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Abstract 

The three-dimensional genome organization influences diverse nuclear processes. 
Here we present Chromatin Interaction Predictor (ChIPr), a suite of regression 
models based on deep neural networks, random forest, and gradient boosting 
to predict cohesin-mediated chromatin interaction strength between any two loci 
in the genome. The predictions of ChIPr correlate well with ChIA-PET data in four cell 
lines. The standard ChIPr model requires three experimental inputs: ChIP-Seq signals 
for RAD21, H3K27ac, and H3K27me3 but works well with just RAD21 signal. Integra-
tive analysis reveals novel insights into the role of CTCF motif, its orientation, and CTCF 
binding on cohesin-mediated chromatin interactions.

Background
The three-dimensional (3D) genome organization directly impacts diverse nuclear 
processes such as transcription, DNA repair, and replication. Therefore, it is crucial to 
understand how the distal regulatory elements (in the linear genome) interact in 3D 
space. Several sequencing-based and imaging-based experimental methods have been 
developed in the last two decades to study the 3D genome organization [1]. Many of the 
sequencing-based approaches are derived from the chromosome conformation capture 
(3C) concept [2]. High-throughput chromosome conformation capture (Hi-C) [3] and 
chromatin interaction analysis by paired-end tag sequencing (ChIA-PET) [4] are some of 
the commonly used methods to study 3D genome organization. Hi-C detects all possible 
genome-wide pairwise interactions between loci. By using Hi-C maps, it was observed 
that chromosomes are partitioned into two compartments, A and B, representing active 
and inactive chromatin regions, respectively [3]. Analysis of relatively high-resolution 
Hi-C maps (~40 kbp) resulted in the discovery of self-interacting genomic regions called 
topologically associating domains (TADs) [5–8]. Much higher resolution Hi-C maps 
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(in the range of 1–5 kbp) have revealed enhancer–promoter contacts [9]. Derivatives of 
Hi-C, such as Micro-C, provide higher resolution contact maps [10].

Hi-C identifies all chromatin contacts but does not specify the proteins associated with 
3D interactions. This is partially addressed by including a chromatin immunoprecipita-
tion (ChIP) step with the Hi-C protocol. For example, ChIA-PET captures genome-wide 
interactions associated with specific proteins. ChIA-PET has facilitated the discovery of 
chromatin interactions associated with transcription factors (ER, AR), RNA Polymerase 
II, and structural proteins such as the cohesin component RAD21 and CTCF [11–14]. 
However, Hi-C and ChIA-PET experiments are labor-intensive, time-consuming, and 
expensive [9, 15]. Furthermore, there always exists a possibility that the experiment 
outcome may not be of the desired quality. The ENCODE portal has provided RAD21 
ChIA-PET datasets for about 24 cell lines [12]. However, we still do not have the RAD21 
ChIA-PET for many other cell lines. We still do not fully understand the key determi-
nants of cohesin-mediated chromatin interactions. Therefore, we sought to develop a 
machine learning method to predict cohesin-associated chromatin interactions using 
simple 2D chromatin and other associated genomic features.

Machine learning has been applied to solve long-standing questions in biology. Nota-
bly, the AlphaFold system has been applied to accurately predict the 3D shape of a pro-
tein from its amino acid sequence [16]. Several machine learning systems have been 
developed to understand 3D genome organization (see review articles [17, 18]). For 
instance, transcription factor and histone modification ChIP-Seq data were used to pre-
dict the chromatin interactions between loop-associated ERα binding sites (laERBSs) 
[19]. Higher-order chromatin organization A/B compartments, originally calculated 
using Hi-C data [3], have been predicted from epigenetic data, such as DNA methylation 
microarray, DNase hypersensitivity sequencing, single-cell ATAC sequencing, and sin-
gle-cell whole-genome bisulfite sequencing [20]. In [21], the authors developed a neural 
network to predict chromatin structural types (i.e., to which subcompartments [9] the 
chromatin loci belong) from ChIP-Seq signals. They used the available ENCODE ChIP-
seq data for the GM12878 cell line (84 protein binding and 11 histone modification 
experiments). They have also trained a reduced model using only the 11 histone modifi-
cation experiments [21]. Moreover, Gradient Boosting regressor was used to predict the 
interaction frequency between loci of 25 kbp size (the model was shown to work also at 
5 kbp resolution) [22]. In the final model, RNA-seq data, CTCF binding, and genomic 
distance were used as the regression model predictors [22]. In Chromatin Interaction 
Neural Network (ChINN), DNA sequences of interacting loci were used to predict 
CTCF-, RNA polymerase II- and Hi-C-associated chromatin interactions [23]. However, 
to our knowledge, none of the existing computational methods predicts the strength of 
RAD21-mediated chromatin interactions despite the importance of this cohesin subunit 
in shaping the 3D genome [24]. Our study fills-in this knowledge gap in the field.

In this study, we present Chromatin Interaction Predictor (ChIPr), a suite of regres-
sion models based on deep neural networks (DNN-ChIPr), random forest (RF-ChIPr), 
and gradient boosting (GB-ChIPr), respectively, to predict the strength of chromatin 
interactions between any two anchor peaks. Our main assumption is that the interac-
tion strength between any pair of peaks depends on a set of factors that can be easily 
measured or widely (publicly) available. We hypothesized that the interaction strength 
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between two peaks depends on (A) the enrichment of the protein of interest in the two 
peaks (feature 1), which can be measured by ChIP-Seq, (B) the enrichment of active and 
inactive histone modifications (features 2 and 3), which can also be measured by ChIP-
Seq, and (C) additional factors that can be easily calculated without any new experi-
mental data, like the genomic distance between the two peaks, the GC content of the 
two peaks, and the CTCF motif orientation in the two peaks (features 4 to 6). These 
six features were selected as inputs for our model. The output of ChIPr is the predicted 
strength of the interaction between any two peaks/regions of interest.

We demonstrate that the predictions of ChIPr correlate well with the original ChIA-
PET (as our positive control) interactions at the peak-level resolution and bin sizes of 
25 and 5 kbp. We show that ChIPr accurately predicts most of the cell-type-dependent 
loops identified by either ChIA-PET or Hi-C. Moreover, we have analyzed the impor-
tance of each of the model inputs for the model’s prediction accuracy and performed 
a detailed analysis for the role of CTCF motif orientation and CTCF occupancy in the 
prevalence and strength of cohesin-mediated chromatin interactions. We report a dis-
tinct class of cohesin-mediated chromatin interactions that lack CTCF binding. These 
loops are significantly enriched for enhancer-enhancer interactions. Our benchmarking 
studies indicated that ChIPr outperforms other comparable 3D chromatin interaction 
prediction methods, such as C.Origami [25], Orca [26], and 3Dpredictor [22]. Remark-
ably, our results demonstrate that, with a single experimental data (RAD21 ChIP-Seq), 
ChIPr can predict cohesin-mediated chromatin interactions with high accuracy. In addi-
tion to cohesin loops (RAD21 ChIA-PET), ChIPr can also accurately predict the results 
of Hi-C and Micro-C experiments.

