between two GDFs were marked in light green and blue 
background, respectively. Combined with the structural superimpositions (as illustrated 
in Fig. 5b) between GDF8 (light green) and GDF11 (blue) [54], three varied residue pairs 
(F315Y, V316M and L318M located in the binding surface between GDF and FS288) 
were found key for ‘heparin binding’ [55].

In this study, the ‘heparin binding’ function (GO:0008201) for the wild type GDF8 
(GDF8-WT) and its two mutants (GDF8-Mutant-1 and GDF8-Mutant-2) was pre-
dicted using AnnoPRO and three state-of-the-art tools (DeepGOPlus, PFmulDL, 
NetGO3). GDF8-Mutant-1 contains eight mutations (D267N, F268L, T277S, E312Q, 
H328Q, G355D, E357Q, A366G), which locate far away from the binding interface 
between GDF8 and FS288. The interaction between GDF8-WT and FS288 forms 
a complex binding with heparin, which is the molecular mechanism underlying 

Fig. 5 Performance assessment of four methods using two well-known growth differentiation factors (GDF8, 
GDF11). As reported, the interaction between GDF8 and follistatin-288 (FS288) formed a protein complex 
to bind ‘heparin’, which defined the molecular mechanisms underlying GDF8’s key GO family: ‘heparin 
binding’ (GO:0008201) [52]. Different from GDF8, the varied residues in GDF11 made it unable to interact with 
FS288, and it therefore suffered from the loss of the ‘heparin binding’ function [53]. (a) Sequence alignment 
between GDF8 and GDF11, where varied residues between two GDFs were marked in light green and blue 
background, respectively. Three residue pairs (F315Y, V316M, and L318M on the binding surface between the 
GDF8 and FS288) which were found as key residue indicating GDFs’ ‘heparin binding’ function [55], were given 
in pink background. (b) Structure superimposition between GDF8 (light green) and GDF11 (blue) and their 
interactions with FS288 (gray surface). As highlighted in pink background, three residue pairs (F315Y, V316M, 
L318M) located in the binding interface between GDF and FS288. (c) function annotation results predicted 
by the methods. If a GO family is successfully predicted by a method, a colored circle would be adopted to 
indicate that prediction result. Particularly, a successful prediction made by AnnoPRO, NetGO3, PFmulDL or 
DeepGOPlus was indicated by a circle of light red, orange, light blue or light green, respectively. As described, 
AnnoPRO is the only one that can successfully predict all GO families for both GDFs
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GDF8-WT’s ‘heparin binding’ function (GO:0008201). Since all eight mutations were 
far away from the binding interface between GDF8 and FS288, it is expected that hep-
arin binding function remains in GDF8-Mutant-1 [55]. Meanwhile, GDF8-Mutant-2 
contains three mutations (F315Y, V316M, L318M, on the binding surface between 
GDF8 and FS288), which were reported as the key residues indicating GDF8’s hepa-
rin binding function [55]. In other words, it is expected that GDF8-Mutant-2 loses 
its wild type’s ‘heparin binding’ function [55]. All in all, there is gain-of-function of 
‘heparin binding’ in GDF8-WT and GDF8-Mutant-1, while there is loss-of-function 
in GDF8-Mutant-2. As described in Table 3, ‘Success’ denoted that the gain/loss-of-
function is successfully predicted by method, while ‘Fail’ showed that the prediction 
by method is incorrect. As shown, AnnoPRO was the only method that “successfully” 
captured the significant functional variations induced by small amount of residue 
mutations among GDF8 proteins.

