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Abstract 

Existing methods for analysis of spatial transcriptomic data focus on delineating 
the global gene expression variations of cell types across the tissue, rather than local 
gene expression changes driven by cell‑cell interactions. We propose a new statistical 
procedure called niche‑differential expression (niche‑DE) analysis that identifies cell‑
type‑specific niche‑associated genes, which are differentially expressed within a spe‑
cific cell type in the context of specific spatial niches. We further develop niche‑LR, 
a method to reveal ligand‑receptor signaling mechanisms that underlie niche‑differen‑
tial gene expression patterns. Niche‑DE and niche‑LR are applicable to low‑resolution 
spot‑based spatial transcriptomics data and data that is single‑cell or subcellular 
in resolution.

Background
Cells within a tissue must constantly work together to adapt to changing environments. 
In order to coordinate these changes, communication mechanisms such as paracrine 
signaling are used. In paracrine signaling, a cell releases chemical substances such as 
hormones, neurotransmitters, and growth factors that bind to a specific protein receptor 
on neighboring cells, eliciting a change in function of those cells. As such, specific gene 
expression programs in a cell may be driven by the activities of other cells in its niche.

Spatial transcriptomic (ST) technologies are rapidly maturing, enabling the high reso-
lution in  situ measurement of gene expression at the transcriptome scale. Such tech-
nologies include Merfish [1], SeqFISH+ [2], Visium [3], Slide-seq [4], and Stereo-seq [5]. 
To mine this data, computational methods have been proposed for image segmentation 
[6], technical artifact removal [7], spot deconvolution for spot-based data [8, 9], spatially 
variable gene detection [10–13], neighborhood detection [14–18], cell-cell interaction 
analysis [19–23], and other analyses [6, 24–26]. In particular, the detection of spatially 
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variable genes, defined as genes displaying clear spatial patterns in expression, has 
become a standard analysis step. Spatially variable genes can be used to aid in tasks rou-
tinely performed by histopathology, such as the visualization of tissue architecture, and 
further to identify cell types that have distinct spatial localization. Once the distribution 
of cell types have been determined at a macro level, it is often of interest to interrogate 
local, cell-type-specific interactions [27]. By design, spatially variable gene analysis is 
geared towards the identification of global patterns in gene expression, not local interac-
tions between cell types. For example, in cancer tissue, spatially variable genes allow us 
to demarcate cancer vs normal tissue regions; however, it is yet unclear how to identify 
and assess the significance of local patterns such as niche signaling between tumor and 
immune cells.

Local interactions between cells, such as those based on signaling pathways or chemi-
cal and biomechanical remodeling of the extracellular matrix, are highly cell type spe-
cific. Thus, we explore cell-type-specific models for the dependence of a cell’s gene 
expression program on its local microenvironment niche. In our analyses, we define a 
cell’s niche as the cell-type composition of its local neighborhood, where the range of 
the local neighborhood is determined by a kernel function. We expect that a cell’s niche 
affects its gene expression profile, and to this end, propose a new statistical procedure 
called niche-differential expression (niche-DE) analysis. Niche-DE identifies cell-type-
specific niche-associated genes, defined as genes whose expression within specific cell 
type(s) is significantly up- or downregulated in the context of specific spatial niches, as 
compared to their cell-type-specific mean expression. Although niche-DE is conceptu-
ally defined at the single-cell level, we derive an equivalent model for the recovery of 
niche-DE genes from lower-resolution spatial transcriptomic data where each observa-
tion is a spot (or region of interest) containing a mixture of cell types. To ensure rigorous 
and reproducible analyses, we propose an interpretable framework for FDR control that 
reports significant signals at three levels (gene, cell type, and interaction level). Through 
simulations, we show that the method is robust to overdispersion and spot swapping.

We would like to highlight the differences between niche-differential expression 
analysis and common spatial analyses such as spatially variable gene analysis and cell-
cell interaction analysis. Spatially variable gene analysis finds genes that show expres-
sion patterns that correlate with some spatial pattern [10–13], while cell-cell interaction 
analysis looks for cell types that colocalize with each other more than expected by ran-
dom chance [19–23]. While the former does not explicitly consider the colocalization 
of cell types present in the tissue, the latter is a function of the cell types and their loca-
tions with no regard to gene expression. In contrast, niche-differential expression analy-
sis finds genes in an index cell type (e.g., macrophages) that show expression patterns 
that correlate with its colocalization with another cell type (e.g., tumor cells). This gives 
insight to how colocalization of two cell types affects their gene expression state. The 
method that is most related to niche-DE in terms of analysis goal is C-Side [28], but that 
also has substantial differences, which we will discuss in the “Results” and “Discussion”.

One attractive feature of niche-differential expression analysis versus spatially variable 
gene analysis is that the former is easier to interpret across multiple tissue slides. A state-
ment such as “gene X is spatially variable, enriched in the left part of the slide” is diffi-
cult to generalize across samples due to differences in frames of reference. In contrast, a 
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statement such as “macrophages upregulate expression of a given gene X when situated 
near tumor cells” can be applied and tested across multiple tissue slices. As such, niche-
DE analyses can naturally integrate data from multiple tissue slides and across patients, 
with strategies to correct for tissue- and slide-batch effects.

When niche-differentially expressed genes are identified, a natural follow-up inquiry is 
whether a known cell-cell signaling mechanism is responsible for their up- or downregu-
lation. Towards this goal, we developed niche-LR, a procedure that integrates niche-DE 
statistics with Niche-net ligand-target matrices [27] to identify ligand-receptor signaling 
channels between cell types. We also derive rigorous test statistics for this step and show 
that niche-LR can recover cell-cell signaling interactions for spot-based spatial tran-
scriptomic data where each spot may be a mixture of cells.

We illustrate and benchmark niche-DE on simulated CosMx SMI [29], Slide-seq [4], 
and Xenium [30]. In an extensive analysis of 10× Visium data consisting of liver metas-
tases of colorectal cancer from 5 patients, Niche-DE identifies known and novel marker 
genes for tumor-associated fibroblasts and macrophages and elucidates ligand-receptor 
crosstalk patterns between tumor cells, macrophages and fibroblasts. These findings 
are corroborated by parallel analyses of single-cell RNA sequencing (scRNA-seq) and 
CODEX data for the same tissue type, and in one case, from the same patient. As an 
example of niche-DE application in a non-cancer setting, we also analyzed an example 
data set from chronic kidney disease, where niche-DE uncovered well-known disease-
associated gene markers for fibroblast transformation and proximal tubule cell injury.

Results
Single‑cell niche‑differential gene expression model

We start by describing the niche-DE model, first for data of single-cell resolution and 
then for data of lower resolution. We then summarize the framework for FDR control 
and bandwidth selection. Details of the model and algorithm are given in the “Methods” 
section.

For spatial transcriptomic data at single-cell resolution, we assume that the cells have 
already been labeled by type, e.g., through the use of marker genes or a reference-based 
label transfer method [31, 32]. Let Yc,g be the observed count for gene g ∈ {1, . . . ,G} in 
cell c ∈ {1, . . . ,C} , Tc ∈ {1, . . . ,T } be the type of cell c , and µt,g = E(Yc,g |Tc = t) be the 
expected expression of gene g in a cell of type t . For each cell, we summarize its spatial 
neighborhood through the computation of a kernel-smoothed density of cell-type com-
positions centered at the cell (Fig. 1A):

where dc,c′ is the physical distance between cells c, c′ and Kσ (d) is a kernel of bandwidth 
σ , e.g., Kσ (d) =

1
σ
φ( d

σ
) , where φ is the Gaussian filter. We call Nσ ,c = (Nσ ,c,1, . . . ,Nσ ,c,T ) 

the effective niche cell-type composition of cell c with kernel bandwidth σ . In defining 
Nσ ,c , we refer to cell c as the index cell (Fig. 1A). In summary, we characterize the spatial 
niche of a cell as a T  dimensional vector where index j measures how much of cell type j 
is in the neighborhood of the index cell. For example, a cell that is surrounded by tumor 

Nσ ,c,t =

C

c′=1

Kσ dc,c′ I(tc′ = t),
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cells will have an effective niche that is 0 in all indices except for the one that corre-
sponds to tumor cells. Meanwhile, a cell with a neighborhood dense in different immune 
cell types will have an effective niche with many non-zero entries. The exact density of 
each cell type within the neighborhood will determine the magnitude of the entry in the 
effective niche. We consider first the case where the bandwidth σ is given, and later dis-
cuss the pooling of evidence across multiple σ.

For modeling sequencing-based single-cell data, the negative binomial model has been 
well studied and shown to be a useful model [34, 35]. Thus, in the single-cell niche-differ-
ential gene expression model, the expression of gene g in index cell c is negative binomial-
distributed with dispersion γg and mean that varies according to both the index cell type 
and the effective niche:

where µTc ,g = E[Yc,g |Tc] is the global mean of gene g in cells of type Tc . Let i ∈ {1, . . . ,T } 
be the index cell type, and n ∈ {1, . . . ,T } be the niche cell type, our goal is to estimate the 

(1)logE
[
Yc,g |Tc,Nσ ,c

]
= logµTc ,g +

T∑

n=1

Nσ ,c,nβ
g
σ ,tc ,n

Fig. 1 A Schematic of effective niche calculation: We aim to quantify the cell‑type composition of each 
cell’s neighborhood. For each index cell, we calculate the pairwise kernel distance similarity between itself 
and each other cell in the sample. We use a Gaussian kernel with bandwidth σ . The effective niche for the 
index cell is a vector with dimension equal to the number of unique cell types in the sample where index 
i  represents the sum of kernel similarities between the index cell and the cells of type i  . B Schematic of 
niche‑DE pipeline: To perform niche‑DE, we first perform deconvolution/cell‑type identification of our 
data. We then calculate the effective niche using a Gaussian kernel of bandwidth σ . We then apply the 
regression‑based niche‑DE model using the effective niche calculated in the previous step. If one desires, 
they can repeat this step for multiple bandwidths. Using the Cauchy combination test across the different 
kernels used, we can calculate a p‑value for testing whether gene g is an (i, n) niche gene for all genes g 
and index‑niche cell‑type pairs. C FDR control: To guarantee correct FDR control, we utilize the hierarchical 
Benjamini‑Hochberg procedure [33]. We first test if a gene shows evidence of being a niche‑DE gene in any 
index‑niche pair. This results in a p‑value for each gene. We then apply the BH procedure to this set of genes. 
For a gene whose adjusted p‑value is below the cutoff value, we test if it a niche gene in with index cell type 
i  . Testing across all T  unique cell types in our sample, we get T  cell‑type‑specific p‑values for each gene g that 
is tested at this level. We then apply the Benjamini‑Hochberg correction at level α across these p‑values for 
each gene. For all gene, index cell‑type pairs (g, i) that are significant after correction, we proceed to test if 
gene g is an (i, n) niche gene for each niche cell type n . After applying the Benjamini‑Hochberg correction at 
level α across all Tp‑values for each (g, i) pair, if a (g, i, n) set has a p‑value below the cutoff value, we conclude 
that gene g is an (i, n) niche gene
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cell-type-specific niche-differential expression parameters {βg
σ ,i,n} , and to identify those 

genes g and index-niche cell-type combinations (i, n) where βg
σ ,i,n  = 0 . A significant test 

against the null hypothesis βg
σ ,i,n = 0 means that, when the index cell is of type i , the 

enrichment of cell type n in the effective niche is associated with a significant change in 
the expression of gene g within the index cell. In this case, we call gene g an (i, n)+ niche 
gene if the association is positive and an (i, n)− niche gene if the association is negative. 
Note that the relationship between niche and index cell type is asymmetric.