Results
ChIPr predictions correlate well with the original data at the peak‑level resolution

The schematic of the method and a few examples of the contact maps (plotted by 
HiTC [27]) that can be constructed using the predicted outputs at different resolu-
tions are shown in Fig. 1A and B, respectively. Additional details about the input fea-
tures and the regression models can be found in the “Methods” section. For each of 
the three variants of ChIPr—DNN-ChIPr, RF-ChIPr, and GB-ChIPr—we trained two 
main models using the data of the two cell lines, GM12878 and K562, respectively. 
We chose GM12878 and K562 because they are two of the best-characterized cell 
lines in the ENCODE portal [28, 29], with the highest data quality. In addition, using 
models trained on two different cell lines reduces the inherent biases which might be 
observed due to the presence of structural variations and mutations in the genome. 
We used the models trained on the RAD21 ChIA-PET data from GM12878 to pre-
dict RAD21 interactions’ strengths in the cell lines K562, H1, and HepG2 using the 
six inputs described in Fig.  1A—RAD21 ChIP-Seq, H3K27ac ChIP-Seq, H3K27me3 
ChIP-Seq, the genomic distance between peaks, GC content, and CTCF motif orien-
tation flag. The CTCF motif orientation flag is an input that is set to “1” if CTCF motif 
orientations in the two interacting peaks are convergent, and is set to “0” otherwise. 
Reciprocally, we used the models trained on the RAD21 ChIA-PET data from K562 
to predict the strengths of RAD21 interactions in the cell lines GM12878, H1, and 
HepG2. The RAD21 ChIP-Seq data used in our studies were not derived from RAD21 
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ChIA-PET data and therefore represent bonafide independent datasets. We have pre-
viously shown that ChIA-PET interaction strengths follow a negative binomial dis-
tribution [14]. Hence, to evaluate the performance of ChIPr, we generated random 
values for the interactions’ strengths drawn from negative binomial distributions with 
the same mean and variance as that of the corresponding original ChIA-PET sample. 
We measured the correlation coefficient values between the predictions we obtained 
for the four cell lines (using the models trained on GM12878 and K562 data, respec-
tively) and the original ChIA-PET data. We found that the predicted outputs of the 

Fig. 1 Overview of ChIPr, a regression model with three variants to predict interaction strength between two 
peaks. A A schematic representation of ChIPr showing all the input features, the three regression variants, and 
the expected output from ChIPr. B An example of contact maps constructed from the original ChIA-PET data 
and the corresponding ones constructed from the predictions of DNN-ChIPr at resolutions of 500, 50, and 5 
kbp. Heatmaps in B were plotted using HiTC
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three different variants of ChIPr correlated significantly better with the original data 
than the randomly generated interactions’ strengths (Fig. 2A, B, Additional file 1: Fig. 
S1A and B). We also found that the three different regression models—DNN-ChIPr, 
RF-ChIPr, and GB-ChIPr—yielded comparable results (Fig.  2A, B, Additional file  1: 
Fig. S1A and B). In addition, the results for the cell lines H1 and HepG2 are quite 
similar for the models trained on GM12878 and K562 data, respectively (Fig. 2A, B, 

Fig. 2 Predicted interactions correlate well with the original ones at the peak-level-resolution. A Predicted 
interactions using the three variants of ChIPr for the cell lines K562, H1, and HepG2 correlate significantly 
better than the random interactions with the original ChIA-PET interactions of these three cell lines. The 
predictions in A are obtained using models trained on the GM12878 cell line data. B Predicted interactions 
using the three variants of ChIPr for the cell lines GM12878, H1, and HepG2 correlate significantly better than 
the random interactions with the original ChIA-PET interactions of these three cell lines. The predictions in B 
are obtained using the models trained on the K562 cell line data. ****: p-value < 0.0001, Wilcoxon rank sum 
test
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Additional file 1: Fig. S1A and B). These results showcase the accuracy, reproducibil-
ity, and generalizability of ChIPr.

ChIPr predictions correlate well with the original ChIA‑PET data at 25‑ and 5‑kbp bin 

resolution

Although our goal is to predict the chromatin interactions’ strengths at the peak-level 
resolution, we can still capture much information at lower resolution. For instance, we 
can predict TADs using contact maps of 25 and 5 kbp resolutions [9]. Thus, we sought 
to measure how well the ChIPr outputs correlate with the original data at these lower 
resolutions.

In [30], HiCRep was developed to assess the reproducibility of Hi-C data taking into 
account its unique spatial features, such as domain structure and distance dependence. 
HiCRep minimizes the effect of noise by smoothing the Hi-C maps. It also addresses the 
impact of distance dependence by dividing the contact maps into strata. It calculates the 
Pearson correlation coefficient between every two corresponding strata in the two maps 
being compared. The weighted sum of these Pearson correlation coefficients is called the 
stratum-adjusted correlation coefficient (SCC). SCC has the same range and interpreta-
tion as standard correlation coefficients [30]. In [31], a faster and more computationally 
efficient version of HiCRep was developed.

We used SCC and Pearson correlation coefficients to evaluate the similarity between 
the original data and the outputs of ChIPr. More specifically, we created interaction 
maps for the original, predicted, and randomly generated interactions at 25- and 5-kbp 
bin sizes (see “Methods” for details about constructing contact maps). We measured 
SCC and Pearson correlation between the original maps vs. the predicted and ran-
dom ones. For SCC, we set the smoothing window half-size h to “2” and the maximum 
genomic distance to include in calculations to 25 Mbp. We found predicted maps cor-
relate significantly with the original maps than the random ones (Fig. 3A–D, Additional 
file 1: Fig. S2A and B). All these results show the agreement between original and pre-
dicted contact maps. This agreement highlights the ability of ChIPr to reproduce reason-
ably accurate contact maps with relatively small bin sizes like 25 and 5 kbps.

ChIPr captures ChIA‑PET identified cell‑type‑dependent interactions

In [12], ChIA-PET was used to study the cohesin-mediated chromatin loops in 24 cell 
lines. The authors pooled ~125,000 interactions across all the cell lines and found that 
~28% of that pan-cell line loop set are variable loops (i.e., cell-type-dependent loops). 
These variable loops are strong in certain cell types and weaker or near noise level in 
other types.

We investigated the whole list of cell-type-dependent loops to see if they are cap-
tured by ChIPr as strong interactions in the corresponding cell types (i.e., interaction 
strength (PETs) greater than or equal to “3”). As a negative control, we introduced 
an equal number of random interactions by shuffling the coordinates of the first 
peak of the cell-type-dependent loops of each chromosome (see Fig. 4A). These ran-
domly introduced loops were not expected to be predicted by ChIPr as strong inter-
actions. We found that, on average, 74, 78.5, and 72.15% of the cell-type-dependent 
loops are captured in the four cell lines using DNN-ChIPr, RF-ChIPr, and GB-ChIPr, 
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respectively (Fig. 4B–G). On the other hand, 2.3, 2.6, and 4.7% of the randomly intro-
duced interactions were predicted as strong interactions using DNN-ChIPr, RF-
ChIPr, and GB-ChIPr, respectively (Fig. 4B–G). These results highlight the utility of 
ChIPr in predicting cell-type-dependent cohesin-mediated chromatin interactions.