Moreover, the sequences of GDF8 and GDF11 were reported to be highly homol-
ogous, but their functions were distinct with 291 different GO families. Therefore, 
it was of great interests to test the predictive performances of AnnoPRO and three 
state-of-the-art tools on this issue. As shown in Table  4, AnnoPRO performed the 
best in the vast-majority (11/12) of the GO classes (BP, CC, and MF) under differ-
ent evaluation criteria (both recall, and precision). Taking the GO class of MF as an 
example (illustrated in Fig. 5c), GDF8 and GDF11 contained 19 and 10 MF families, 
respectively, and the functions annotated by those four methods were highlighted. If 
a MF family is successfully predicted by method, a colored circle will be used to indi-
cate the prediction result. As illustrated in Fig. 5c, the successful prediction made by 
AnnoPRO, NetGO3, PFmulDL or DeepGOPlus was indicated by a circle of light red, 
orange, light blue or light green, respectively, and AnnoPRO is the only one that can 
successfully predict all MF families for both GDFs.

Table 3 The prediction of the ‘heparin binding’ function (GO:0008201) for the wild type GDF8 
(GDF8-WT) and two GDF8 mutants (GDF8-Mutant-1, and GDF8-Mutant-2) using AnnoPRO and three 
representative methods

‘Success’ denotes that the gain/loss-of-function is successfully predicted by the corresponding method, while ‘Fail’ indicates 
that it is incorrectly predicted. As demonstrated, significant functional variations among GDF8-WT, GDF8-Mutant-1, and 
GDF8-Mutant-2 can only be “successfully” captured by our newly developed AnnoPRO
a Wild type GDF8 (GDF8-WT) is a growth differentiation factor of 375 amino acids. There are two GDF8 mutants (GDF8-
Mutant-1 and GDF8-Mutant-2). GDF8-Mutant-1 contained eight mutations (D267N, F268L, T277S, E312Q, H328Q, G355D, 
E357Q, and A366G) which locate far away from the binding interface between GDF8 and follistatin-288 (FS288). The 
interaction between GDF8-WT and FS288 formed a protein complex to further bind to heparin. This is the molecular 
mechanism underlying GDF8-WT’s key GO term: ‘heparin binding’ (GO:0008201). Because all eight mutations were far away 
from the binding interface between GDF8 and FS288, it is expected that the ‘heparin binding’ function remains in GDF8-
Mutant-1 [55]. Meanwhile, GDF8-Mutant-2 contains three mutations (F315Y, V316M, and L318M, on the binding surface 
between GDF8 and FS288) which are reported as the key residues indicating protein’s ‘heparin binding’ function [55]. In 
other words, it is expected that GDF8-Mutant-2 loses its wild type’s ‘heparin binding’ function [55]. All in all, there is gain-of-
function of ‘heparin binding’ in both GDF8-WT and GDF8-Mutant-1, while there is loss-of-function in GDF8-Mutant-2

Methods GDF8-WTa GDF8-Mutant-1a GDF8-Mutant-2a

DeepGOPlus Fail Fail Success

PFmulDL Fail Fail Success

NetGO3 Success Success Fail

AnnoPRO Success Success Success



Page 13 of 22Zheng et al. Genome Biology           (2024) 25:41  

Case study 2 on different heat shock proteins

Heat shock proteins (HSPs) are ubiquitous and conserved proteins in prokaryotic 
and eukaryotic organisms, which are essential for maintaining cellular proteosta-
sis [56]. Herein, two heat shock 70kDa protein were analyzed: HSPA1A (UniProt ID: 
HS71A_HUMAN, and UniProt accession: P0DMV8) and HSPA2 (UniProt ID: HS71B_
HUMAN, and UniProt accession: P0DMV9). The sequence similarity between HSPA2 
and HSPA1A exceeds 80% (assessed using BLAST), while the total number of different 
GO families between these two proteins is more than 300. Therefore, it was of great 
interest to assess the predictive performances of AnnoPRO and three state-of-the-art 
tools on this particular study. As demonstrated in Table 5, our AnnoPRO performed the 
best in the vast-majority (9/12) of the GO classes under both evaluating criteria (recall 
and precision). Taking the GO class of MF as an example (illustrated in Additional 
file 1: Fig. S4 for HSPA1A and Additional file 1: Fig. S5 for HSPA2), the HSPA1A and 