Detecting niche‑differential expression from spot‑level data

Now consider the case where, instead of single cells, we observe spots s ∈ {1, . . . , S} , 
where each spot may be a mixture of cells of different types. Let Xs,g be the count of gene 
g in spot s . In “Methods,” we show that model (1) is approximately equivalent to the fol-
lowing spot-level model:

where µs,g =
∑

c:s(c)=sµTc ,g is the expected expression of gene g in spot s given the true 
cell-type composition of spot s , ps,i,g =

(
µs,g

)−1∑
c:s(c)=s µtc ,g I(tc = i) is the expected 

proportion of gene g ’s expression in spot s that originate from cell type i , and Nσ ,s,n is 
the concentration of cell type n in the effective niche of spot s . As shown in Fig. 1B, we 
start by computing the terms µs,g , ps,i,g and Nσ ,s,n via spot deconvolution [8]. Then, the 
terms βg

σ ,i,n can be estimated along with their corresponding p-values pgσ ,i,n via negative 
binomial regression. It is important to note that, despite the fact that model (2) is fit 
using lower-resolution spot-level data, the set-up of the model ensures that the inter-
pretation of the parameters βg

σ ,t,t ′ are exactly the same as for model (1). We stress that 
in the case of spot-level data, a good deconvolution must be performed. This is because 
errors in the deconvolution will lead to an incorrect effective niche calculation which is 
the primary covariate in the niche-DE model. Therefore, we assume that a satisfactory 
deconvolution has been performed prior to performing niche-DE.

Among published methods, the method that is most similar to niche-DE in terms of 
analysis goal is C-Side [28]. There are important methodological differences between 
niche-DE and C-side. By starting from a single-cell model and then using it to derive a 
spot-level model, niche-DE gives explicit interpretation of the parameter βg

i,n , which is the 
increase in expression of gene g in index cell type i per unit increase in the niche pro-
portion of cell type n . Although C-Side also aims to detect cell-type-specific differentially 
expressed genes, its model does not admit to this explicit interpretation of parameters. 
Niche-DE also accounts for the average library size of each cell type in performing dif-
ferential expression analysis. This is important because C-side assumes that the change 
in gene expression for a spot is equal to the average change across all cell types in the 
spot. Niche-DE also differs from C-side in the way that it treats multiple cell types, the 
unknown spatial neighborhood size, and the massively parallel multiple tests, as we detail 
in the “Discussion”.

(2)log
(
Xs,g

)
= log

(
µs,g

)
+

∑

{i}

∑

{n}

ps,i,gNσ ,s,nβ
g
σ ,i,n
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Hierarchical false discovery rate control

For each gene, hypothesis tests are performed for T 2 parameters: one parameter 
β
g
σ ,i,n for each index-niche cell-type pair. Across G genes, this amounts to a paral-

lel screen of GT 2p-values. As shown in Fig. 1C, we control the false discovery rate 
(FDR) through a hierarchical Benjamini-Hochberg procedure [33]. Specifically, we 
start with a gene-level test, to identify genes that are niche-DE in at least one of 
the T 2 possible cell-type configurations. This is achieved through applying Browns 
method [36] on the set of p-values obtained through testing the null hypothesis 
β
g
σ ,i,n = 0 for all i, n . Thus for each σ , we have a gene specific p-value pσg  . We com-

bine these p-values into a single p-value, pg , via the Cauchy combination procedure 
[37]. A Benjamini-Hochberg correction at level α is applied to the gene-level p-val-
ues. For genes that are rejected at this level, we proceed to test at the cell type level: 
for each cell type i, we again apply Brown’s method on the set of p-values obtained 
through testing the null hypothesis βg

σ ,i,n = 0 for all niche cell types n.Thus, for each 
σ , we get T  cell-type-specific p-values for each gene g  that is tested at this level. We 
then combine these p-values across kernel bandwidths via the Cauchy combination 
procedure. The Benjamini-Hochberg correction at level α is then applied across all 
T  cell types for each gene. For all gene and index cell-type pairs (g , i) that are signifi-
cant after correction, we proceed to test whether βg

σ ,i,n = 0 for each niche cell type 
n again combining p-values via the Cauchy combination procedure and applying a 
Benjamini-Hochberg correction at level α across all niche cell types. For all gene, 
niche, and index cell-type pairs (g , i, n) that are significant after correction, we con-
clude that gene g  is an (i, n) niche gene.

This hierarchical procedure can be shown to control overall FDR control at 
approximate level α(#Discoveries + #Families Tested)/(#Discoveries + 1) [33]. Impor-
tantly, this procedure allows the flexibility to report niche effects at the gene and 
index cell-type levels when, due to multicollinearity caused by colocalizing cell 
types, it may be difficult to tease apart which cell type in the niche is responsible for 
the niche-differential expression. Such colocalization induced multicollinearity can 
be rampant even when the data is at single-cell resolution. In the case where a gene 
rejects at the cell-type level for cell typei , but there is not enough power to identify 
the niche cell type, we call this gene an i-niche gene. Note that we screen for one-
sided niche effects by testing the null hypothesis βg

σ ,i,n ≥ 0 and βg
σ ,i,n ≤ 0 separately.

Applying niche‑DE over multiple kernel bandwidths

The kernel bandwidth parameter σ determines the spatial range of cells that con-
tribute towards the effective niche of the index cell/spot. Because we do not 
know the optimal σ a priori, we perform niche-DE on a grid of K  different kernels 
σ1, . . . .σK  (Fig.  1B). This gives us gene-level p-values {pgσj } for each bandwidth σj . 
We also record the log-likelihood score, Lgσj , of the negative binomial regression of 
X{s,g}, onNσ ,s . To pool together p-values from each kernel, we use the Cauchy combi-
nation test with the weight for pgσj defined as Lgσj/(

∑K
i=1 L

g
σi) to get a kernel-weighted 
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gene-level p-value pg . We apply the BH procedure on the set of kernel-weighted 
p-values pg to determine which genes proceed to the cell-type level test. This proce-
dure allows us to test multiple kernel bandwidths, prioritizing bandwidths that give 
better fit to the data. The same bandwidth-weighting procedure is performed at the 
cell-type and interaction levels.

Fig. 2 A Overview of data simulation: To simulate realistic ST data, we take a real ST dataset and perform 
deconvolution to calculate the expected expression vector for each spot Xs . To generate data in the absence 
of niche effects, we simulate expression vectors from a negative binomial distribution with mean Xs and 
overdispersion parameter 1. To generate data with niche effects, we specify βi,n for all index‑niche pairs 
(i, n) and calculate the new expected expression vector for each spot Ys based on the niche‑DE model. We 
then simulate expression vectors from a negative binomial distribution with mean Ys and overdispersion 
parameter 1. We also simulate ST data in the presence of spatial bleeding by calculating new expression 
vectors based on the SpotClean model with local bleeding parameter 0.25. Afterwards, we calculate the 
type 1 error rate, power, and runtime of niche‑DE. B Gene level, cell‑type level, and interaction‑level null 
p‑value QQ plots when performing niche‑DE on the simulated data. The empirical quantiles are based on 
those generated by niche‑DE on the simulated data. The theoretical quantiles are based on the uniform 
distribution. C Power calculation when performing niche‑DE on the simulated data with niche effects of 
varying sizes. D Runtime of nice‑DE across the number of genes, the number of cells/spots, and the number 
of unique cell types present in the data. E Pseudo‑spot data simulation overview: To simulate spot‑level data 
from single cell level data, we created pseudo spots by partitioning the field of view into equal‑sized squares. 
Counts are aggregated within each square, to create a pseudo‑spot. Spot size is defined as the average 
number of cells in a pseudo‑spot. We applied niche‑DE to these lower‑resolution datasets, and using the 
niche‑DE results from the original high‑resolution datasets as the gold standard, we computed the sensitivity 
and specificity of the niche genes found at each spot size. F Gene level, cell‑type level, and interaction‑level 
sensitivity and specificity vs spot size in both Slide‑seq cerebellum, Xenium breast cancer, and CosMX SMI 
NSCLC data
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Precision of false‑positive control and robustness to spot swapping

First and foremost, we evaluate the accuracy of type I error control for niche-DE test-
ing to ensure that false positives are controlled in the transcriptome-level screen across 
cell-type configurations. Towards this end, we generated realistic spatial transcriptomic 
data in the absence of niche-DE genes, as shown in Fig. 2A: Starting from a high-quality 
Liver mCRC Visium data set matched with scRNA-seq data, we deconvolved each spot 
s to estimate its cell-type composition vector, which, when multiplied with the reference 
cell-type-specific gene expression matrix, gave us the expected expression vector for 
that spot µs . We then sampled a new expression vector Xs for the spot by drawing from a 
negative binomial distribution with mean µs and a given overdispersion parameter. Note 
that, since expression values are drawn for each spot independently given only the spot’s 
cell-type decomposition and without influence from its neighbors, data simulated in this 
way should have no niche-DE genes, that is, βg

i,n = 0 for all genes g and index-niche cell-
type configurations (i, n).

Spot swapping is a known artifact in spatial transcriptomic data, where transcripts 
from a spot can “bleed” into nearby spots, contaminating the transcript pool of those 
nearby spots. This can lead to false spatial correlation and, as such, all ST datasets are 
contaminated to some degree. To examine how spot swapping may affect niche-DE 
p-values, we simulated spatial bleeding according to the SpotClean model where 25% of 
transcripts are bled into neighboring regions [7]. For each spot s , this results in a con-
taminated mean expression vector µc

s . We then sampled a contaminated expression vec-
tor Xc

s  for the spot by drawing expression values from a negative binomial distribution 
with mean µc

s . We denote by X = {Xs} and Xc = {Xc
s } the simulated data sets with and 

without contamination, respectively.
To test the robustness of niche-DE to overdispersion and spot swapping, we perform 

niche-DE on X and Xc at the gene, cell-type, and interaction levels. To visualize the 
p-values, we take their negative logarithm. In Fig. 2B, we see that the quantile-quantile-
plot of niche-DE p-values on both X and Xc are similar to that of a uniform distribution. 
This indicates that niche-DE effectively controls the type 1 error rate and is robust to 
spatial bleeding.