Fig. 3 Predicted interactions correlate well with the original ones at the 25 kbp bin resolution. A, B 
Comparison between the correlation coefficient values between the original interactions and the predicted 
ones using the three variants of ChIPr vs. those between the original and randomly generated ones for the 
three cell lines K562, H1, and HepG2. The correlation coefficients were calculated using stratum-adjusted 
correlation coefficients (A) and Pearson correlation coefficients (B), respectively. The predictions in A and 
B were generated using the models trained on GM12878 data. C, D Comparison between the correlation 
coefficient values between the original interactions and the predicted ones using the three variants of 
ChIPr vs. those between the original and randomly generated ones for the three cell lines GM12878, H1, 
and HepG2. The correlation coefficients were calculated using stratum-adjusted correlation coefficients (C) 
and Pearson correlation coefficients (D), respectively. The predictions in C and D were generated using the 
models trained on K562 data
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ChIPr captures both cell‑type‑dependent and universal cohesin‑mediated chromatin 

interactions

We further investigated a region around the SMAD3 gene in the four cell lines 
GM12878, K562, H1, and HepG2. SMAD3 functions as a signal transducer in the 
transforming growth factor-beta (TGF-β) signalling pathway. It also transmits signals 
from the cell surface to the nucleus to regulate cell proliferation and gene activity [32, 
33]. To visually evaluate and show the accuracy of the interaction strength predicted 
using ChIPr regression model, we compared the interactions from original ChIA-PET 
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Fig. 4 Predicted interactions capture the majority of cell-type-dependent loops. A An illustration of how 
the random control loops were generated for the comparison. B–G Predicted interactions using DNN-ChIPr 
(B and C), RF-ChIPr (D and E), and GB-ChIPr (F and G) captured a significantly higher portion of the ChIA-PET 
identified cell-type-dependent loops vs. randomly introduced loops of the same number for the cell lines 
K562, H1, and HepG2. The models in panels B, D, and F were trained using the data of GM12878 cell line and 
the models in panels C, E, and G were trained using the data of K562 cell line. ****: p-value < 0.0001, Wilcoxon 
rank sum test
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data to those predicted by RF-ChIPr model which was trained on GM12878 data (for 
K562, H1, and HepG2 cell lines) and K562 data (for GM12878 cell line), in SMAD3 
gene region. We found relatively dense, strongly predicted interactions for the cell 
lines GM12878, K562, and HepG2, which was consistent with the elevated activity of 
the enhancer elements in the corresponding region in these cell lines (Fig.  5A). On 
the other hand, we found few interactions in the case of H1, which was also consistent 
with the reduced activity of the enhancers in the region (Fig. 5A). Similarly, we exam-
ined another region covering the two genes MED29 and ZFP39. MED29 gene encodes 

Fig. 5 Examples for the predictions of RF-ChIPr for variable and non-variable loops. A Predictions of RF-ChIPr 
are highly similar to the original data for the selected region surrounding SMAD3 gene. B Predictions of 
RF-ChIPr are highly similar to the original data for the non-variable loops in the region covering the two 
genes MED29 and ZFP36 in the four cell lines GM12878, K562, H1, and HepG2. Interactions shown in A and 
B are those having strength ≥ “3”. Red: original loops from RAD21 ChIA-PET data; blue: predicted loops by 
RF-ChIPr
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for a protein which is a part of the mediator complex and functions in the regula-
tion of transcription of nearly all RNA Polymerase II-dependent genes [32, 33]. On 
the other hand, ZFP36 gene encodes for an RNA-binding protein involved in mRNA 
metabolism pathways [32, 33]. This region comprising a non-variable loop predicted 
strongly in all of the four cell lines was also in line with the original data (Fig. 5B).

Moreover, we also explored loops in the region surrounding the MYC oncogene. 
We found that model predictions could capture the strong interactions between MYC 
promoter and the enhancer elements located in the PVT1 gene in the four cell lines 
(Fig. 6A). In addition, the strong set of enhancer-enhancer interactions in the regions 
of CASC19 and CASC21 genes and in the region of PVT1 gene were also captured by 
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all the three variants of ChIPr in GM12878 and K562 cell lines, respectively (Fig. 6A). 
We suggest that using all the three ChIPr models is likely to give a more robust view 
of cohesin-associated chromatin interactions in any region of interest.

ChIPr captures Hi‑C identified cell‑type‑dependent interactions

In [9], in  situ Hi-C was used to investigate the 3D structure of genomes of nine cell 
types. In addition, HiCCUPS was developed to identify loops in the Hi-C maps. As an 
independent validation test, we measured the overlap between the strong interactions 
predicted by ChIPr and the Hi-C identified loops of GM12878 and K562. As a nega-
tive control, we also introduced random loops of the same number as the Hi-C identi-
fied ones (see Fig. 4A). We found that the predictions of our regression models capture 
the majority of the loops captured by the original Hi-C data (Fig. 6B–D). We have also 
found that the Hi-C identified loops captured by the predictions of the three variants of 
ChIPr are significantly higher than the percentage of randomly introduced loops cap-
tured (Additional file 1: Fig. S3A-C). These results suggest that a substantial number of 
Hi-C loops in these cell types are mediated by cohesin.

Contributions of input features to the ChIPr predictions

To measure the importance of each input feature to the prediction accuracy, we trained 
the DNN-ChIPr model multiple times using the GM12878 data of odd chromosomes, 
eliminating one of the input features each time. We tested the trained model each time 
on the data of the even chromosomes and measured the performance according to the 
mean absolute error value (i.e., the absolute value of the difference between the original 
value and the predicted one) when compared with the original interactions at the peak-
level resolution. Then, we calculated the drop in performance when removing each of 
the input features (Fig. 7A). We found the largest drop in the performance was due to 
the removal of the genomic distance input. Hence, we concluded that the genomic dis-
tance is the most important of the six input features (this is consistent to the previous 
ER loop predictor [19]). We also observed an inverse relationship between RAD21 chro-
matin interaction strength and genomic distance (Fig. 7B). The second most important 
feature is the interaction mediating protein, RAD21, ChIP-Seq data. Training the model 
without the H3K27ac, H3K27me3, the GC content of the two interacting peaks, or the 
CTCF motif orientation flag yielded a very small difference. However, when we removed 
both H3K27ac and H3K27me3 ChIP-Seq data together, this yielded a slightly bigger 
drop in performance (Additional file 1: Fig. S4). This shows that, although H3K27ac and 
H3K27me3 ChIP-Seq signals are anti-correlated, at least one of them should be used 
in the training of the model. For RF-ChIPr and GB-ChIPr, we used the permutations 
test (see “Methods” section for more details), and it yielded comparable order of feature 
importance as for DNN-ChIPr (Fig. 7C, D). These results suggest that training a minimal 
model with a single experimental data (RAD21 ChIP-Seq data) can produce good-qual-
ity prediction results.