Table 4 A comparison among the predictive performances of AnnoPRO and three representative 
methods for the functional annotations of two well-known growth differentiation factors (GDF8, 
GDF11)

Those values indicating the best performances among all methods were highlighted in BOLD, and AnnoPRO performed 
the best in the vast-majority (11/12) of the Gene Ontology (GO) classes (BP, CC, MF) under both evaluating criteria (recall, 
precision). All methods were ordered based on their publication dates. BP Biological process, CC Cellular component, MF 
Molecular function, GDF8 Growth differentiation factor 8, GDF11 Growth differentiation factor 11

Protein Name Methods BP CC MF

Recall Precision Recall Precision Recall Precision

GDF8 DeepGOPlus 0.578 0.320 0.333 1.000 0.389 0.333

PFmulDL 0.333 0.198 0.667 0.400 0.444 0.444

NetGO3 0.351 0.806 1.000 0.375 1.000 0.783

AnnoPRO 0.898 0.898 1.000 0.731 1.000 1.000
GDF11 DeepGOPlus 0.402 0.306 0.625 0.714 0.222 1.000

PFmulDL 0.404 0.494 0.875 0.412 0.556 0.833

NetGO3 0.553 0.547 0.750 0.750 0.778 1.000
AnnoPRO 0.621 0.952 1.000 0.833 1.000 1.000

Table 5 A comparison among the predictive performances of AnnoPRO and three representative 
methods for the functional annotations of two well-known heat shock 70kDa proteins (HSPA1A, 
HSPA2)

Those values indicating the best performances among all methods were highlighted in BOLD, and AnnoPRO performed 
the best in the vast-majority (9/12) of the Gene Ontology (GO) classes (BP, CC, MF) under both evaluating criteria (recall, 
precision). All methods were ordered based on their publication dates. BP biological process, CC cellular component, MF 
molecular function, HSPA1A heat shock 70 kDa protein 1A, HSPA2 heat shock 70 kDa protein 2

Protein Name Methods BP CC MF

Recall Precision Recall Precision Recall Precision

HSPA1A DeepGOPlus 0.358 0.357 0.410 0.889 0.605 0.812

PFmulDL 0.635 0.457 0.615 0.800 0.814 0.500

NetGO3 0.286 0.876 0.634 0.605 0.809 0.884

AnnoPRO 0.641 0.715 0.595 0.962 0.917 0.936
HSPA2 DeepGOPlus 0.375 0.284 0.394 0.867 0.765 0.765

PFmulDL 0.344 0.386 0.419 0.812 0.788 0.605

NetGO3 0.346 0.605 0.419 0.684 0.757 0.903

AnnoPRO 0.470 0.851 0.594 0.670 0.868 0.943
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HSPA2 had 44 and 35 MF families, respectively, and the functions annotated by those 
four methods were highlighted. If a MF family is successfully predicted by method, a 
colored circle will be used to indicate the prediction result. As illustrated, the success-
ful prediction made by AnnoPRO, NetGO3, PFmulDL or DeepGOPlus was indicated 
by a circle of light red, orange, light blue or light green, respectively, and AnnoPRO 
is the only one that reach > 90% accuracies in predicting MF families for both HSPs. 
Furthermore, there were 16 different MF families between HSPA1A and HSPA2 (high-
lighted by red frames in Additional file  1: Fig. S4 for HSPA1A and Additional file  1: 
Fig. S5 for HSPA2). As shown, AnnoPRO performed the best in most (13/16) families, 
while NetGO3, PFmulDL, DeepGOPlus successfully predicted 7, 10 and 3 families, 
respectively.