To examine if the power of niche-DE across effect sizes and dataset sizes is maintained 
under spot swapping, for 2000 random genes Gβ , we introduced a spike-in effect βg

i,n that 
varied within the set {0.2, 0.4, 0.6, 0.8, 1} . For g ∈ Gβ , let µs,g ,β be the expected expression 
of gene g in spot s according to the niche-DE model given βg

i,n = β . Similarly, let µc
s,g ,β be 

the expected expression of gene g in spot s under the spot-swapping model with spike-in 
effect β . From µs,g ,β and µc

s,g ,β , we can simulate Xs,β and Xc
s,β by drawing expression val-

ues based on a negative binomial distribution with mean µs,g ,β and µc
s,g ,β , respectively. To 

simulate varying dataset sizes (number of spots), we bootstrapped B samples from the 
sets 

(
Nσ ,s,µs,β

)
 and 

(
Nc
σ ,s,µ

c
s,β

)
 where B ∈ {1000, 5000, 10, 000},Nσ ,s is the effective niche 

of spot s in the simulated dataset with no spatial bleeding, and Nc
σ ,s is the effective niche 

of spot s in the simulated dataset with spatial bleeding. The results (Fig. 2C) show that 
there is minimal power loss due to spot swapping.

We believe that the robustness to spot swap is due to the bleeding effect being 
absorbed into the cell-type proportion estimates during the deconvolution step. Suppose 
that cell type i in spot s bleeds a proportion α of its transcripts into neighbor spot s′ . 
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Perfect deconvolution based on marker genes would infer that spot s′ has an additional α 
cells of type i . If a gene g is a cell type i niche gene, it will be bled into neighboring spots 
more/less than what is expected, resulting in gene g being seen as a cell type i niche 
gene. Because neighboring cells have similar effective niches, this results in niche-DE 
detecting similar niche patterns in gene expression. Therefore, contaminated data will 
have similar niche patterns in gene expression to non-contaminated data. As such, the 
bleeding leads to biased estimates of cell-type proportions, but the bias is not propa-
gated to the niche-DE estimates.

Runtime of niche‑DE across cell‑type complexity, gene set size and number of observations

To benchmark runtime, we performed niche-DE across three different kernel band-
widths in parallel across 4 cores. We then vary the number of cell types, the number 
of cells/spots, and the number of genes measured. As shown in Fig.  2D, the runtime 
increases linearly with the number of observations and the gene set size while it increases 
quadratically with the number of cell types (Fig. 2D). As a reference, it took 1 h to ana-
lyze a dataset with 10,000 cells, 10,000 genes, and 8 cell types.

Recovery of niche‑DE genes from ST data at varying spot resolutions

To quantify how much information is lost when using lower-resolution spot- and ROI-
based technologies where each spot/region aggregates multiple cells, we simulated 
spot-level data by aggregating nearby measurements in three publicly available spa-
tial transcriptomic data sets with subcellular resolution: the Slide-seq cerebellum data 
[38], the Nanostring CosMx SMI non-small cell lung cancer data [29], and the Xenium 
breast cancer data [12]. To simulate lower-resolution data, we created pseudo spots by 
partitioning the field of view into equal-sized squares (Fig. 2E). Counts are aggregated 
within each square. We call the average number of original spots/cells that are contained 
in each pseudo-spot the ‘spot size’. A larger spot size corresponds to a coarser dataset. 
We applied niche-DE to these lower-resolution datasets, and, using the niche-DE results 
from the original high-resolution datasets as the gold standard, we computed the sensi-
tivity and specificity of the niche genes found at each spot size (Fig. 2F).

For the Slide-seq cerebellum data, across all spot sizes, the specificity is maintained 
at almost exactly 1, indicating that type I error is effectively controlled at all spot reso-
lutions. However, we see a clear trend of sensitivity decreasing as spot size increases. 
When the spot size is 4 cells, niche-DE recovers about 75% of the gold standard detec-
tions, and when the spot size increases to 10 cells, the recall rate drops to 50% at the 
gene, cell type, and interaction levels. This trend may be also be in part due to sample 
size decrease, since, when the spot size is 10, the corresponding coarser dataset has 10 
times less data points.

For the CosMx SMI non-small cell lung cancer data as well as the Xenium breast can-
cer data, we see a similar trend: Across all spot sizes, specificity is maintained at almost 
exactly 1 for the cell type and interaction-level tests, and above 90% for the gene-level 
tests. Sensitivity decreases, as expected, with increasing spot size. For this data set, recall 
rate at the gene level is maintained above 90% even at spot size of 10 cells. However, 
as for the Slide-seq cerebellum data, recall rates for the cell-type- and interaction-level 



Page 10 of 33Mason et al. Genome Biology           (2024) 25:14 

tests drop substantially as spot size increases, leveling at 50% when the spot size is 10. 
Unlike the slide-seq data, the drop-off in sensitivity is sharper when spot size increases 
from 1 to 2. We believe that this is due to the larger number of cell types in this data set 
(20/18 versus 8), and thus the number of niche-index interactions tested across colocal-
izing cell types makes it hard to find exactly which index-niche pair(s) are driving the 
significance of a niche-DE gene.

These results indicate that, while there is indeed loss of power with decreased spatial 
resolution, over half the signals detectable at the subcellular resolution can be detected 
by niche-DE at a spot size of 10 cells, without increasing false-positive rate.

Inferring ligand‑receptor interactions via niche‑DE

To determine which extracellular signaling mechanisms are driving niche-DE patterns 
between index cell type i and niche cell type n , we developed a procedure integrating 
Niche-differential genes, ligand expression, receptor expression, and Niche-Net [27] data 
which links ligands with downstream target genes (Fig. 3A). The procedure, illustrated 

Fig. 3 A Ligands from the niche cell type are received by the index cell type, resulting in a change in 
downstream gene expression. We expect these downstream genes to be (index , niche) genes. B Overview of 
niche‑DE Ligand‑Receptor pipeline: We aim to determine which ligand‑receptor pairs are active between the 
ligand expressing niche cell type n and the receptor expressing index cell type i  . (1): Using the ligand‑target 
potential matrix from niche‑net, we extract the top K  downstream genes for each ligand. (2): Using these 
downstream genes, we calculate a ligand activity score using the niche‑DE T‑statistic vector between 
index‑niche pair (i, n) for the top K  downstream genes. (3): Ligands with an activity score greater than a 
threshold value and their corresponding receptor(s) are screened for expression in the niche cell type. C 
Comparison of ligands inferred between the niche‑DE‑based pipeline and a permutation‑based pipeline [29]. 
D Sensitivity of top 20 and top 50 ligands by ligand activity score vs spot size using slide‑seq cerebellum data 
as the reference
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in Fig.  3B, starts with the ligand-target matrix A = {Al,g : l = 1, . . . , L; g = 1, . . . ,G} 
obtained from Niche-Net, where L is a set of ligands and G is a set of target genes. 
Al,g reflects the confidence that ligand l can regulate the downstream expres-
sion of gene g . Complementing this, for index cell type i , niche cell type n , and ker-
nel bandwidth σ , Niche-DE provides a G dimensional vector of one-sided t-statistics 
Bσ ,i,n = {Bσ ,i,n,g : g = 1, . . . ,G} , where Bσ ,i,n,g reflects whether or not gene g is an (i, n)+ 
niche gene operating at kernel bandwidth σ . For each ligand l , we first identify the top 
downstream genes using {Al,g } (Fig. 3B step 1), and then calculate a ligand activity score 
for each niche and index cell type pair (i, n) , which measures the degree to which these 
downstream targets are found to be niche-associated between i and n (Fig. 3B step 2). 
The null distribution of this activity score can be determined, and the ligands whose 
activity score pass the null p-value threshold are assumed to be the most likely ligands 
expressed by niche cell type n in its interaction with index cell type i . We call this set of 
ligands Ci,n.

Ligands in the candidate ligand set Ci,n should be expressed by the niche cell type n , but 
this obvious condition has not yet been checked. Checking this condition is especially 
important since ligands may share similar downstream target genes, and thus, a ligand 
may have spuriously high activity scores due to lack of specificity in its Niche-net pro-
file. Therefore, for each l ∈ Ci,n , we perform a statistical test to confirm that the ligand is 
indeed expressed in the niche cell type n , and that at least one of its known receptors is 
indeed expressed in the index cell type i (Fig. 3B step 3). We call this combined approach 
niche-LR, for niche-ligand-receptor analysis. Details of niche-LR, including the com-
putation of Ci,n and the follow-up statistical test for niche expression of the ligand and 
index expression of the receptor, are described in “Methods”.

On the CosMx SMI NSCLC data [29], a permutation-based approach was proposed 
to assess ligand-receptor co-expression between adjacent cell pairs. We compare the 
Niche-LR detected ligand-receptor pairs to those detected by the permutation-based 
method, see Additional file 1: Tables S1 and S2. Consider, for example, signaling between 
memory CD8 T (index cell type) and tumor (niche cell type). Out of the 21 unique 
ligands belonging to ligand-receptor pairs identified by Niche-LR, 6 ligands overlap with 
those identified by the permutation-based method (p-value = 0.03, Fig. 3C). The overlap 
(THBS1, COL1A1, TNFSF10, SPP1, HLA-A, and HLA-C) is significant; however, the lack 
of overlap is also not surprising, given that the two approaches differ substantially: The 
permutation-based procedure, which is designed specifically for spatial transcriptomic 
data at single-cell resolution, ignores the expression of genes downstream of the ligand, 
and, by explicitly focusing on adjacent cells, ignores signaling between cells that are not 
immediate neighbors. Thus, genes downstream of the ligand does not need to show evi-
dence of niche-DE for the ligand to be detected by [11]. However, [11] is expected to 
miss ligand-receptor channels that operate over larger distances, as well as those where 
RNA-level expression does not closely track the colocalization between the niche and 
index cell types.

To assess the accuracy of niche-LR at varying spot resolutions, we applied the method 
to the original and spot-aggregated datasets created as described in Fig. 2E. The results 
(Fig. 3D) show that the top 20 and 50 candidate ligands in the Slide-seq cerebellum data 
are generally conserved across spot sizes and index-niche cell-type configurations. In 
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the CosMx SMI lung cancer data, there is larger drop-off in overlap. We believe that 
this is due to the large number of cell types being screened (22 cell types leading to 484 
index-niche configurations versus 8 cell types leading to 64 index-niche configurations 
for cerebellum), thus leading to higher numbers of colinear covariates in the regression 
and a vastly expanded number of parallel tests, decreasing the sensitivity for specific 
cell-type configurations. Due to the small gene panel used in Xenium, niche-LR was not 
performed.

Niche‑DE detects tumor‑fibroblast niche interactions with validation by CODEX imaging 

in liver metastases of colorectal carcinoma

We applied niche-DE and niche-LR to the integrative analysis of five 10X Visium sam-
ples obtained from liver metastases of colorectal carcinoma. For cell-type deconvolu-
tion and mean expression profiles, we based our analysis on the reference scrna-seq data 
from a previous study from Sathe et al. [39]. Three of the samples (patients 1–3) come 
from another study on liver metastasis by Wu et al. [40], while two additional samples 
(patients 4–5) were generated in this study. CODEX data has been generated for patient 
4. Additional file  2: Table  S1 gives the details, including quality metrics, of these data 
sets. We deconvolved each sample using the single-cell reference data set from Sathe 
et al., yielding the proportions of each of the 6 major cell types (hepatocytes, epithelial, 
fibroblast, macrophage, T lymphocytes, B lymphocytes) in each spot. Spatial maps of the 
estimated cell-type proportions are shown in Additional file 3: Fig. S1.