Minimal model with a single experimental data—RAD21 ChiP‑Seq

We tested the utility of training a minimal model using only a single experimental 
data—RAD21 ChIP-Seq. We trained the three regression models (DNN, Random forest 
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and gradient boosting) with just four input data—RAD21 ChIP-Seq, genomic distance 
between peaks, GC content and CTCF motif orientation flag. We compared the genome-
level performance of the minimal ChIPr model vs. standard six input model (full model). 
Both models gave comparable results (Fig. 7E, F, Additional file 1: Fig. S5A-D). We also 
compared the performance of the minimal model with the full model by analyzing the 
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MYC locus. Remarkably, both the models performed equally well in predicting the cell-
type dependent cohesin-mediated chromatin interactions in the MYC locus (Fig. 8).

The role of CTCF motif, its orientation and CTCF occupancy in cohesin‑mediated chromatin 

interactions

We analyzed the relationship between the strength and prevalence of the RAD21 inter-
actions with the CTCF motif presence and orientation in the two interacting peak 
regions in both GM12878 and K562 cell lines. We found that the CTCF motif is found 
with high confidence in both of the two interacting peaks in ~10% of the RAD21-medi-
ated interactions in the two cell lines (Fig.  9A). In addition, when the CTCF motif is 

Fig. 8 Original interactions and predicted ones for the four cell lines GM12878, K562, H1, and HepG2 using 
the three variants of ChIPr in the region surrounding the MYC oncogene. Interactions shown are those having 
strength ≥ “3”. Red: original loops from RAD21 ChIA-PET data; blue: predicted loops by ChIPr full model, and 
cyan: predicted loops by ChIPr minimal model
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present in both of the two peaks and its orientation is in the convergent manner, the 
interactions are, on average, stronger than in the other cases, including divergent, tan-
dem left or right, and absence of the motif in one or both peaks (Fig. 9B, C). A big por-
tion of the loops with convergent CTCF motifs (45 and 34% in GM12878 and K562, 
respectively) exhibit strong interactions (Fig. 9D). However, more than 50% of the inter-
actions are weak (PETs < 3) even with CTCF motif convergent orientation (Fig. 9D). On 
the other hand, when the CTCF motif orientation is not convergent (divergent, tandem 
left or right, or the motif does not exist in one or both of the two peaks), we found that 
more than 70% of the interactions are weak (Fig. 9D). These results show that the con-
vergent CTCF motif orientation is not critical for the strength of the majority of RAD21-
mediated interactions, in line with its small contribution to predicting the output of 
ChIPr (Fig. 7A, C, and D).

In addition, we analyzed the relationship between RAD21 interactions and CTCF 
ChIP-seq peaks. This analysis showed that ~50–73% of the RAD21 interactions were 

Fig. 9 Relationship between RAD21 interactions and CTCF motif orientation. A The relationship between the 
RAD21 interactions prevalence and the presence of CTCF motif in the interacting peaks. B, C The relationship 
between the strength of RAD21 interactions and the presence of CTCF motif in the interacting peaks for 
B GM12878 and C K562, respectively. D The percentage of interactions of different strengths and their 
relationship with the presence of CTCF motif in the interacting peaks
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enriched with CTCF binding (CTCF ChIP-Seq peaks) in the two anchor peak regions 
of the interaction. However, less than 15% of the interactions had no CTCF ChIP-seq 
binding in both of the two peaks. RAD21 interactions that either lack CTCF binding in 
both the anchors or one of the two anchors were significantly enriched for enhancer-
enhancer interactions (see “Methods”, Additional file 1: Figs. S6-S8; Fig. 10). For exam-
ple, in GM12878 cells, the STAT3 locus harbors multiple cohesin-mediated chromatin 

Fig. 10 RAD21 interactions without CTCF ChIP-Seq binding in both peaks are significantly enriched with 
enhancer-enhancer interactions. A, B Venn diagram showing the intersection between RAD21 interactions 
with CTCF binding in both peaks with those interactions with enhancer in both peaks for the GM12878 cell 
line (A), and simulations show that the intersection between the two sets of interactions is not significant 
(B). C, D Venn diagram showing the intersection between RAD21 interactions with CTCF binding in only 
one peak with those interactions with enhancer in both peaks for the GM12878 cell line (C), and simulations 
show that the intersection between the two sets of interactions is statistically significant (D). E, F Venn 
diagram showing the intersection between RAD21 interactions with no CTCF binding in both peaks with 
those interactions with enhancer in both peaks for the GM12878 cell line (E), and simulations show that the 
intersection between the two sets of interactions is statistically significant (F). G–L Same as A–F for the K562 
cell line. ****: p-value < 0.0001, empirical test
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interactions forming an insulated neighborhood (Fig.  11). The outer RAD21 interac-
tions in the locus are anchored by CTCF, whereas the inner RAD21 interactions are not 
anchored by CTCF. These inner RAD21 interactions represent enhancer-enhancer inter-
actions. We also extended the analysis to three additional cell lines whose RAD21 ChIA-
PET data and CTCF ChIP-Seq data are both available (H9, MCF7, and LNCaP). We 
found that RAD21 interactions without CTCF binding in both peaks in these three cell 
lines are also significantly enriched with enhancer-enhancer interactions (Additional 
file 1: Figs. S9-S12). Taken together, these results suggest that CTCF motif presence is 
not a common feature of all cohesin-mediated chromatin interactions. However, CTCF 
occupancy is a common—but not a universal feature—of cohesin-mediated chromatin 
interactions. There can be multiple explanations for the discrepancy between the CTCF 
motif and CTCF occupancy in cohesin-mediated chromatin interactions. There could 
be weak or variant CTCF binding sites below our motif detection level. Indeed when we 
performed motif enrichment analysis for the peaks where CTCF binds without the pres-
ence of the CTCF motif in the GM12878 cell line using HOMER [34], we found that, in 
these locations, other variants of the CTCF motifs with several alignment mismatches 
are significantly enriched (Additional file 1: Fig. S13). In addition, it has been shown that, 
in general, transcription factor binding may occur in the absence of any discernible motif 
instance, or it may occur at “hotspots” where several factors are found together [35].

Moreover, we have analyzed the interaction strength of RAD21 interactions with 
CTCF ChIP-Seq binding in both peaks and other RAD21 interactions (with CTCF bind-
ing in one peak or without CTCF binding in both peaks). We have found that interac-
tions with CTCF binding in both peaks are generally significantly stronger than the 
other two classes (Additional file 1: Fig. S14). This is consistent with the important role 
of these interactions in forming domain boundaries and insulated neighborhoods [36].