Validating the stability of AnnoPRO using additional benchmark datasets

To validate the effectiveness and stability of AnnoPRO model, its performance was eval-
uated on additional datasets and compared with the SOTA methods of PFmulDL and 
DeepGOPlus (since NetGO3 did not provide its training code, it could not be retrained 
and evaluated for comparison). Particularly, two benchmark datasets were collected 
from a pioneering study [32] that explicitly evaluated many strategies of protein repre-
sentation. The first dataset was named ‘PROBE’ in the original publication [32], which 
consisted of 20,421 unique human proteins of distinct sequences. Following the same 
criterion (using Oct 22, 2019 as a cutoff date) used in CAFA4 for partitioning data, all 
these proteins were partitioned to 18,058 proteins (adopted as ‘Training’ and ‘Valida-
tion’ datasets for model construction) and 2,363 proteins (adopted as ‘Independent Test-
ing’ data). The AnnoPRO, DeepGOPlus, and PFmulDL models were then retrained using 
these partitioned data. As shown in Table 6, AnnoPRO achieved the best performances 
on all GO classes (BP, CC, and MF), when compared with the other two models. Par-
ticularly, the  Fmax and AUPRC of AnnoPRO were substantially higher (4.5 ~ 18.8% and 
4.9 ~ 24.0%, respectively) than that of two other models, which further validated its 
effectiveness and stability in protein function annotation.

The second dataset was entitled ‘ontology-based PFP benchmark’ in the original 
publication [32], which contained 25 sub-datasets. As shown in ‘Table  S5’ of that 

Table 6 A comparison among those performances of AnnoPRO and two state-of-the-art methods 
(DeepGOPlus and PFmulDL) on constructing annotation models based on the benchmark named 
‘PROBE’ in the original study [32], which consisted of 20,421 unique human proteins of distinct 
sequences

By following the same criterion (using Oct 22, 2019 as a cutoff date) as that used by CAFA4 for data partitioning, 18,058 
proteins were adopted as ‘Training and Validation’ data for model construction and 2,363 proteins were used as ‘Independent 
Testing’ dataset. The AnnoPRO, DeepGOPlus, and PFmulDL models were then retrained using these partitioned data. The 
values indicating the best performance among three methods were highlighted in BOLD, and AnnoPRO performed the best 
in all GO classes (BP, CC, MF) under both evaluating criteria  (Fmax, AUPRC). BP biological process, CC cellular component, MF 
molecular function

Method/Tool BP CC MF

Fmax AUPRC Fmax AUPRC Fmax AUPRC

DeepGOPlus 0.584 0.574 0.645 0.712 0.683 0.687

PFmulDL 0.533 0.526 0.623 0.682 0.648 0.651

AnnoPRO 0.643 0.664 0.652 0.717 0.709 0.709
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pioneering study [32], the protein representation method ‘ProtT5-XL’ gave the best-
performances in most (16 out of 18) of the GO groups/categories, while the method 
‘ProtALBERT’ gave the best-performances in the remaining two categories. Thus, it 
was of interest to compare the annotation performances among AnnoPRO, DeepGO-
Plus, PFmulDL, and the best-performing methods (BPM) under different GO cat-
egories using the same sub-datasets and partition strategy (fivefold) as that of the 
original publication [32]. Their performances (assessed using ‘Fmax’ that was the same 
as the original study [32]) under the 18 GO categories were provided separately in 
Fig. 6 according to BP, MF, and CC. As shown, AnnoPRO gave the best performances 
in most (17 out of 18) of the GO categories, which further validated the effective-
ness and stability of AnnoPRO in functional annotation. It is necessary to emphasize 
that the performances of BPMs of the original publication are generated by multitask 
prediction model (based on SVM). If this prediction model is further optimized to 
the one that is well complementary to the studied protein representation method, it 
would be highly anticipated that the corresponding performance of functional anno-
tation could be further elevated.