Since fibroblasts make up a substantial fraction of the cells in all samples, and since 
cancer-associated fibroblasts are an emerging target for anti-cancer therapy, we first 
focus on the niche interactions between fibroblasts and tumor cells. At FDR threshold of 
0.05, niche-DE found 1117 genes whose expression in fibroblasts are significantly asso-
ciated with the niche-enrichment of tumor cells. These genes are given in Additional 
file  4: Table  S1. Pathway enrichment analysis of 

(
fibroblast, tumor

)+ genes identifies 
extracellular matrix organization, collagen production, and WNT signaling as the top 
three processes (Fig.  4B). This finding concurs with recent findings that collagen pro-
duction and extracellular matrix remodeling are two of the most pronounced proper-
ties of tumor-associated fibroblasts versus their normal counterparts [39]. A full list of 
enriched pathways is given in in Additional file 4: Table S2. A visual check of the spatial 
distribution for three of the niche-DE genes (COLGALT1, COL4A1, and CTBP2), each in 
a separate patient sample, reveals that niche-DE gene expression are indeed enriched in 
regions of the tissue where fibroblasts and tumor cells colocalize (Fig. 4B). Such expres-
sion enrichment in regions of index-niche cell-type colocalization is not always the case 
with niche-DE genes, as the niche-DE model uses flexible kernel bandwidths to allow for 
interactions beyond those between immediate neighbors.

We performed Ligand-Receptor analysis using niche-LR, detecting 25 unique ligands 
from tumor cells among the confirmed ligand-receptors between fibroblasts and tumor. 
This includes Laminin family genes LAMB1, LAMC1 which can bind to integrin family 
receptors on fibroblasts. Integrin signaling has been demonstrated to control fibroblast 
activation and response to mechanical signals in the TME [42]. Other ligand-receptor 
channels included JAG2/NOTCH1,FGF11/FGFR1,CXCL1/CXCR1,CALM1/EGFR, and 
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NRTN/GRFA1 (Fig. 4E). The full list of ligand-receptor interactions identified from the 
data can be found in in Additional file 4: Table S3.

We also applied Niche-DE to identify genes whose expression in tumor cells are 
niche-associated with the enrichment of fibroblasts, with results shown in Additional 

Fig. 4 A Colocalization heatmaps between fibroblasts and tumor in liver samples 1, 2, and 3. B Using 
niche‑DE marker genes in fibroblasts near tumor as input, pathway enrichment analysis finds ECM 
organization, collagen formation, and WNT signaling as top processes in fibroblasts in the presence of tumor 
cells. Spatial heatmaps of CTBP2, COL4A1, and COL1GALT1 confirm expression of pathway‑related genes in 
the presence of tumor. C Spatial heatmap of tumor abundance, fibroblast abundance, and GAL3 expression 
in CODEX data of liver metastasis of colorectal cancer in patient 4. D Regression of tumor GAL3 expression 
on their fibroblast effective niche in CODEX data finds a significantly negative coefficient consistent with 
those found by niche‑DE. E Ligand‑receptor pairs found between fibroblasts and tumor via niche‑LR include 
LAMA1/ITGA1, JAG2/NOTCH1, and CXCL1/CXCR1. F Clonalscope [41] finds two major tumor subclones in liver 
sample 1. Analysis finds an amplification of chromosomes 4p and 9q in subclone 2 relative to subclone 1. G 
Using niche‑DE marker genes in fibroblasts near subclone 2 relative to subclone 1 as input, pathway analysis 
finds translation and glycosylation among enriched processes. Spatial heatmaps of RPS7, NOTCH1, and 
RPS27A confirm differential expression of pathway‑related genes in the region of the tissue containing tumor 
subclone 2. H Using niche‑DE marker genes in fibroblasts near subclone 1 relative to subclone 2 as input, 
pathway analysis finds interferon signaling, cytokine signaling, and antigen presentation among enriched 
processes. Spatial heatmaps of IFI6, ISG15, and HLA-F confirm differential expression of pathway‑related genes 
in the region of the tissue containing tumor subclone 1
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file 5: Table S1. Among the top hits in patient 4 is GAL3, whose expression in tumor 
cells was found to be negatively associated with niche-enrichment of fibroblasts. Fol-
lowing-up on this finding, we analyzed the CODEX sample of patient 4. The CODEX 
protein panel, which includes GAL3, is in Additional file 5: Table S2. Niche-DE analy-
sis at the single-cell level in CODEX detects a similar pattern of under expression of 
GAL3 in tumor cells with increasing effective niche presence of fibroblasts (Fig. 4C). 
A regression of tumor cell GAL3 expression on the effective niche fibroblast concen-
tration gives a slope of −0.53 (p-value <  2−16, Fig. 4D).

For comparison, we also applied C-Side to the Visium sample from patient 1. Since 
C-Side requires the user to input the covariate matrix, and does not give instructions on 
what to use, we used as input the effective niche computed by niche-DE. C-Side does not 
allow combining evidence across multiple neighborhood sizes, and thus we used a fixed 
kernel width of 250 pixels. Next, we extracted the niche-specific coefficients and stand-
ard errors from C-Side to manually compute their p-values and perform FDR control at 
the 0.05 level via Benjamini-Hochberg procedures, giving us 3926 upregulated and 1815 
downregulated interaction-level signals. Niche-DE gives 5676 upregulated and 3861 
downregulated interaction-level signals. The Venn diagram of discoveries made between 
the two methods can be found in Additional file 6: Fig. S1. Even when the two methods 
both start with the covariate matrix computed by niche-DE, there are significant differ-
ences, which we believe is due partly to the differences discussed above (i.e., niche-DE 
adjusts for cell type-specific library size and conducts hierarchical FDR control, which is 
not performed in C-Side).

An inspection of (fibroblast,tumor)+ genes found by niche-DE and C-Side shows that 
C-Side finds 167 genes and niche-DE find 319 genes with 57 genes overlapping between 
both gene sets. Pathways associated with genes found by C-Side but not niche-DE cor-
respond to metabolism whereas pathways associated with genes found by niche-DE but 
not C-Side correspond to translation, extracelluar matrix organization, collagen forma-
tion, and metabolism. Fifty genes found by niche-DE but not C-Side code for ribosomal 
proteins, which should be upregulated in fibroblasts undergoing tumor-associated extra-
cellular matrix remodelling.

Niche‑DE identifies subclone‑specific niche interactions between tumor cells 

and fibroblasts

Tumor cells exhibit a large degree of heterogeneity due to subclonal evolution driven 
by both intrinsic genomic and epigenomic instability as well as extrinsic factors in its 
microenvironment. Thus, identifying different subclones of tumor cells in situ, and com-
paring the ways that the subclones interact with their local niche, may allow us to learn 
about mechanisms of tumor growth and invasion. Using Clonalscope [41], we identified 
2 spatially distinct tumor subclones in Liver Sample 1. As shown in Fig. 4F, subclone 1 
is located predominantly at the lower left region of the slide, while subclone 2 is located 
predominantly at the upper left region of the slide(Fig. 4E). These two subclones are dis-
tinguished by chromosome 4p and 9q amplification in subclone 2 (Fig. 4F). The histopa-
thology of the liver sample shows a conventional gland-forming adenocarcinoma. The 
region containing subclone 2 has less desmoplastic stroma, more architectural complex-
ity, and some medullary-like features such as foci of a solid growth pattern compared 
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to the region containing tumor subclone 1. Due to the more irregular and decreased 
gland formation, tumor subclone 2 is less differentiated relative to tumor subclone 1. 
Applying Niche-DE to this sample, with fibroblasts as the index cell type and each of 
the two subclones as niche cell types, we detect niche-differential expression that is spe-
cific to each subclone. Reactome analysis of marker genes of fibroblasts near subclone 1 
reveals enrichment of interferon and cytokine signaling. Applying Niche-DE with sub-
clone 1 as index cell type and fibroblasts as niche cell type identifies IFNGR1 to be a (
subclone1, fibroblast

)+ niche gene as well. Reactome analysis of marker genes of fibro-
blasts near subclone 2 reveals enrichment of glycosylation and general translation to be 
enriched processes. These significant differences between fibroblasts that infiltrate dis-
tinct subclones at such close spatial proximity suggest that cancer-associated fibroblasts 
are highly plastic in adapting to subtle changes in their local tumor microenvironment. 
The full list of marker genes for each subclone can be found in Additional file 7: Tables 
S1 and S2. The full list of enriched pathways associated with each index-niche cell-type 
configuration can be found in Additional file 7: Tables S3 and S4. An annotation of the 
high-resolution H&E image for liver tissue can be found in Additional file 8: Fig. S1.

Niche‑DE analysis identifies marker genes and signaling mechanisms specific 

to tumor‑associated macrophages in liver metastasis

We continue the integrative analysis of the Visium liver metastasis samples depicted in 
Fig. 4 and Additional file 3: Fig. S1. Reactome pathway analysis of (macrophage,tumor)+ 
genes identified by niche-DE revealed a significant enrichment of processes related to 
extracellular matrix (ECM) organization and metabolism (Fig.  5A). Ligand-receptor 
analysis between macrophages and tumor cells identify C5/C5AR1,SPP1/ITGA4, and 
TF/TFRC as the ligand-receptor signaling mechanism driving these niche-DE genes 
(Fig. 5B). Full lists of confirmed ligand-receptor pairs, (macrophage,tumor)+ genes, and 
pathway analysis results can be found in Additional file 9: Tables S3, S4 and S5.