ChIPr outperforms other 3D chromatin interaction prediction methods

Since there are no other tools for predicting cohesin-mediated interactions’ strength, we 
compared ChIPr to another tool originally used to predict Hi-C interactions. 3Dpredic-
tor can predict Hi-C contact maps at relatively high resolutions like 5 and 25 kbp bins 
using genomic distance, CTCF binding information, and RNA-seq data as inputs [22]. 
To use 3Dpredictor to predict cohesin-mediated interactions, we constructed 25-kbp 
contact maps of the K562 cell line using its original RAD21 ChIA-PET interactions. We 

Fig. 11 Example of RAD21 interactions without CTCF in the two anchor peaks and are found to be 
enhancer-enhancer interactions in the GM12878 cell line (middle track in purple)
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used the contact maps of odd chromosomes to train 3Dpredictor and predicted the con-
tact maps of even chromosomes. We also trained the three variants of ChIPr using the 
K562 cell line odd chromosomes and predicted the interactions of even chromosomes 
at the peak-level resolution using ChIPr. To compare the outputs of both methods, we 
constructed the contact maps of even chromosomes using the predictions of ChIPr at 
25 kbp resolution. The three variants of ChIPr significantly outperformed 3Dpredictor 
according to stratum-adjusted correlation coefficient (SCC) (Fig. 12A).

Also, we trained ChIPr with K562 Hi-C data (Chr1) at 5 kbp resolution. We predicted 
the Hi-C interactions of the other 22 chromosomes at 5 kbp resolution, and we gener-
ated 25 kbp resolution contact maps with these predictions. We also trained 3Dpredic-
tor with K562 Hi-C data of Chr1 at 25 kbp resolution and predicted the contact maps 
of the other 22 chromosomes. We chose the K562 cell line because its training data for 
3Dpredictor is available on the GitHub page of the method (https:// github. com/ labde 
vgen/ 3Dpre dictor/ tree/ master). We compared the contact maps generated by both 
ChIPr and 3Dpredictor to the original contact maps of the K562 cell line. We found that 
the three variants of ChIPr significantly outperformed 3Dpredictor according to SCC 
(Fig. 12B). We also found the predicted Hi-C maps using ChIPr are visually similar to 
the original Hi-C maps (Fig. 12C, D). This further indicates the outperformance of ChIPr 
over 3Dpredictor and shows the validity of ChIPr to predict Hi-C data in addition to 
cohesin-mediated interactions’ strengths.

In addition, several methods were developed recently to predict Hi-C-like con-
tact maps at high resolution for sub-megabase genomic distances like Orca [26] and 
C.Origami [25]. While Orca predicts chromatin interactions based on genomic distance 
and sequence only, C.Origami also uses two cell-type-specific features: CTCF ChIP-Seq 
data and ATAC-Seq data. To compare ChIPr with C.Origami and Orca, we used the data 
they used to measure their performances. More specifically, we trained the three vari-
ants of ChIPr using IMR90 cell line Hi-C data using Chr1 only for training. We used the 
trained models to predict Hi-C interactions of the two cell lines, K562 and GM12878. 
We found that the predictions correlate with the original interactions of the two cell lines 
significantly better than control interactions (see “Methods”) (Fig. 12E). Then, for ran-
domly selected 2-Mb regions (see Additional file 2: Table S1), we predicted 8 kbp resolu-
tion contact maps for the GM12878 cell line using models trained on K562 and IMR90 
cell lines data, respectively. We also used C.Origami to predict the GM12878 contact 
maps of the same regions using a model trained on IMR90 cell line data. For compari-
son, we calculated the logged Hi-C intensity with iterative correction and eigenvector 
decomposition (ICE): (log(ICE normalized counts + 1)) for the contact maps predicted 
using ChIPr and the original Hi-C contact maps for the selected regions as suggested 
by C.Origami [25]. We found that the predictions of the three variants of ChIPr using 
the two models trained on K562 and IMR90 cell lines data, respectively, correlate sig-
nificantly higher with the original contact maps than the predictions of C.Origami 
(Fig. 12F). These results show that ChIPr can be used to predict Hi-C data efficiently and 
can outperform C.Origami.

In addition, we compared ChIPr with Orca using the data they used to measure 
their performance. We trained ChIPr on the Micro-C data of the H1 cell line [38]. We 
used only Chr1 for training, and we tested the performance of ChIPr in predicting 

https://github.com/labdevgen/3Dpredictor/tree/master
https://github.com/labdevgen/3Dpredictor/tree/master
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the other 22 chromosomes of the same cell line. We found that the predictions of 
the three variants of ChIPr correlate significantly better with the original interac-
tions than control interactions (see “Methods”) (Fig.  12G). We also constructed 
1 Mb contact maps at 5 kbp resolution for several regions in Chrs 8, 9, and 10 (the 
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chromosomes used for validation and testing of the Orca-trained model). We pre-
dicted the contact maps of the same regions (see Additional file  2: Table  S2) using 
Orca (https:// orca. zhoul ab. io/) at 4 kbp resolution. For comparison, we performed 
the same pre-processing step suggested by Orca on ChIPr predictions and the cor-
responding original contact maps, iterative correction matrix balancing algorithm 
and adaptive coarse graining [26]. Although the performance of both methods was 
very high, probably because we are testing using hold-out chromosomes of the same 
cell line used for training, we found that Pearson correlation values of the original 
maps with ChIPr predictions are significantly higher than those with Orca predic-
tions (Fig. 12H). All these results show the outperformance of ChIPr over other 3D 
chromatin prediction methods. These results also indicate that ChIPr can efficiently 
predict high-resolution Micro-C contact maps (5 kbp resolution).

Discussion
In this study, we present ChIPr, three regression models based on DNN, random forest, 
and gradient boosting, respectively, and predict the strength of RAD21-mediated chro-
matin interactions at the peak-level resolution. ChIPr uses a few input ChIP-Seq sam-
ples and other easily obtainable public data for training, testing, and prediction. We have 
shown that the most important feature for predicting a functional cohesin loop is the 
genomic distance (loop length), in line with previous report for predicting ER loops [19]. 
The second most important feature was the ChIP-Seq data for the interaction mediating 
protein (which was RAD21 in all our analyses), consistent with the expected detection 
of ChIP-Seq peaks of the mediating protein at the interacting loci regions [39]. How-
ever, we found much less importance for the two histone mark profiles, H3K27ac and 
H3K27me3. This may be due to the fact that these two histone marks are anti-correlated. 
Thus, the presence of only one of them is enough to get high prediction accuracy. When 
both of them were removed, we noticed a slightly bigger drop in the prediction accu-
racy in some cases. However, in general, the results were still very comparable. We also 
noticed a very small contribution from the GC content information of the two interact-
ing peaks and the CTCF motif convergence flag. A detailed analysis of CTCF motif pres-
ence and orientation with the RAD21 interactions prevalence and strength indicated 
that CTCF motif presence is not necessary for RAD21 interactions’ prevalence. How-
ever, its presence and convergent orientation are associated in ~30–40% of the cases 
with strong RAD21 interactions. We have also observed the occupancy of CTCF in both 
of the two peaks in most of the RAD21 interactions. In the absence of CTCF binding, we 
found that RAD21 loops are significantly enriched with enhancer-enhancer interactions.