Fig. 6 A comparison among the performances of AnnoPRO and three methods (DeepGOPlus, PFmulDL, 
and BPM) under six GO categories using the same sub-datasets and partition strategy as that of a previous 
publication [32]. BPM: the best-performing methods for the ‘ontology-based PFP benchmark’ in that original 
publication. The performances were assessed based on  Fmax, and the performances of AnnoPRO, BPM, 
DeepGOPlus, and PFmulDL were highlighted in light red, orange, light green, and light blue, respectively. Each 
of those quadrangular-stars represented the best-performing model under a particular GO category and 
GO class. (a) Biological Process; (b) Molecular Function; and (c) Cellular Component. As illustrated, the AnnoPRO 
demonstrated the best performances in the vast majority (17 out of 18) of the studied GO categories
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Conclusion
Here, a novel strategy, AnnoPRO, was constructed by enabling a) the sequence-based 
multi-scale protein representation, b) the dual-path protein encoding using pre-train-
ing, and c) the functional annotation by LSTM-based decoding. Case studies based on 
benchmarks were conducted, which sufficiently confirmed the superior performance of 
AnnoPRO among available methods.

Methods
The collection of benchmark datasets for model construction

In this study, a total of 92,120 protein sequences were collected from the competition 
of CAFA4 challenge [20], and the method adopted for data partition was described in 
the second section of Results and Discussion. Then, the biological functions (denoted 
by GO families) of all proteins were matched directly from UniProt knowledgebase [4]. 
Like existing tools [14, 40], only those GO families with relatively large number of pro-
teins (more than 50) were included into the model construction process of this study, 
which consisted of a total of 6,109 non-repetitive GO families. Moreover, the full rela-
tions among these families were downloaded from GO database [19].

Within the downloaded files, GO families were provided in a hierarchical structure. As 
illustrated in Additional file 1: Fig. S3, three root families were provided at the top of the 
structure, which included biological process (BP), molecular function (MF), and cellular com-
ponent (CC). Then, the remaining GO families were hierarchically connected to the three 
root ones. In this study, the level of those root families was defined as ‘LEVEL 1’ (as shown in 
Additional file 1: Fig. S3). The direct child families of the root ones were classified to LEVEL 
2, and the families of LEVEL 3 were determined by the direct child families of LEVEL 2. The 
following levels can be therefore deduced in the same manner. Based on our comprehen-
sive evaluation on all GO data, the bottom level of GO’s hierarchical structure was LEVEL 
11, which had no child family and composed of the smallest number of proteins comparing 
with the families in other levels (LEVEL 1 to 10). As shown in Fig. 1, the average numbers of 
proteins (ANP) in GO families of nine levels (LEVEL 2 to LEVEL 10) were provided. There 
was a clear descending trend of ANPs from LEVEL 2 to LEVEL 10. Since the ANP of one 
family indicated its representativeness among all families, this denoted a gradual decrease 
of the representativeness of a family with the penetration into deeper level. Thus, these nine 
levels could be classified into two groups based on their ANPs: the “Head Label Levels” (ANP 
of their GO families ≥ 2,000) and the “Tail Label Levels” (ANP of their GO families < 2,000). 
As shown, the total number (5,323) of families in “Tail Label Levels” was over 10 times larger 
than that (459) of the “Head Label Levels”, and such data distribution was typical for any 
research studies that were suffering from the ‘long-tail problem’ [15, 16].

The construction of novel hybrid deep learning framework

Three consecutive modules integrated in the framework

As demonstrated in Fig.  2, three modules were consecutively integrated, which 
included: (M1) sequence-based module for multi-scale protein representation; 
(M2) dual-path protein encoding module based on pre-training; (M3) protein 
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decoding-based functional annotation module using LSTM method. Detailed descrip-
tion on three modules were explicitly discussed as follows.

Module 1. A new sequence-based method for multi-scale protein representation A 
multi-scale protein representation method was proposed to realize the conversion of 
sequences to feature similarity-based images (ProMAP) and protein similarity-based 
vectors (ProSIM). As shown in Fig. 3a, the descriptors of all CAFA4 proteins were first 
calculated using PROFEAT [34], which offered a total of 1,484 descriptors of seven 
classes: amphiphilic pseudo amino acid composition, amino acid composition, molecular 
interaction, amino acid autocorrelation, quasi-sequence-order, physicochemical property 
and pseudo amino acid composition (the descriptions on each class were shown in Sup-
plementary Table S2). Second, a new protein-descriptor matrix (PM) was generated (pro-
vided in Fig. 3a), and any original number ( xorigij  ) in this matrix was normalized to xnormij  
using following equation, where fi denoted the ith feature, minfi and maxfi indicated the 
min and max value of ith feature among all proteins, respectively.