The liver microenvironment contains inflammatory macrophages derived from mono-
cytes as well as non-inflammatory tissue-resident macrophages such as Kupffer cells 
[43]. Tumor-associated macrophages (TAM) represent a further reprogrammed mac-
rophage subtype in the metastatic TME. Identifying and characterizing these cell states 
using only scRNA-seq is challenging given the similarity of their transcriptional pro-
files. However, in spatial transcriptomic data, we expect these two cell populations to be 
niche-differentiable as macrophages from the normal liver should reside near hepato-
cytes while TAMs should be enriched near tumor cells. We developed an extension of 
the Niche-DE procedure to not only identify niche-DE genes, but to contrast the degree 
of niche-DE between two different niche configurations for the same index cell type. For 
example, we define TAM marker genes as genes whose expression in macrophages have 
significant positive association with tumor cell concentration in niche, but insignificant 
or negative association with hepatocyte concentration in niche. We define normal mac-
rophage marker genes as the converse. Using this approach, at FDR threshold of 0.05 
we identified 345 genes, including CD74, LIPA, and CREM as niche-DE marker genes 
of normal liver macrophages (Fig. 5C). These genes have been previously shown to be 
enriched in Kupffer cells from normal liver [21], thus validating this result. Niche-DE 
TAM marker genes included APOC1, APOE, SPP1, and genes from the MMP family 
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(Fig.  5C). Eighty-seven out of 634 niche-DE TAM marker genes also overlapped with 
previously identified scar-associated macrophages [44] (Fig.  5D). The association of 
SPP1 upregulation with TAMs also confirms our previous finding, made using CODEX, 
of a SPP1+ pro-fibrogenic TAM cell state in liver metastases [39], and the finding of a 
SPP1+ TAM cell state in primary colorectal carcinoma [45]. Spatial heatmaps of SPP1 

Fig. 5 A Using niche‑DE marker genes in macrophages near tumor as input, pathway enrichment analysis 
finds ECM organization, metabolism, and lipid metabolism as top processes in macrophages in the presence 
of tumor cells. B Ligand‑receptor pairs found between macrophages and tumor via niche‑LR include C5/
C5AR1, SPP1/ITGA4, and TF/TFRC.C Lists of niche‑DE‑positive and negative tumor‑associated macrophage 
marker genes. D Overlap of niche‑DE marker genes with lists found by Sathe et al. [39]. E From top to bottom. 
Top Two: Spatial heatmaps of SPP1 and CD74 confirm differential expression of marker genes in the region 
of the tissue containing tumor and hepatocytes respectively. Bottom: Differential spatial colocalization plots 
of macrophages near tumor and macrophages near hepatocytes. Larger values shown in red correspond to 
regions that contain macrophages near tumor and smaller values shown in blue correspond to regions that 
contain macrophages near hepatocytes. Regions in yellow correspond to regions with no macrophages or 
regions with macrophages that have a similar amount of tumor cells and hepatocytes in their effective niche. 
F From top to bottom. Top Two: Feature plot of module scores for the set of niche‑DE tumor‑associated 
macrophage markers finds enrichment in the region of the UMAP corresponding to lipid‑associated 
macrophages. Feature plot of module scores for the set of niche‑DE normal macrophage markers finds 
depletion in the region of the UMAP corresponding to lipid‑associated macrophages. Bottom: UMAP of 
scrna‑seq from Wu et al. [40]. Cells were filtered to only include macrophages, monocytes, and dendritic 
cells. G Using niche‑DE marker genes in macrophages near tumor relative to hepatocytes as input, pathway 
analysis finds interferon signaling, cytokine signaling, and lipid metabolism among enriched processes
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and CD163 confirm the localization of the expression of these genes in, respectively, the 
tumor and healthy regions of the tissue (Fig. 5E). Full lists of niche-DE TAM and normal 
macrophage marker genes can be found in Additional file 9: Tables S1 and S2.

To further follow-up on these results, we obtained single-cell RNA-seq data from 
paired samples of colorectal cancer and adjacent colon, liver metastasis and adjacent 
liver, lymph nodes along colon, and peripheral blood mononuclear cells (PBMC) [40]. 
On this data set, we computed module scores for the set of niche-DE tumor-associated 
macrophage markers and normal-associated macrophage markers identified above from 
the VISIUM data. We performed cell-type classification via label transfer [31] from a 
liver cell atlas [46], and after subsequent denoising [35], compared the niche-DE module 
scores to the transferred cell-type labels (Fig. 5F). For cells classified as lipid-associated 
macrophages in the liver cell atlas, the niche-DE tumor-associated macrophage mod-
ule score is high, while the niche-DE normal macrophage module score is low. In con-
trast, for cells labeled as Kupffer cells, the niche-DE normal macrophage module score is 
high, while the niche-DE tumor-associated macrophage module score is low. Reactome 
analysis of niche-DE tumor-associated macrophage marker genes finds glucose and lipid 
metabolism, as well as HDL-mediated lipid transport as significantly enriched processes 
(Fig.  5G). A full list of enriched pathways can be found in Additional file  9: Table  S6. 
These results are concordant with previous findings that metabolic reprogramming, and 
in particular lipid metabolic reprogramming, is a key factor in the regulation of TAM 
differentiation, polarization, and anti-tumor responses [47].

Niche‑DE analysis identifies signalling mechanisms between fibroblasts and proximal 

tubular cells in kidney fibrosis

As another example, we applied niche-DE to the analysis of two 10X Visium samples 
from chronic kidney disease (CKD) [48]. The human kidney is an organ with rich archi-
tectural complexity, composed of distinct spatial domains with specialized kidney-
specific cell types such as proximal tubular cells interacting with immune cells and 
fibroblasts. Chronic kidney disease (CKD) is characterized by excessive production and 
deposition of extracellular matrix proteins, leading to scarring in the tissue, fibrosis, and 
impairment of renal function [49]. Of the two samples we analyzed, one came from a 
donor with hypertensive kidney disease (fibrosis 60%), and the other from a donor with 
diabetic kidney disease (fibrosis 30%). Basic quality metrics of the Visium data are given 
in Abedini et al. [48].

Cell-type deconvolution was performed using CellTrek (Fig.  6A), which maps cells 
from a reference single-cell atlas to the Visium tissue slice [50]. The two Visium samples 
have tissue matched single-cell RNA-seq data, which were used to derive accurate esti-
mates of cell-type proportions. Spot-level cell-type compositions were computed from 
the CellTrek results by dividing the number of cells of the given cell type mapped to a 
spot by the total number of cells mapped to that spot (Fig. 6B). Niche-DE was applied 
using the original spot-level expression vectors and the CellTrek-based cell-type propor-
tion estimates as inputs.

While CKD is a complex disease that involves many cell types, much attention have 
focused on the role of fibroblasts, the source of the extracellular matrix, and proximal 
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tubule cells, the “target” of renal injury. Thus, we will focus our analysis on these two 
cell types. Controlling the FDR at 0.05, we find 456 genes upregulated in fibroblasts 
near proximal tubular cells and 370 genes upregulated in proximal tubular cells near 
fibroblasts.

A reactome pathway analysis of (fibroblast, proximal tubular)+ genes identified 
by niche-DE revealed that fibroblasts see a significantly increased expression of pro-
cesses related to extracellular matrix (ECM) organization and collagen formation 
(Fig. 6C) associated with proximal tubule cells in its niche. Ligand-receptor analysis of 
these (fibroblasts, proximal tubular)+ genes identify JAG1/NOTCH1, APP/CD74, and 
CX3CL1/CX3CR1 as the ligand-receptor signaling mechanism driving these niche-
DE genes (Fig.  6D). In particular NOTCH signaling is known to be reinduced during 
fibrosis [49]. Analysis of (fibroblast, proximal tubular)+ genes also reveal that myofi-
broblast marker genes such as POSTN and FN1 [49] are upregulated in fibroblasts. In 
proximal tubules, niche-DE identifies VCAM-1 as upregulated in the presence of fibro-
blasts. VCAM-1 is a profibrotic and proinflammatory protein expressed by proximal 
tubule cells during injury [49] and is a key marker of injured proximal tubule cells. The 
table of (fibroblast,proximal tubular)+ genes confirmed ligand-receptor pairs between 
fibroblasts and proximal tubular cells, pathway analysis, and the table of (proximal 
tubular,fibroblast)+ genes results can be found in Additional file 10: Tables S1, S2, S3 
and S4. These results show that niche-DE is able to recover relevant signals in a scenario 
with high cell-type diversity and architectural complexity such as chronic kidney disease.

Fig. 6 A Deconvolution results for fibroblasts and proximal tubular cells in two Visium kidney fibrosis 
samples using CellTrek [50]. CellTrek maps single cells to spatial locations through coembedding and metric 
learning approaches. B Spot‑level deconvolution results for fibroblasts and proximal tubular cells. Using the 
single‑cell level deconvolution with CellTrek, we aggregate to achieve spot‑level deconvolution. C In line with 
previous studies [49], pathway enrichment analysis using niche‑DE marker genes in fibroblasts near proximal 
tubular cells as input finds ECM organization, platelet activation, and collagen formation as top processes. D 
Ligand‑receptor pairs found between fibroblasts and proximal tubular cells via niche‑LR include APP/CD74, 
JAG1/NOTCH1, and CX3CL1/CX3CR1. In particular NOTCH signaling is known to be induced in fibrosis [49]
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Discussion
For spot-level spatial transcriptomic data, an important pre-processing step prior to 
performing niche-DE is deconvolution to estimate the cell-type proportions within 
each spot. The accuracy by which niche-DE can detect cell-type-specific niche-DE 
genes relies on the accuracy by which those cell types can be distinguished. Matched 
single-cell data is not required for deconvolution as a single-cell reference atlas of 
the same tissue can be used to perform deconvolution in most cases. This was illus-
trated in our analysis of the liver metastasis data, for which there is no matched sin-
gle-cell RNA sequencing data.

A central factor in the sensitivity of niche-DE for detecting niche genes between 
a given cell-type pair is its rate of co-occurrence. If a cell type is rare in the spatial 
sample, then niche-DE is unlikely to find any signal due to insufficient sample size. 
Niche-DE will also be under-powered if two cell types never colocalize or always 
colocalize. We need to observe the two cell types both together and far apart, the 
latter providing the contrast for differential expression. For spot-level data, a simple 
rule that we recommend is that there be at least 30 spots that contain the niche cell 
type and have the index cell type in its niche.

Currently, two of the most common analyses of spatial transcriptomic data are 
spatially variable gene analysis and cell-type colocalization analysis. In the “Back-
ground”, we expounded on the differences between these analyses. We stress here 
that the conclusions made from a niche-DE analysis do not subsume that of a spa-
tially variable gene analysis or a cell-cell interaction analysis. A gene that is an (i, n)+ 
niche gene may not be a spatially variable gene if the index and the niche cell type 
do not colocalize according to some spatial pattern. Further, the index cell and niche 
cell do not need to colocalize more than random in order to have niche-DE genes 
between them. Therefore, we recommend that niche-DE be used in conjunction 
with, not as an alternative to, current spatial analyses.

Among existing methods, the method that is most similar to niche-DE in terms 
of analysis goal is C-Side [28]. However, there are important differences, as high-
lighted under “Results”. We want to note here that in addition to differences in the 
model, niche-DE allows for automatic consideration of multiple gene-specific ker-
nel bandwidths and integrated hierarchical FDR control. Since we do not know the 
optimal bandwidth size a priori, we must test multiple bandwidths and combine 
the results to come up with a single p-value. Analysis of multiple bandwidths and 
the corresponding p-value combination step is automatic in niche-DE whereas this 
must be done manually in C-side. Since the number of hypotheses scales linearly in 
the number of genes and quadratically in the number of cell types, the number of 
hypothesis tests can easily exceed 1 million limiting the power of traditional mul-
tiple testing approaches. These differences lead niche-DE to detect more relevant 
genes than C-side, as shown on the liver metastasis example, even when the effective 
niche matrix computed by niche-DE is used as input to C-side.