We have shown that the RAD21-mediated DNA loop prediction outputs of ChIPr cor-
relate well with the original RAD21 ChIA-PET data at the peak-level resolution. They 
also correlate well at the resolution of bin sizes 25 and 5 kbp, which suggests that we can 
reliably use ChIPr predictions to detect TAD boundaries. We have also demonstrated 
that ChIPr could capture most of the ChIA-PET- and Hi-C-identified cell-type-depend-
ent loops as strong interactions. In addition, we have shown that ChIPr outperforms 
other 3D chromatin interaction prediction methods and that its utility can be extended 
to predict high-resolution Hi-C and Micro-C contact maps. Altogether, we have shown 
multiple lines of evidence that ChIPr could reliably reproduce much of the ChIA-PET 

https://orca.zhoulab.io/
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information using a minimal number of easily obtainable features. These studies out-
line the general features of genome folding and open new avenues to analyze the spatial 
genome organization in specimens with limited cell numbers.

Finally, the main purpose of ChIPr is to estimate cohesin-mediated interaction 
strength between anchor peaks when interaction data, such as ChIA-PET data, is una-
vailable. We recommend that the three models of ChIPr be used side by side to con-
firm whether the interaction strength prediction is strong or weak. If all three regression 
methods of ChIPr predict strong interaction (interaction strength ≥ 3) between two 
anchor peaks, it is likely that the interaction between these two peaks is truly strong. 
Similarly, if the three of them predict weak interactions (interaction strength < 3), it is 
likely that the interaction is truly weak.

Conclusions
In this study, we present ChIPr, a suite of regression models to predict the strength of 
cohesin-mediated interactions. We have shown that ChIPr can accurately predict the 
interactions’ strength at peak resolution and bin sizes of 5 and 25 kbp. We have also 
demonstrated that ChIPr can predict most of the cell-type-specific loops identified by 
ChIA-PET or Hi-C as strong interactions. In addition, we report a class of cohesin-
mediated interactions that lack CTCF binding and are significantly enriched for 
enhancer-enhancer interactions. Moreover, we have shown that ChIPr can predict Hi-C 
and Micro-C interactions and outperform other chromatin prediction methods.

Methods
Neural networks, random forest, and gradient boosting

A neural network (NN) [40], in its simplest form, is a system that consists of an input 
layer, one or more hidden layers, and an output layer. Each layer is connected to the 
following layer through edges, and each edge has a certain weight. The neural network 
model is trained by providing many input/output examples. The model learns by gradu-
ally changing the edges’ weights between layers until the NN model’s output is very close 
to the desired output given in the training examples.

Both random forest [41] and gradient boosting [42] are decision tree-based regression 
models. In random forest, the training data is divided into N subsamples with repeti-
tion. For each subsample of training data, a decision tree is built to learn the relation 
between inputs and outputs in this subsample. Thus, we will have an ensemble of N deci-
sion trees, and the final decision is obtained by majority voting.

On the other hand, in gradient boosting, the training starts with a random guess for 
the output. Then, the error, which is the difference between the output of the model 
and the actual desired output, is calculated. We then keep growing decision trees to the 
model to minimize the calculated error.

Structure of ChIPr

ChIPr is composed of three variants of regression models based on DNN, random forest, 
and gradient boosting, respectively. ChIPr uses six input features of the two interacting 
peaks to predict the RAD21-mediated interactions’ strengths. The first input feature is 
the linear genomic distance between the centres of the two peaks in kilobases. We have 
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chosen the genomic distance because it is known to be a good predictor of the interac-
tion strength, and it is usually inversely proportional with it according to both Hi-C and 
fluorescence in situ hybridization (FISH) experiments [3, 43]. The second input feature is 
the RAD21 ChIP-Seq data at the two interacting peaks. It is expected that two peaks will 
be detected by the RAD21 ChIP-Seq data at the two interacting loci [39]. In addition, we 
use the ChIP-Seq data at the two peaks for two canonical histone modification marks, 
H3K27ac and H3K27me3, which should correlate with active and inactive chromatin 
states, respectively [9].

Moreover, it is known that the human genome is organized into long (> 300 kbp), rela-
tively homogeneous regions called isochores, which differ in their GC content [44]. It 
has also been reported that 66% of the genes are present in the GC-rich and GC-rich-
est isochores [44], suggesting a relation between gene distribution and the GC level. 
Accordingly, we sought that there may be a relation between chromatin activity (which 
leads to strong interactions) and GC content as well. Thus, we used the GC content of 
the two peaks as the following two input features to our regression model. Besides, it 
was reported in [9] that for the Hi-C-identified loops whose corresponding anchor loci 
contain the CTCF motif, most of the motif pairs are convergent. Thus, we added an 
input that denotes the convergence of the CTCF motif orientation in the two peaks. This 
input is “1” if the CTCF motif orientation is convergent. If the CTCF motif orientation 
in the two peaks is divergent, tandem left or right, or if the motif is absent in one or both 
peaks, the CTCF motif orientation input will be “0”.

Hyper‑parameter selection for DNN‑ChIPr

To decide the architecture of DNN-ChIPr, we used grid search to determine the best 
number of layers, number of neurons in each layer, dropout rate, batch size, and activa-
tion function for the output layer. We have fixed another set of hyper-parameters that 
are commonly used. For instance, we fixed the activation function for the hidden layers 
to be “relu” [45]. We have also used the “Adam” optimizer [46] with a small learning rate 
of  10−5. We selected this small learning rate, although it will require a relatively longer 
training time to ensure the stability of the training process. In addition, we used a large 
number of epochs (750), with early stopping if no improvement in performance (using 
the validation mean squared error metric) is observed for 50 epochs. The performance 
of each model was measured according to the mean squared error loss on the validation 
data. We found several models gave very comparable values of validation mean squared 
error (Additional file 3: Table S3). We chose our final model to have three hidden layers; 
each has 128 neurons, with “relu” activation function for the output node (to ensure that 
the output is always bigger than zero) and values of 0.2 and 32 for the dropout rate and 
the batch size, respectively (Additional file 3: Table S3).

Preparation of the training data

The ChIA-PET data of the four cell lines GM12878, K562, H1, and HepG2 were down-
loaded from the ENCODE project [12]. The data was processed using the ChIA-PET2 
pipeline [47] to get the inter- and intra-chromosomal interactions files. We focused on 
the intra-chromosomal interactions, and for each interaction, we got the coordinates of 
the two anchor peaks and the interaction strength. We calculated the input features of 
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anchor peaks of each interaction which comprise alongside the interaction strength a 
training example to ChIPr. We divide the interactions of the cell line used in training 
into 75% (training set) and 25% (testing set) and calculate the model’s performance on 
the testing set. In addition, we test the model on the data of the other three cell lines. For 
instance, if we train the model using GM12878 data, we test the model on the 25% por-
tion of the GM12878 data (testing set) and the data of the three cell lines K562, H1, and 
HepG2.

