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Background
CRISPR interference (CRISPRi), in which a catalytically dead Cas protein incapable of 
DNA cleavage (dCas) is targeted to interfere with the transcription of a gene of choice 
[1, 2], is one of the most widely used CRISPR technologies in bacteria. In contrast to 
eukaryotes, many bacteria lack the necessary repair pathways to survive genome editing 
by the double-stranded break induced by CRISPR-Cas9. Thus, CRISPR-Cas’s main appli-
cations in bacteria have come from using dCas as a platform technology that can deliver 
effectors to a specific locus in a programmable fashion. CRISPRi is the simplest example, 
where the dCas protein itself serves as an effector to silence gene expression by physi-
cally blocking the binding or procession of the RNA polymerase.

The development of CRISPRi has opened up a range of biological applications, 
from silencing individual genes for genetic studies to performing genome-wide 
fitness screens or engineering genetic circuits [3, 4]. As an alternative screening 
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technology to transposon mutagenesis [5], CRISPRi can directly target particular 
genes of interest, avoiding the need for large mutant libraries to achieve gene satu-
ration. Another area of application is engineering synthetic regulatory circuits [6] 
or metabolic networks [7, 8], where collections of gRNAs are used to coordinately 
downregulate and upregulate associated genes and pathways. However, all of these 
applications critically depend on the efficiency of silencing provided by selected 
guides. Genetic screens already routinely employ tens of thousands of guides simul-
taneously, and it is impractical to individually test each guide’s efficiency. This prob-
lem will only be accentuated as the scale of applications increases through the use 
of CRISPR array technologies that allow multiplexed expression of suites of guides 
simultaneously [9, 10] to dissect and engineer increasingly complex phenotypes. 
Reliable prediction of guide efficiency will therefore become increasingly important 
as applications of CRISPRi become more ambitious.

Given the impact of CRISPR-based genome engineering in eukaryotes, signifi-
cant effort has been expended in developing methods for predicting editing effi-
ciency. The first attempts used classical machine learning methods on relatively 
small datasets comprising efficiency measurements for thousands of gRNAs. The 
applied methods include logistic regression [11], support vector machines [12, 13], 
linear regression [14], and gradient-boosted decision trees [15]. As the amount of 
Cas9 editing data has increased, deep learning approaches have become increasingly 
popular. These approaches include convolutional neural networks [16], which apply 
a collection of adaptive filters to automatically extract local sequence features, and 
long short-term memory networks (LSTM) [17], which retain a memory that poten-
tially allows for the detection of long-range interactions between sequence features. 
Newer methods have put substantial effort into engineering deep learning architec-
tures to further boost performance [18]. It is important to note that many of these 
deep learning methods have been trained on tens of thousands of measurements of 
guide efficiency, and fusing datasets has played an important role in further increas-
ing performance [19].

So far, relatively little attention has been paid to predicting guide efficiency for bac-
terial CRISPRi. The only study to date developed a LASSO regression model for pre-
dicting CRISPRi guide efficiency [20] with a limited sequence feature set using data 
from a single genome-wide CRISPRi screen in Escherichia coli [21], providing impor-
tant proof-of-concept but also leading us to ask if larger datasets and more complex 
machine learning approach could further improve prediction. Here, starting with an 
investigation of the features driving depletion of guides targeting essential genes in 
CRISPRi screens using automated machine learning, we find that features associated 
with the targeted gene, such as expression, explain most of the variation in the data. 
Starting from this foundation, we develop a mixed-effect random forest that separates 
features affecting guide efficiency from effects due to the targeted gene while learn-
ing from multiple independent CRISPRi screens, allowing us to arrive at a predictive 
model of guide efficiency that we show improves on previous models using a saturat-
ing depletion screen of purine biosynthesis genes during growth in minimal medium. 
Our mixed-effect machine learning approach provides a general strategy for learning 
CRISPRi guide efficiency when only indirect measurements are available.
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Results
Automated machine learning and feature engineering identify gene‑specific effects 