A limitation of niche-DE is that it only considers two-way interactions, e.g., differ-
ential expression of macrophages genes near fibroblasts. This may be too simplistic 
for spatial transcriptomic datasets where two colocalizing cell types can be found in 
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multiple global environments, e.g., macrophages near fibroblasts in tumor regions 
and macrophages near fibroblasts in healthy regions. One way to allow for interac-
tions of more than 2 cell types is to augment the effective niche vector in niche-DE 
via the inclusion of all pairwise products between cell types. However, the number 
of hypotheses increases exponentially with the order of interaction, and although 
feasible, we believe the current data size and quality only allow sensitive detection of 
pairwise interactions.

Conclusions
We have presented a new method, niche-DE, for identifying cell type-specific genes 
whose expression is significantly up- or downregulated in the context of specific 
spatial niches. Niche-DE lends easily to integrative analysis, has robust type 1 error 
control, and allows for multiple kernel bandwidths for effective niche calculation. 
Through benchmarking studies conducted using single-cell and subcellular resolution 
spatial transcriptomic data, we showed that applying niche-DE to lower-resolution 
spot-level data reliably recovers cell-cell interactions observed at the single cell level. 
The output of niche-DE can be used in a variety of ways, including but not limited 
to pathway enrichment analysis, ligand-receptor analysis, and niche marker gene 
analysis. In particular, we developed a procedure that integrates niche-DE statistics 
and niche-net ligand-target matrices to infer putative ligand-receptor signaling chan-
nels that underlie niche-differential gene expression. We illustrate the effectiveness 
of niche-DE through an integrative analysis of 10X Visium samples of liver colorectal 
cancer metastasis and chronic kidney disease. In the liver metastasis samples, we cor-
roborate our findings though parallel analyses of single-cell RNA sequencing (scRNA-
seq) and CODEX data for the same tissue type. In the kidney fibrosis example, we 
show that we can uncover well-known disease-associated genes.

Methods
Derivation of the spot‑level niche‑DE model

Model (1) specifies a log-linear dependence of expected gene expression on niche-
composition. If the dependence were linear, then we could simply sum across all cells 
within each spot to derive an equivalent spot-level model with the same interpreta-
tions for the parameters βg

σ ,ti ,t ′
 . However, due to the gross variance inflation in gene 

expression data, it is necessary for the regression to be in log space. Here, we first 
show that the mean relationship in the single-cell-level model can be approximated 
by a linear model, and then use that approximation to derive the equivalent spot-level 
regression formula. Starting with Eq. (1),

Using the approximation log(1+ x) ≈ x for x → 0 , and assuming that the overall 
effect size µ−1

Ti ,g

{
E
[
Yi,g |Ti,Nσ ,i

]
− µTi ,g

}
 is small, the above leads to the approximation

T∑

n=1

Nσ ,i,nβ
g
σ ,ti ,n

= log

(
E
[
Yi,g |Ti,Nσ ,i

]

µTi ,g

)
= log

(
1+

E
[
Yi,g |Ti,Nσ ,i

]
− µTi ,g

µTi ,g

)
.
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and thus,

Hence, the cell-level log-linear model can be approximated, at the mean level, by a 
linear model, but with the extra µTi ,g factor multiplied to the effect size for each cell.

Now consider spot-level data. Let s(i) denote the spot where cell i resides and Xs,g 
be the observed expression of gene g  in spot s . Using the same kernel function, we 
compute an effective niche for each spot s , which approximates the effective niche 
for each cell i where s(i) = s . Since spots can contain a multitude of cell types, let ns 
be the cell-type composition vector for spot s , i.e., ns =

(
ns,t : t = 1, . . .T

)
, where ns,t 

is the number of cells of type t in spot s . We sum the approximations (3) across all 
cells within each spot to yield

Because all single cells in the same spot have the same effective niche and the sum 
only depends on the cell type of each cell, by summing over the niche cell type rather 
than each single cell we get an alternative sum of

Let µs,g =
∑

t ns,tµt,g and ns,tµt,g

µs,g
= ps,t,g . The sum above can be simplified to

Moving terms in the sum we get that

Subtracting µs,g and then dividing by µs,g on both sides of above, we have

We expect the left-hand-side of the above to be small, and thus, using the same 
x = log(1+ x) approximation, we get our final spot-level model for expected expres-
sion of gene g  in each spot conditioned on the spot’s cell-type composition and 
effective niche,

E
[
Yi,g |Ti,Nσ ,i

]
− µTi ,g

µTi ,g
≈

T∑

n=1

Nσ ,i,nβ
g
σ ,ti ,n

(3)E
[
Yi,g |Ti,Nσ ,i

]
≈ µTi ,g + µTi ,g

T∑

n=1

Nσ ,i,nβ
g
σ ,ti ,n

E
[
Xs,g |ns,t ,Nσ ,s

]
=

∑

i:s(i)=s

E
[
Yi,g |Ti,Nσ ,i

]
=

∑

i:s(i)=s

[
µTi ,g + µTi ,g

T∑

n=1

Nσ ,i,nβ
g
σ ,ti ,n

]

∑

t

[
ns,tµt,g + ns,tµTi ,g

T∑

n=1

Nσ ,i,nβ
g
σ ,ti ,n

]

µs,g + µs,g

∑

t

ps,t,g

T∑

n=1

Nσ ,i,nβ
g
σ ,ti ,n

E
[
Xs,g |ns,t ,Nσ ,s

]
= µs,g + µs,g

∑
t

T∑
n=1

ps,t,gNσ ,s,nβ
g
σ ,t,n

E
[
Xs,g |ns,t ,Nσ ,s

]
− µs,g

µs,g
=

∑

t

T∑

n=1

ps,t,gNσ ,s,nβ
g
σ ,t,n
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Note that, since βg
σ ,t,t ′ is the same parameter carried through from model (1), it has 

the same interpretation as model (1), that is, it represents the effect of unit niche-com-
position increase of cell type t ′ on the single-cell expression of gene g in cell type t.

Parameter estimation in the Niche‑DE model

Data pre‑processing

To remove outliers in gene expression, for each gene, we cap gene expression to the 
99.5 percentile across all spots.

 Deconvolution and estimation ofns,t
All samples used were deconvolved with RCTD using the “Multi” setting with maxi-
mum number of cell types in each spot equal to 4. We thresholded each deconvolu-
tion estimate to have a minimum value of 0.05. Because we found that deconvolution 
via RCTD overestimated the amount of tumor cells and hepatocytes in each spot, we 
thresholded each deconvolution estimate such that tumor cell and hepatocyte com-
position had a minimum value of 0.25. Spots that did not meet this criterion had 
tumor cell and hepatocyte composition set to 0.

Critical to the effective niche calculation is an estimate of the number of cells in 
each spot ns,t . Assume that there are Ns cells in spot s , for which the cell-type compo-
sition is πs,t . From the reference dataset, let Lt be the average library size of cell type t . 
The expected library size for spot s is given by Ns

∑
t πs,tLt . Let Ls be the observed 

library size of spot s . A natural estimate for Ns given π̂s,t , the estimate of the cell-type 
composition of spot s , is thus N̂s =

Ls∑
t πs,tLt

 . Using this estimate, we can then approxi-

mate ns,t by N̂sπ̂s,t.

Joint analysis of multiple spatial transcriptomic data sets

Because niche-DE only depends on the effective niche, joint analysis of multiple spa-
tial transcriptomic data sets, possibly of different resolutions, can be accomplished 
easily by ensuring that the effective niche is on the same scale across all data sets. 
We will demonstrate how to do this for two data sets, the first we call the reference 
dataset and the second we call the query dataset. The first step is to scale the coor-
dinates of the query dataset such that one pixel in the query dataset corresponds to 
same physical distance as one pixel in the reference dataset. This makes sure the ker-
nel bandwidth used has the same interpretation across both datasets.

If both datasets are of spot-level resolution, as is the case with 2 Visium datasets, 
we must scale the effective niche of the query dataset as well. The reason is that the 
estimated number of cells in each spot is determined by the library size of the spot. 
Since the niche-DE model is a regression on the effective niche, the effective niches 
of the query and reference dataset must be corrected to account for sequencing 
depth. To accomplish this, let the spot radius of the reference and query datasets be 
r and q respectively. Let Nr and Nq be the average number of cells in each spot of the 

log
(
E
[
Xs,g |ns,t ,Nσ ,s

])
= log

(
µs,g

)
+

∑

t

T∑

t ′=1

ps,t,gNσ ,s,t ′β
g
σ ,t,t ′
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reference and query datasets. We propose scale the effective niche of the query data-
set by (Nrq

2)/(Nqr
2) . Scaling by Nr/Nq corrects for differences in sequencing depth 

between the reference and query dataset. Scaling by q2/r2 makes sure that our cor-
rection is not driven by differences in spot sizes in the two datasets. For example, 
if a spot doubles in size, it will occupy 4 times the area and thus its library size is 
expected to be 4 times higher.

To address batch effects induced by data integration, we add batch indicators cor-
responding to each sample to our regression for each gene. This allows each gene to 
have a batch specific intercept term.

Normalization and filtering

In single-cell data, cells of the same type can have different library sizes. As such we 
must adjust µi,g , the expected expression of gene g for single cell i , to account for this 
before applying niche-DE. Let LTi be the expected library size of a cell of type Ti . Let Li 
be the library size of single cell i . We scale µi,g to be such that µi,g = Ai,gLi/LTi w, where 
Ai,g is the average expression of gene g in cell type Ti as given by the reference. This 
ensures that niche genes are not driven by patterns in sequencing depth. Note that in 
spot-level data, this scaling is a byproduct of the estimation of Ns and its role in calculat-
ing µs,g the expected expression of gene g for spot s.

Let N  be the effective niche matrix of our dataset where S is the number of spots and 
T  is the number of cell types. Before running the niche-DE model, we scale N  column 
wise so that each column has mean 0 and standard deviation 1. This alleviates biases in 
overall tissue cell-type composition so that the β coefficients are on the same scale. We 
then center the columns to have mean 0. We also set ps,t,g = 0 if it is less than 0.05 . This 
was shown to increase numerical stability.

Also for the sake of numerical stability, we set βg
i,n = 0 unless three conditions hold. 

The first is that the total expression of gene g across all spots is greater than some thresh-
old C . The second is that there exists more than M spots that contain index cell type i 
which have an effective niche that contains niche cell type n . This is to ensure that signals 
found are not dominated by very few points. The third condition is that gene g is in the 
top γ percentile of expressed genes in cell type i . This is because most genes should have 
essentially 0 expression in a given cell type i . Default values for M , and γ are 30 and 80 
respectively. C is dependent on the number of spots in the dataset but niche-DE is quite 
robust to the choice of C.

Finally, for computational efficiency, rather than using standard negative binomial regres-
sion which is quite slow, we instead perform standard Poisson regression using the “glm” 
package in R. Then with the given regression coefficients, we estimate the overdispersion 
parameter with the “optim” function in R. This was shown to work well as seen in Fig. 2A.