ChIP‑Seq data normalization

We used the RAD21, H3K27ac, and H3K27me3 ChIP-Seq data of our four investigated 
cell lines (GM12878, K562, H1, and HepG2). We calculated the read count for each of 
the two anchor peaks of each loop. To account for the sample’s sequencing depth and 
the peaks’ sizes, we normalized the ChIP-Seq data using the reads per kilobase per mil-
lion (RPKM) normalization method, described in the following few lines. We first get 
the “per million scaling factor” by dividing the total number of reads in the chromosome 
by 1,000,000. Then, we divide the read count in each peak by the “per million scaling fac-
tor”, a step that accounts for the effect of sequencing depth. After that, we divide by the 
peak length in kilobases, a step that accounts for the peak length.

Obtaining the GC content and CTCF motif orientation within peaks

To include sequence information into our model, we calculated the GC content for each 
peak, defined as the percentage of cytosine (C) and guanine (G) bases in that peak. We 
calculated it using the bedtools nuc function [48].

Also, we used GimmeMotifs [49] and CTCF Bioconductor package [50] to detect the 
presence of the CTCF motif in each peak and its orientation. GimmeMotifs reports only 
one motif occurrence per peak (the highest scoring motif ). For the CTCF motif orienta-
tion input, we set it to “1” if the CTCF motif orientation in the two peaks is convergent 
and “0” otherwise.

Constructing contact maps from peak‑level interactions

ChIPr predicts interaction strength between peaks. The peak length is in the range of 2 
kbp. It may be slightly smaller or larger than that. From interactions between peaks, we 
can build bin-based contact maps. We do that by summing all interactions whose anchor 
peaks lie within the same bin. For instance, to build a 25-kbp-bin contact map, we have a 
square matrix where each entry represents the interaction strength between two 25-kbp 
bins. To get the value of interaction strength between a pair of bins, we sum all the inter-
actions whose anchor peaks fall within these two bins.

Testing the model performance at the peak‑level resolution

For each interaction in the test set, we have the coordinates of the two anchor peaks of 
the interaction. We calculate the input features required by ChIPr for the two peaks, 
and then we use ChIPr to get the predicted output for that particular interaction. We 
also generate a control interaction strength for the same interaction (a random value 
drawn from a negative binomial distribution having the same mean and variance as the 
original interactions in the original ChIA-PET file). Thus, for all interactions in the test 
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set, we have the predicted outputs and the control values. We measure the correlation 
between them and the original values from the original ChIA-PET file to evaluate the 
performance of the model at the peak-level resolution.

Permutation test for determining feature importance

To calculate the permutation importance of a certain feature, a baseline metric (for 
instance, mean absolute error) is evaluated on the test data (for instance, the data of 
even chromosomes if the training was done using the data of odd chromosomes). Then, 
for the feature column that is required to measure its importance, this column is per-
muted, and the metric is evaluated again. The permutation importance of that feature is 
defined as the difference between the baseline metric and the metric obtained after the 
permutation of the feature column [41].

Analysis of CTCF occupancy in cohesin‑mediated interactions

We get the CTCF ChIP-Seq peak files of each cell line, and use bedtools intersect func-
tion to determine if CTCF peaks overlap with none, one, or both of the two anchor 
peaks of the RAD21 interactions.

Empirical test to calculate the overlap significance (p‑value)

To calculate the p-value of the intersection between enhancer-enhancer interactions 
and different classes of interactions (interactions with CTCF in both peaks, in one peak 
only, or in none of the two peaks), we used an empirical test as described here. First, we 
get the actual “observed” value of the intersection between the two sets of interactions. 
Then, we calculate the “expected” value of the intersection as follows. We initially set a 
counter to zero and perform the following simulation 10,000 times. From the whole list 
of RAD21 interactions, we sample a random set of interactions with the same number as 
the number of enhancer-enhancer interactions. We calculate the intersection between 
the randomly sampled list with the class of interactions of interest (e.g., interactions with 
CTCF in both peaks). If the intersection value is bigger than the “observed” value calcu-
lated above, we increment the counter by “1”. After the 10,000 simulations, the empirical 
p-value will be = counter/10,000. And the “expected” value of overlap is the average of 
the calculated intersection in the 10,000 simulations.

Generating control interactions for Hi‑C and Micro‑C data

To test the performance of predicting Hi-C and Micro-C data, we generated control 
interactions for comparison purposes. To generate the control interactions, we shuffled 
the input features of the chromosome of interest and used these shuffled data as inputs 
to the ChIPr-trained models. The outcome of this step, predicted Hi-C and Micro-C 
interactions for shuffled inputs, was compared to the original outputs with the same 
original order to obtain the Pearson correlation value of the control interactions. This 
ensures that the control interactions are produced using input features with the same 
properties, especially the same genomic distance distribution, as those used to obtain 
ChIPr predictions.
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Implementation details

The DNN model (DNN-ChIPr) was implemented using Keras, the Python deep learning 
API (https:// keras. io/). For the random forest (RF-ChIPr) and gradient boosting (GB-
ChIPr) models, we used sklearn RandomForestRegressor and GradientBoostingRegres-
sor with the default parameters, respectively [51].

Supplementary Information
The online version contains supplementary material available at https:// doi. org/ 10. 1186/ s13059- 023- 03158-7.