in CRISPRi depletion screens

We set out to devise design rules for CRISPRi in bacteria by combining machine learn-
ing with large experimental datasets. The largest available datasets come from genome-
wide depletion screens which provide only indirect measurements of guide efficiency 
(Fig.  1A). We began our investigation into the features affecting guide depletion by 
applying automated machine learning (autoML) in the form of the Auto-Sklearn package 
[22] that wraps classification and regression models implemented in the Python Scikit-
learn package [23] in a Bayesian optimization framework.

We first asked how well we could predict gRNA depletion  log2 fold-changes (log-
FCs) for essential genes as defined by the Keio collection [24], and what features 
would be required for accurate prediction. As essential genes should have an infinite 
fitness cost upon complete silencing, we initially assumed differences in depletion 

Fig. 1 Automated machine learning and data fusion predicts depletion in CRISPRi essentiality screens. A 
An overview of CRISPRi essentiality screens. gRNAs are designed targeting every gene in the genome and 
cloned into an appropriate plasmid for expression. This plasmid collection is then transformed into the 
target bacteria, and depletion is measured as the change in guide frequency over growth determined by 
sequencing relative to a set of non-targeting gRNAs. The measured depletion (logFC) is then a mixture 
of the fitness effect of gene knockdown with the efficiency of silencing itself. B Comparison of Spearman 
correlation between actual and predicted guide depletion in tenfold cross-validation (CV) of the best 
model trained with Auto-Sklearn with different feature combinations, using data from [21]. C The ten most 
predictive features were determined using TreeExplainer on the optimal random forest model trained with 
Auto-Sklearn and 138 guide and gene features. Mean absolute SHAP value (left) provides a global measure 
of feature importance, while the beeswarm plot (right) shows the effect of each feature on each individual 
gRNA prediction. CDS: coding sequence. D Distribution of logFCs of gRNAs targeting essential genes from 
three CRISPRi genome-wide essentiality screens in E. coli. E Comparison of Spearman correlation from the 
tenfold CV of the best Auto-Sklearn trained model on one dataset or the three integrated datasets
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would mainly depend on features describing the gRNAs. We leveraged a published 
E. coli CRISPRi essentiality screen using dCas9 performed in a rich medium [21], 
which included 1951 guides targeting 293 essential genes. To predict depletion in this 
dataset, we engineered a series of feature sets of increasing complexity (Additional 
file  1: Fig. S1; Additional file  2: Table  S1) starting with the one-hot-encoded gRNA 
and PAM sequence including four bases upstream of the gRNA target sequence and 
three bases following the NGG PAM. This resulted in a poorly performing model 
with a median Spearman’s ρ of ~ 0.21 in tenfold cross-validation (Fig. 1B; Additional 
file 2: Table S2, S3). We therefore iteratively added a set of additional features while 
monitoring changes in model performance. As targeting efficiency in bacteria has 
been suggested to depend on distance to the transcriptional start site [1, 25], the set 
included absolute and relative distance to the start codon. We also included a suite 
of thermodynamic features describing gRNA:target interactions predicted using the 
ViennaRNA package [26]: minimum free energy of the folded gRNA, hybridization 
of two gRNAs, and hybridization of the targeted DNA and gRNA [27]. These addi-
tional feature sets resulted in only moderate improvement in Spearman correlation 
(ρ ~ 0.25) for our predictions.