Parameter choice

Recall that the niche-DE has three parameters: C , the minimum expression across all 
spots necessary for a gene to be included in the regression, M , the minimum number of 
spots that contain the index cell type and have the niche cell type in its effective niche 
for an index-niche pair to be included in the regression, and γ , the minimum percentile 
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a gene’s expression needs to attain in the index cell type to be included in the regression. 
For the integrated 10X VISIUM colorectal cancer data, we set (C ,M, γ ) = (400, 10, 80%) . 
For the SMI NSCLC data, we set (C ,M, γ ) = (6000, 50, 60%) . For the Slide-seq cerebel-
lum data, we set (C ,M, γ ) = (30, 30, 80%) . For the integrated 10X VISIUM kidney data, 
we set (C ,M, γ ) = (300, 20, 80%).

Niche-DE on the COSMX data was done with kernel bandwidths of 150, 250, 350, 
and 450 pixels which correspond to 30, 50, 70, and 90 µm respectively. Niche-DE on the 
slide-seq data was done with kernel bandwidths equal to the first, fifth, and tenth per-
centile of the total distance matrix of our dataset. Niche-DE on the integrated data was 
done with kernel bandwidths 1,100, and 250 which corresponded to bandwidths of 0.2, 
100, and 250 µm.

Downstream analysis

Reactome analysis

Let Gi,n be the set of genes that are found to be (i, n)+ niche genes. To infer what pro-
cesses are active in index cell type i in the presence of niche cell typen , we use “enrichR” 
[51] to perform a pathway analysis using Gi,n as input. The database we use is “Reactome 
2016”.

Marker gene analysis

Given index cell type i and niche cell types n1, n2 , we define a gene g to be a (i, n1) marker 
if the degree of upregulation in cell type i in the presence of cell type n1 is significantly 
greater than the degree of niche upregulation in the presence of cell type n2 . Statistically, 
this is equivalent to performing a contrast test with null hypothesis βg

i,n1
− β

g
i,n2

≤ 0 
against alternative hypothesis βg

i,n1
− β

g
i,n2

> 0 . Because niche-DE is based on a nega-
tive binomial regression, there is a closed form expression for the joint distribution of β . 
The distribution of β̂g

i,n1
− β̂

g
i,n2

 can be shown to be normally distributed with a mean of 
β
g
i,n1

− β
g
i,n2

 and a variance that can be computed. We perform marker gene analysis to 
find marker genes in macrophages near tumor and hepatocytes on an integrated dataset 
containing 4 liver metastasized colorectal carcinoma Visium datasets.

Module score computation, labelling, and denoising of ScRNA‑seq data

To evaluate the validity of our niche-DE tumor-associated macrophage marker gene set, 
we calculate the module score of this set of genes on liver CRC scRNA-seq data from 
Wu et  al. [40] using the “AddModuleScore” function in Seurat applied to SAVER [35] 
denoised scRNA-seq values. Because the scRNA-seq data is not labelled, we perform 
label transfer using Seurat with the cells from the liver cell atlas [52] as the reference. 
Cells that were classified to be myeloid were extracted and label transfer was performed 
again using myeloid subtypes from the liver cell atlas as reference.

Ligand‑receptor analysis

To determine which extracellular signaling mechanisms are driving niche-DE pat-
terns between index cell type i and niche cell type n , we developed a procedure inte-
grating Niche-net [27] and Niche-DE statistics. The two statistics reflect different 
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types of evidence supporting intra-cellular signaling: Niche-net provides a ligand-tar-
get matrix  A = {Al,g : l = 1, . . . , L; g = 1, . . . ,G} , where L is a set of ligands and G is 
a set of target genes. Al,g reflects the confidence that ligand l can regulate the down-
stream expression of gene  g . For index cell type  i , niche cell type  n , and kernel 
bandwidth  σ , Niche-DE provides a G dimensional vector of one-sided t-statistics 
Bσ ,i,n = {Bσ ,i,n,g : g = 1, . . . ,G} , where Bσ ,i,n,g reflects whether or not gene g is an (i, n)+ 
niche gene operating at kernel bandwidth σ.

Studies suggest that different ligands tend to be effective over different distances [53]. 
To infer if cells of type n within the niche of index cells of type i are signaling to the index 
cells via ligand l , we first compute the optimal kernel bandwidth σ ∗

l  for ligand l based on 
the niche-DE regression likelihood score. This represents the most likely bandwidth at 
which we expect the ligand to operate and, by extension, the bandwidth at which we 
expect to observe downstream niche-DE genes. We then extract the top K  downstream 
target genes of ligand � from the Niche-net ligand-target matrix, which we call g1, . . . gK  . 
Using the Niche-Net ligand-target matrix values, we compute a weight vector W (l) , 
where W (l)

j = A�,gj

(∑K
k=1 A�,gk

)−1
 . Then, we combine these with the Niche-DE statis-

tics to compute a ligand activity score TU
�,i,n =

∑K
j=1W

(l)
j B

σ ∗
l ,i,n,gj

 . If the top downstream 

genes {g1, . . . , gK } are not niche-DE in index-niche configuration (i, n) , then TU
�,i,n should 

abide by the null distribution and thus be approximately normally distributed with mean 
0 and variance 

∑K
j=1W

2
j  . As such, we compute the standardize ligand activity scores, 

standardizing TU
�,i,n by its standard error under the null,

Thus, between index cell type i and niche cell type n , we compute Tl,i,n across all 
ligands l . We sort them in decreasing order, and let T(M),i,n be the Mth largest order sta-
tistic amongst all ligand activity scores between index cell type i and niche cell type n . 
We define the candidate ligand set as Ci,n =

{
� : T�,i,n > max

(
1.64,T(M),i,n

)}
 . The can-

didate ligand set represents the ligands with top evidence for being involved in signaling 
between index cell type i and niche cell type n , based on the Niche-Net matrix and the 
niche-DE gene expression patterns between the two cell types.

Ligands in the candidate ligand set Ci,n should be expressed by the niche cell type n , 
but this obvious condition is not a pre-requisite for its selection and still needs to be 
checked. This check is especially important since ligands may share similar downstream 
target genes, and thus, a ligand may have spurious high activity scores due to lack of 
specificity in its Niche-net profile. Therefore, we filter ligands and their receptors to 
ensure that the ligands are indeed expressed in the niche cell type n and that the recep-
tors are indeed expressed in the index cell type i , for (i, n) pairs where ligand l ∈ Ci,n . 
This filter operates as follows: If a candidate ligand � is indeed expressed by cell type n in 
the vicinity of index cell type i , there should be a positive correlation between the count 
of ligand � in a spot and the abundance of cell type n in the spot, for spots that have index 
cell type i in their effective niche. Thus, we perform a Poisson regression of the observed 
ligand expression Xs,� on the inferred spot-by-cell-type composition matrix (ns,t) , 

T�,i,n =
TU
�,i,n√∑K

j=1W
(l)2

j

.
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yielding coefficient vector (β�
t ) for the enrichment of ligand l within each cell type t . In 

this regression, we filter to only include those spots which have index cell type i in their 
effective niche evaluated at bandwidth σ⋆

�  . From the regression, we get a p-value for test-
ing H0 : β

�
n = 0 versus HA : β l

n > 0 , which we call p�n . After applying the BH procedure 
over all candidate ligand p-values p�n for ligands in Ci,n at a pre-set false discovery rate α , 
we conclude that those with significant adjusted p-values are indeed expressed in niche 
cell type n around index cell type i , and is reported as the set of “confirmed ligands” C∗

i,n . 
If the spatial data were single-cell resolution, we instead determine whether ligand � is in 
the top α % of genes expressed by niche cell type n that have cell type i in their effective 
niche evaluated at bandwidth σ⋆

�  , with α specified by the user.
Using the ligand receptor list from Ramilowski et al. [54], we can furthermore curate a 

list of confirmed receptors for each ligand. Similar to above, to determine whether index 
cell i expresses the corresponding receptor rl to confirmed ligand � ∈ C∗

i,n, we perform a 
Poisson regression of the observed receptor expression Xs,r� on the inferred spot compo-
sition matrix (ns,t) yielding coefficient vector β

r�
t  . For this regression, we only include 

those spots which have niche cell type n in their effective niche evaluated at bandwidth 
σ⋆
�  . This is to ensure that we only consider spots that can potentially receive ligand � 

emitted by niche cell type n . After computing p-values for β
r�
t  and performing the BH 

procedure over all known receptors of ligands in C∗
i,n , we conclude that those receptors 

with significant adjusted p-values are indeed expressed in index cell type i in the vicinity 
of niche cell type n . If the spatial data were single-cell resolution, we instead determine 
whether receptor r� is in the top α % of genes expressed by index cell type i that have cell 
type n in their effective niche evaluated at bandwidth σ⋆

�  . If ligand � and its correspond-
ing receptor r� are confirmed to be expressed in the niche and index cell types, respec-
tively, we then conclude that the ligand receptor pair 

(
�, r�

)
 is active in signaling between 

index cell type i and niche cell type n.
The user tunable parameters of this process are K , the number of downstream genes 

to consider from the Niche-Net matrix, M , the number of candidates to include in the 
candidate ligand set, and α , which is either the false discovery rate cutoff (for spot-level 
spatial data) or the expression rank cutoff (for single-cell resolution spatial data). We 
performed ligand-receptor analysis on the CosMx SMI NSCLC data as well as the inte-
grated set of 10X Visium colorectal cancer datasets. We use (K ,M) = (50, 50, 0.05) for 
the SMI data and (K ,M) = (25, 50, 0.5) for the Visium data.

Simulation designs

Bleeding simulations

Generic model First, we describe how to simulate from the null model of no niche 
effects, where the gene expression of a spot/cell depends only on its cell-type composi-
tion/identity. Given a ST dataset, let ns,t be the estimated cell-type composition vector 
for spot s , i.e., ns,t is the proportion of cells at spot s that are of cell type t . ns,t can be 
found via deconvolution [38]. If the data were single-cell resolution, then ns,t is simply 
a cell-type label, ns,t = 1 if cell s is assigned label t , and ns,t = 0 otherwise. We multiply 
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ns,t with the reference cell-type mean gene expression matrix to give us the expected 
expression vector µs = (µs1, . . . ,µsG) , where µsg is the expected expression of gene g at 
spot/cell s without any niche effects. After library size normalization of µs , we can sam-
ple an expression vector Xs by drawing expression values based on a negative binomial 
distribution with mean µs and gene-specific overdispersion vector γg . The coordinates of 
simulated spot s will be the same as the real coordinates of spot s . This can be done with 
any spatial transcriptomics data, but for our simulations, we use Visium from patient 4 
(referenced below) and set γg = 1 for all genes g.