Additional file 1: Fig. S1. Predicted interactions correlate well with the original ones at the peak-level resolution. (A) 
Predicted interactions using the three variants of ChIPr for the cell lines K562, H1, and HepG2 correlate significantly 
better than the random interactions with the original ChIA-PET interactions of these three cell lines according to 
Spearman correlation coefficient. The predictions in (A) are obtained using models trained on the GM12878 cell line 
data. (B) Predicted interactions using the three variants of ChIPr for the cell lines GM12878, H1, and HepG2 correlate 
significantly better than the random interactions with the original ChIA-PET interactions of these three cell lines 
according to Spearman correlation coefficient. The predictions in (B) are obtained using the models trained on the 
K562 cell line data. ****: p-value < 0.0001, Wilcoxon rank sum test. Fig. S2. Predicted interactions correlate well with 
the original ones at the 5 Kbp bin resolution. (A and B) Comparison between the correlation coefficient values 
between the original interactions and the predicted ones using the three variants of ChIPr vs. those between the 
original and randomly generated ones for the four cell lines GM12878, K562, H1, and HepG2. The correlation 
coefficients were calculated using stratum adjusted correlation coefficients (A) and Pearson correlation coefficients 
(B), respectively. Predictions for cell lines GM12878, H1, and HepG2 were calculated using the models trained on 
K562 data. Predictions for the cell line K562 were calculated using the models trained on GM12878 data. Fig. S3. 
ChIPr predictions (DNN-ChIPr (A), RF-ChIPr (B), and GB-ChIPr (C)) capture Hi-C identified loops at significantly higher 
percentage than control loops. ****: p-value < 0.0001, Wilcoxon rank sum test. Fig. S4. The drop in mean absolute 
error when comparing predicted interactions with the original ones when training DNN-ChIPr while removing one 
of the input features at each time. The plot shows that removing H3K27ac and H3K27me3 together causes a 
relatively bigger drop in performance than removing each of them alone. Fig. S5. Comparison between the 
genome-level performance of minimal and full models of DNN-ChIPr (A and B) and GB-ChIPr (C and D). The models 
in (A and C) were trained on the data of GM12878 cell line. The models in (B and D) were trained on the data of K562 
cell line. The data is split into training data (75%) and test data (25%). In (A and C), the performance of GM12878 is 
measured on the GM12878 test data. Similarly, in (B and D), the performance of K562 is also measured on the K562 
test data. Fig. S6. The majority of RAD21 interactions have CTCF ChIP-seq binding in both of the two anchor peaks of 
the interactions in the four cell lines GM12878, K562, H1, and HepG2. The portion of interactions that misses CTCF 
ChIP-seq binding in the two anchor peaks is mostly enriched with enhancer-enhancer interactions. Fig. S7. RAD21 
interactions without CTCF ChIP-seq binding in both peaks are significantly enriched with enhancer-enhancer 
interactions. (A and B) Venn diagram showing the intersection between RAD21 interactions with CTCF binding in 
both peaks with those interactions with enhancer in both peaks for the H1 cell line (A), and simulations show that 
the intersection between the two sets of interactions is not significant (B). (C and D) Venn diagram showing the 
intersection between RAD21 interactions with CTCF binding in only one peak with those interactions with enhancer 
in both peaks for the H1 cell line (C), and simulations show that the intersection between the two sets of interactions 
is statistically significant (D). (E and F) Venn diagram showing the intersection between RAD21 interactions with no 
CTCF binding in both peaks with those interactions with enhancer in both peaks for the H1 cell line (E), and 
simulations show that the intersection between the two sets of interactions is statistically significant (F). ****: p-value 
< 0.0001, empirical test. Fig. S8. RAD21 interactions without CTCF ChIP-seq binding in both peaks are significantly 
enriched with enhancer-enhancer interactions. (A and B) Venn diagram showing the intersection between RAD21 
interactions with CTCF binding in both peaks with those interactions with enhancer in both peaks for the HepG2 cell 
line (A), and simulations show that the intersection between the two sets of interactions is not significant (B). (C and 
D) Venn diagram showing the intersection between RAD21 interactions with CTCF binding in only one peak with 
those interactions with enhancer in both peaks for the HepG2 cell line (C), and simulations show that the 
intersection between the two sets of interactions is statistically significant (D). (E and F) Venn diagram showing the 
intersection between RAD21 interactions with no CTCF binding in both peaks with those interactions with enhancer 
in both peaks for the HepG2 cell line (E), and simulations show that the intersection between the two sets of 
interactions is statistically significant (F). ****: p-value < 0.0001, empirical test. Fig. S9. The majority of RAD21 
interactions have CTCF ChIP-seq binding in both of the two anchor peaks of the interactions in the three cell lines 
H9, MCF7, and LNCaP. The portion of interactions that misses CTCF ChIP-seq binding in the two anchor peaks is 
mostly enriched with enhancer-enhancer interactions. Fig. S10. RAD21 interactions without CTCF ChIP-seq binding 
in both peaks are significantly enriched with enhancer-enhancer interactions. (A and B) Venn diagram showing the 
intersection between RAD21 interactions with CTCF binding in both peaks with those interactions with enhancer in 
both peaks for the H9 cell line (A), and simulations show that the intersection between the two sets of interactions is 
not significant (B). (C and D) Venn diagram showing the intersection between RAD21 interactions with CTCF binding 
in only one peak with those interactions with enhancer in both peaks for the H9 cell line (C), and simulations show 
that the intersection between the two sets of interactions is statistically significant (D). (E and F) Venn diagram 
showing the intersection between RAD21 interactions with no CTCF binding in both peaks with those interactions 
with enhancer in both peaks for the H9 cell line (E), and simulations show that the intersection between the two sets 
of interactions is statistically significant (F). ****: p-value < 0.0001, empirical test. Fig. S11. RAD21 interactions 
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without CTCF ChIP-seq binding in both peaks are significantly enriched with enhancer-enhancer interactions. (A and 
B) Venn diagram showing the intersection between RAD21 interactions with CTCF binding in both peaks with those 
interactions with enhancer in both peaks for the MCF7 cell line (A), and simulations show that the intersection 
between the two sets of interactions is not significant (B). (C and D) Venn diagram showing the intersection between 
RAD21 interactions with CTCF binding in only one peak with those interactions with enhancer in both peaks for the 
MCF7 cell line (C), and simulations show that the intersection between the two sets of interactions is statistically 
significant (D). (E and F) Venn diagram showing the intersection between RAD21 interactions with no CTCF binding 
in both peaks with those interactions with enhancer in both peaks for the MCF7 cell line (E), and simulations show 
that the intersection between the two sets of interactions is statistically significant (F). ****: p-value < 0.0001, 
empirical test. Fig. S12. RAD21 interactions without CTCF ChIP-seq binding in both peaks are significantly enriched 
with enhancer-enhancer interactions. (A and B) Venn diagram showing the intersection between RAD21 interactions 
with CTCF binding in both peaks with those interactions with enhancer in both peaks for the LNCaP cell line (A), and 
simulations show that the intersection between the two sets of interactions is not significant (B). (C and D) Venn 
diagram showing the intersection between RAD21 interactions with CTCF binding in only one peak with those 
interactions with enhancer in both peaks for the LNCaP cell line (C), and simulations show that the intersection 
between the two sets of interactions is statistically significant (D). (E and F) Venn diagram showing the intersection 
between RAD21 interactions with no CTCF binding in both peaks with those interactions with enhancer in both 
peaks for the LNCaP cell line (E), and simulations show that the intersection between the two sets of interactions is 
statistically significant (F). ****: p-value < 0.0001, empirical test. Fig. S13. HOMER results for the top enriched motif 
(BORIS) and its top four best matches with known motifs in the locations of CTCF binding for the GM12878 cell line. 
Fig. S14. RAD21 interactions with CTCF ChIP-Seq binding in both peaks are significantly stronger than those with 
CTCF binding in one peak only or in none of the two peaks.

Additional file 2: Table S1 and Table S2. They contain the regions tested in comparison with other chromatin 
interaction prediction methods.

Additional file 3: Table S3. It contains the results obtained for the grid search for the DNN hyperparameter 
selection.

Additional file 4: Table S4. It contains a summary of the datasets used and their accession numbers.
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