Third, the feature distance matrix (FDM) was produced by calculating pair-wise dis-
tances among 1,484 features using the newly generated protein-descriptor matrix (PM, 
each feature such as fa and fb , was represented by a vector of 92,120 length) based on 
the following equation:

FDM was then adopted to reset the locations of protein features in a map (named ‘tem-
plate map’), which is considered as one of the key steps in the image-like protein repre-
sentation (as shown in Fig. 3a). Particularly, the process of “feature reset” based on FDM 
consisted of two key steps: ‘dimensionality reduction’ (by applying UMAP [36] or PCA 
[37] for reducing the dimensionality of each feature from 1,484D to 2D) and ‘coordinate 
allocation’ (by applying J-V algorithms [38] to allocate all those 1,484 features to distinct 
coordinates in a 39 × 39 map, named ‘template map’). The details on the “feature reset” 
process were further given in Supplementary Method S2.
Based on the ‘template map’ generated in Fig. 3a, the ProMAP was produced for each 
protein by mapping the intensities of all protein features to the corresponding loca-
tions in ‘template map’. As illustrated on the right side of Fig. 3b, ProMAP for each pro-
tein realized the transformation of ‘unordered’ vector of 1,484 protein features to the 
‘ordered’ image-like representation, which is unique in capturing the intrinsic correla-
tions among protein features and enabling a subsequent application of any deep learning 
methods that were popular in current image classification.
Fourth, a protein distance matrix (PDM) was further generated by calculating pair-
wise distances among 92,120 proteins using the protein-descriptor matrix (each protein 
including pa and pb , was represented by a vector of 1,484 length) based on the following 
distance equation:

xnormij =
x
orig
ij −minfi

maxfi −minfi

distance fa, fb = 1−
fa • fb

�fa� × �fb�



Page 18 of 22Zheng et al. Genome Biology           (2024) 25:41 

Based on the PDM generated in Fig. 3a (highlighted in blue color), the ProSIM was produced 
for each protein by directly retrieving the corresponding column within PDM. As illustrated 
on the left side of Fig. 3b, the ProSIM of each protein realized the transformation of ‘inde-
pendent’ vector of 1,484 protein features to a ‘globally-relevant’ vector of 92,120 dimensions.

Module 2. A novel dual-path protein encoding method based on a pre-training In this 
module, a deep learning-based framework integrating seven-channel convolutional neural 
network (7C-CNN) and a deep neural network of five fully-connected layers (5FC-DNN) to 
pre-train the features of protein was adopted. Such pre-train process was expected to be 
effective in transferring functional family information for optimizing the concatenated pro-
tein features [57], which could extensively facilitate the application of the long short-term 
memory (LSTM) neural network for function annotation in next module [58]. Particularly, 
as illustrated in Fig. 2, the ProMAPs (39 × 39) for 92,120 proteins were transformed to 7 
images of multi-channel based on the different classes of protein descriptor, and the mul-
tiple convolutional and max-pooling layers were used for learning the protein functions; 
the ProSIMs (92,120 × 1) for 92,120 proteins were extracted from protein distance matrix 
(PDM), and neural network of five fully-connected layers (5FC-DNN) was applied to encode 
protein sequences. By concatenating those two vectors from ProMAP and ProSIM, a total 
of 92,120 concatenated protein encoding vectors were created, and a fully-connected layer 
was further applied to refine the protein encoding by comparing with the 6,109 GO func-
tion families well-defined in Gene Ontology. As a result, 92,120 protein encodings were pre-
trained, which were then fed into LSTM for multilabel functional annotation [33].