Generic model incorporating niche effects Let the assumed underlying spatial kernel 
bandwidth for gene g be σ . Let Nσ ,s be the effective niche vector for spot s after appro-
priate normalization. Letting βg

i,n = β and βg
i′,n′ = 0 for all i′ �= i and n′ �= n , we have that

Thus, we sample Xs,g by drawing expression values based on a negative binomial distri-
bution with mean µ⋆

s,g and gene-specific overdispersion vector γg . To simulate datasets 
of size B , where B is larger than the total number of cells/spots in the initial real data, 
we bootstrap B samples from the set of 

(
Nσ ,s,µ

⋆
s

)
 . For each spot s′ that is sampled, we 

simulate a spot with an expression vector XB
s′  sampled from a negative binomial regres-

sion with mean µ⋆
s′,g and an effective niche equal to Nσ ,s′ . To test the power of niche-DE 

across varying effect sizes and sample sizes, we vary βg
i,n within {0.1, 0.2, . . . , 1} and vary 

B within {1000, 5000, 10000}.
For our simulations, we use patient 4 (referenced below). We set i to be fibroblasts, n to 
be tumor, and σ to be the first percentile of the total distance matrix of our dataset. We 
select 2000 random genes to be (i, n)+ niche genes.

Spatial bleeding model Spot swapping is a known artifact in some spatial transcrip-
tomic data sets where transcripts “bleed” into nearby spots, inducing artifactual correla-
tion between the transcript counts in adjacent spots [7]. The severity of spot swapping 
varies across data sets. To examine how bleeding may affect niche-DE analysis, we add 
the bleeding effect to our simulation data according to SpotClean’s model [7]. In particu-
lar we let αg be the gene specific local bleeding parameter. Let Kτ be a gaussian kernel 
with bandwidth τ . Letting µs,g be the underlying expected expression of gene g in spot 
s with no bleeding effect and µc

s,g be the expected expression of gene g in spot s in the 
presence of bleeding, under the SpotClean model,

We then sample the observed gene expression from a Negative Binomial with mean 
µc
s,g and gene-specific dispersion. We introduce this spatial bleeding effect to both the 

generic null model and the generic model with niche effects. This allows us to observe 
the effect of bleeding on both null p-values and the power of niche-DE. We set τ equal to 
the first percentile of the total distance matrix of our dataset.

µ⋆
s,g = µs,gexp

(
ps,i,gβ

g
i,nNσ ,s,n

)
.

µc
s,g =

(
1− αg

)
µs,g + αg

∑

s′

Kτ

(
s, s′

)
∑

s′′ Kτ (s′, s′′)
µs′,g
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Note that, with the spot-swapped simulation data, the procedure starts with a decon-
volution which yields a contaminated estimate of spot cell-type composition ncs,t . This 
contaminated estimate ncs,t is then used to generate a contaminated effective niche vector 
for each spot. Thus, the spot swap effect is “absorbed” in the cell-type composition esti-
mation, which alleviates the influence on downstream niche-DE analysis.

Calculating runtime Under the generic model with no niche effects, we perform 
niche-DE across three different kernel bandwidths in parallel across 4 cores on a lap-
top. We varied the number of cell types between {4,8,12}, the number of observa-
tions between {1000,2000,3000,4000,5000,10,000}, and the number of genes between 
{1000,5000,10,000}. To do this, we first took a 10X Visium dataset of metCRC with 4 
cell types. To generate new cell types, we replicated the existing cell types to create cell 
subtypes that were identical to the 4 original cell types. Thus, each cell type either had 
0, 1, or 2 replicates depending on the simulation. We then sampled either 1000, 5000, 
or 10,000 randomly from the genome, and simulated a new Visium dataset by sam-
pling new cells at random to populate spots. The location of these spots was generated 
by sampling the coordinates from the original Visium dataset with replacement. After-
wards, each cell’s expression would be drawn from a negative binomial with the mean 
gene expression equal to the average expression found by a single-cell reference.

Pseudo‑spot data generation and specificity and sensitivity analysis

Generating pseudo-spot data To simulate lower-resolution datasets, we create pseudo 
spots by partitioning the field of view of a reference dataset into squares of side length 
r . All cells in the same square are assigned to the same spot. Gene expression in each 
spot is calculated by aggregating the gene expression of all cells in the spot. We cre-
ate pseudo-spot data using the COSMX SMI NSCLC, Slide-seq cerebellum data, and 
Xenium breast cancer data as the initial datasets. The radii used for the COSMX data 
were 100, 125, 150, 175, 200, 225, and 250 pixels which corresponds to 20, 25, 30, 35, 40, 
45, and 50 µm, respectively. The radii used for the slide-seq data were 10, 25, 30, 35, 40, 
45, 50, 55, 60, 65, 70, and 75 pixels. The radii used for the Xenium data were 15, 20, 25, 
30, 35, 40, 45, and 50 pixels.

Sensitivity and specificity calculations Performing niche-DE on the initial high-reso-
lution dataset, we obtain a set of significant (i, n) niche genes at the gene, cell type, and 
interaction levels. Using this set of genes as a reference, we can perform niche-DE on the 
pseudo-spot dataset as well to calculate the sensitivity and specificity at all three levels.
Niche-DE on the COSMX SMI NSCLC pseudo-spot data was done with kernel band-
widths of 150, 250, 350, and 450 pixels which correspond to 30, 50, 70, and 90  µm 
respectively. Niche-DE on the slide-seq pseudo-spot data was done with kernel band-
widths equal to the first, fifth, and tenth percentile of the total distance matrix of our 
dataset. Niche-DE on the Xenium data was done with kernel bandwidths equal to the 
median distance between each cell and its nearest neighbor.
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Ligand sensitivity calculations To test the robustness of our ligand-receptor inference 
method, we apply the method to obtain the top M ligands by activity score for the refer-
ence COSMX and slide-seq datasets as well as the corresponding pseudo-spot datasets. 
The reason we chose to compare ligand activity scores rather than candidate ligands or 
confirmed ligand-receptor pairs was because niche-DE applied to the lower-resolution 
datasets has less power than when it is applied to the original datasets. This makes the 
ligand potential scores lower which reduces the number of candidate ligands. As a result, 
the comparison of candidate ligand sets much noisier. By comparison, the set of top M 
ligands is more robust as we still expect the ligand potential scores across resolutions to 
have a similar order. We choose K  = 50 and M ∈ {20, 50}.

Datasets and data analysis

Published data sets

• Slide-seq cerebellum: We use the pre-deconvolved slide-seq cerebellum data [38]. 
This data can be found at https:// singl ecell. broad insti tute. org/ single_ cell/ study/ 
SCP948 and is the file named “myRCTD_cerebellum_slideseq.rds.” This dataset con-
tained 19 cell types, 11,626 spots of spatial resolution 10 µm, and 5034 genes. For all 
analyses, we filtered the estimated cell-type composition vectors to only include the 
top 8 most ubiquitous cell types. This corresponded to astrocytes, Bergmann cells, 
fibroblasts, granule cells, MLI1, MLI2, oligodendrocytes, and Purkinje cells.

• COSMX SMI non-small cell lung carcinoma: We obtain Nanostring CosMx SMI 
non-small cell lung cancer data [29]. We used Lung sample 9 which contains two 
tissue sections measuring 960 genes with 87,684 and 139,735 cells and 22 cell 
types. Each sample spans a 5  mm by 4.25  mm area. Niche-DE and downstream 
analyses were performed on both samples in an integrative fashion. Permutation-
based ligand-receptor analysis was done only on the section with 139,735 cells.

• 10X Visium (patient 4): This data contains liver metastasis of colorectal cancer. It 
has 848 spots and 36,601 genes.

• 10X Visium (patient 5): This data contains liver metastasis of colorectal cancer. It 
has 1663 spots and 36,601 genes.

• CODEX (patient 4): CODEX data of liver metastasized colorectal cancer from 
patient 4 was obtained from Sathe et al. [39]. It contains 33,812 cells and 25 markers.

• Wu et al. 10X Visium (Patients 1,2,3): We obtain 3 10X Visium data sets from liver 
metastasized colorectal cancer corresponding to patients 1, 2, and 4 of the study 
conducted by Wu et  al. [40]. These datasets contain 3826, 4658, and 3721 spots 
with 36,601 genes. The dataset corresponding to patient 1 was found to have two 
tumor subclones found by Clonalscope.

• Wu et al. scRNA-seq: We obtain single-cell RNA-seq data from paired samples of 
colorectal cancer, adjacent colon, liver metastasis, and adjacent liver, lymph nodes 
along colons, and peripheral blood mononuclear cells (PBMC). After filtering the 
data to only include macrophage/monocytes as explained in “Niche-DE analysis 
identifies marker genes and signaling mechanisms specific to tumor-associated 
macrophages in liver metastasis” section, the final dataset contains 17,791 cells.

https://singlecell.broadinstitute.org/single_cell/study/SCP948
https://singlecell.broadinstitute.org/single_cell/study/SCP948
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• Colorectal cancer and liver metastasized colorectal cancer scRNA-seq: For all 10X 
Visium colorectal cancer datasets, we merge scRNA-seq datasets from Sathe et al. 
[39]. The cell types present are hepatocytes and NK cells, cholangiocytes, T cells, 
B/plasma cells, tumor, endothelial, macrophages, and fibroblasts. Because all sam-
ples contained little to no lymphocytes and endothelial cells, we filter all decon-
volution results to only include hepatocytes and cholangiocytes, tumor, mac-
rophages, and fibroblasts.

• Kidney Fibrosis 10X Visium: We obtain 2 10X Visium data sets from fibrotic kidney. 
These datasets contain 2325 and 1375 cells with 36,601 genes. Deconvolution was 
performed using CellTrek.

Sample acquisition for Visium samples 4 and 5

This study was conducted in compliance with the Helsinki Declaration. Patients were 
enrolled according to a study protocol approved by the Stanford University School of 
Medicine Institutional Review Board (IRB-44036). Written informed consent was 
obtained from all patients. Samples were surgical tumor resections.

Tissue processing

Tissues were placed in cryomolds containing chilled TissueTek O.C.T. Compound 
(VWR). Additional O.C.T. was added to cover the tissue and cryomold was placed on 
powdered dry ice. Blocks were sealed and stored at −80 °C.

10 × Visium Spatial transcriptomics library preparation

Libraries were prepared using Visium Spatial Gene Expression Reagent Kit (version 1) 
(10X Genomics). All steps were performed according to the manufacturer’s protocol. 
Briefly, 10-µm-thick tissue sections were placed onto a Visium Spatial Gene Expres-
sion slide using a cryostat. Following methanol fixation, hematoxylin and eosin stain-
ing was performed, coverslip was mounted, and slides were imaged using a Leica DMI 
6000 or Keyence BZ-X microscope. A permeabilization time of 18 min was used, which 
was determined using the Visium Spatial Tissue Optimization Reagents Kit (version 1). 
Libraries were sequenced on Illumina sequencers (Illumina, San Diego, CA). Cell Ranger 
(10 × Genomics) version 5.0.0 “mkfastq” command was used to generate Fastq files. 
Space Ranger version 1.2.1 “count” was used with default parameters and alignment to 
GRCh38 to perform image alignment, tissue detection, barcode and UMI counting, and 
generation of feature-barcode matrix.
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above each figure corresponds to the spot level deconvolution result for that cell type (i.e The Tumor headline shows 
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