Module 3. Protein decoding-based functional annotation using LSTM method In this 
module, the long short-term memory neural network (LSTM) was used to decode pro-
teins for annotating their functions. LSTM had been utilized to cope with “long-tail 
problem” in multi-label image classification studies, since it could learn dependency 
among various labels [59–61]. As shown in Fig. 2, a three-layer LSTM was first proposed 
to learn hierarchical relationships among 6,109 GO families using those protein encod-
ings pre-trained in Module 2. The arrows in LSTM (between any two neuros, as illus-
trated in Fig. 2) denoted that the value of the previous neuron (the starting point of an 
arrow) was adopted to adjust that of the subsequent one (the end-point of that arrow). 
Finally, ensemble learning was applied to integrate sequence similarity into functional 
prediction, and all proteins could be annotated into a total of 6,109 families.

A variety of model parameters and their optimization

Various deep learning strategies were integrated into the development of AnnoPRO in 
this study, which included the convolutional neural network (CNN), deep neural network 
(DNN), and long short-term memory (LSTM). First, CNN contained two convolution lay-
ers (with their kernel size set to 3 × 3 and stride set to 1) and another two max-pooling 
layers (with their pool length set to 2 and stride set to 1). Second, the number of fully-
connected layers (FC) for developing the DNN models of this study was set to 5. Third, 

distance(pa, pb) = 1−
pa • pb

�pa� × �pb�
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the number of layers for constructing the LSTM models of this study was set to 3, and a 
total of 256 neurons were given for each layer. Finally, the input data were optimized to 
a time step of 11 (as shown in Additional file 1: Fig. S6). All in all, the parameters above 
were optimized using empirical analysis based on model performances.

During model development, a variety of parameters were optimized and systemati-
cally provided in Supplementary Table S3. First, 80% of 92,120 proteins from the CAFA4 
benchmark dataset were selected as the training dataset, and the remaining 20% pro-
teins were used as the validation data, which was in accordance with previous study [62]. 
Then, the ‘mini batch size’ and ‘learning rate’ for Module 2 in Fig.  2 were given to 32 
and 0.0002, respectively, with activation function for CNN and FC set to Rectified Lin-
ear Unit (ReLU). Third, ‘mini batch size’ and ‘learning rate’ of Module 3 in Fig. 2 were 
also set to 32 and 0.0002, respectively, with the activation function for LSTM set to 
Hyperbolic Tangent function (Tanh) [63]. At the end of each training epoch, the mod-
els’ convergences on validation dataset were carefully monitored, and the model of the 
best performance was identified based on early stopping [64]. Finally, the focal loss was 
implemented into training process to control the direction of model optimization [65].

The measurements facilitating performance evaluation

Two well-established measures were adopted in this study for evaluating the model per-
formances, which were widely adopted in the critical assessment of functional annota-
tion (CAFA) challenge [20]. The measures included: area under the precision-recall curve 
(AUPRC) and protein centric maximum F-measure  (Fmax). AUPRC is frequently applied for 
the evaluation of binary classifiers, especially for assessing the classes of unbalanced data, 
which is a numeric value between 0 and 1 [66]. The closer AUPRC is to 1, the better the pre-
diction performance is [66].  Fmax’s strength lies in its interpretability, which is also a numeric 
value between 0 and 1 [20]. The closer the  Fmax is to 1, the better the prediction performance 
is. These two measures (AUPRC and  Fmax) provided an overall performance assessment of 
protein functional prediction among different methods, but they were not intuitively enough 
for predicting a specific protein [67]. Thus, additional measures were adopted into this analy-
sis, which included ‘recall’ and ‘precision’ [68]. Particularly, ‘recall’ evaluated at what percent-
age the true functions of a protein were successfully predicted, and the closer the recall is to 
100%, the more the actual protein functions are annotated. Precision showed what percent-
age the predicted functions of a protein were true, and the closer the precision is to 100%, the 
more accurately the protein functional annotations are annotated. 
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