Given that features describing the guide sequences themselves were inadequate 
to predict guide depletion, we developed a series of genomic and expression fea-
tures describing each targeted gene to investigate if they could improve the predic-
tion of guide depletion (Fig.  1B; see also Feature engineering, Methods; Additional 
file 2: Table S1). We collected publicly available RNA expression data over growth in a 
minimal medium [28] and computed minimum and maximum expression values. We 
collected transcription unit (TU) information from RegulonDB [29] and calculated 
the distance from the target site to the start of the TU, the number of downstream 
genes in each TU, and the presence of other essential genes in the TU, and gene GC 
content. Incorporating these additional gene features led to a major improvement in 
prediction accuracy, with cross-validation performance jumping to a Spearman’s ρ 
of ~ 0.66 (p < 0.001 between the 129 guide feature model and full guide + gene features 
model, paired t-test.) This shows that autoML can rapidly produce predictive models 
of CRISPRi guide depletion, given a sufficiently rich feature set describing both guide 
and gene features.

To understand the contribution of these features to the prediction of gRNA deple-
tion, we used SHapley Additive exPlanation values (SHAP values) computed with 
TreeExplainer [30] on the best performing random forest model produced by Auto-
Sklearn (Fig.  1C; Additional file  2: Table  S4). Of all considered features, maximal 
RNA expression in minimal medium had the single largest average effect on deple-
tion, making an average of an ~ 1.6 fold-difference to the predictions. Unexpect-
edly, high target gene expression tended to be associated with higher depletion. The 
number of downstream essential genes also had a strong effect on depletion predic-
tions with an average ~ 1.3-fold difference, indicating the presence of polar effects in 
CRISPRi screens. The rest of the top seven features all described the targeted gene, 
including GC content, gene length, and the distance to the operon start, but each 
had smaller effects than expression. The most predictive effects that could be manip-
ulated during guide design were associated with guide distance to the transcriptional 
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start site, but on average these had fairly small effects (~ 1.07 fold) compared to fea-
tures associated with the target gene. These findings show that predictions made by 
our depletion models are dominated by the effects of gene features that can not be 
modified in guide design.

Data fusion improves the prediction of gRNA depletion

Given that several gene essentiality screens have now been performed in E. coli, we 
next asked whether expanding our training dataset could improve the accuracy of 
our predictions, as has previously been shown for eukaryotic CRISPR editing appli-
cations [19]. To this end, we collected data from two additional CRISPRi screens of 
E. coli in a rich medium. First, we included data from an additional screen using the 
same gRNA library but with dCas9 expressed from a stronger promoter, which we 
refer to here as E18 Cui [31]. Second, we included data from a completely independ-
ent screen using a higher density library containing twice as many guides targeting 
essential genes (4,197, with 528 identical to gRNAs contained in Cui/Rousset), which 
we refer to as Wang [25]. We refer to the original data set as E75 Rousset. It is also 
worth noting that while the E18 Cui and E75 Rousset libraries were grown repeat-
edly to the stationary phase, the Wang library was collected in log phase. The level 
of depletion in each dataset exhibited qualitative differences, with Wang showing a  
clearer bimodal separation between depleted and non-depleted guides (Fig.  1D)  
and a reasonable correlation of depletion between datasets (ρ ~ 0.9 between E18  
Cui and E75 Rousset; ρ ~ 0.75/0.79 between Wang and Cui/Rousset; Additional 
file 1: Fig. S2).

To investigate the impact of fusing these datasets on model performance, we 
trained a series of models using Auto-Sklearn with each dataset individually or in 
combination and then tested them on sets of guides held out from each dataset as 
well as a mixed test set (Fig. 1E; Additional file 2: Table S5). We additionally included 
a one-hot encoded dataset indicator as a predictor of potential batch effects. Unsur-
prisingly, models trained on single datasets tended to perform best on their cognate 
test set. Similarly, models trained on E18 Cui and E75 Rousset appeared to general-
ize better to each other than to the Wang dataset and vice versa. Combined train-
ing datasets produced models that generalized better across datasets (ρ ~ 0.58–0.62 
tested on mixed data, vs ρ ~ 0.68; p < 0.001 for all comparisons, paired t-test) without 
degrading performance relative to models trained on individual datasets. In some 
cases, particularly for the Cui dataset, fused training sets actually improved perfor-
mance on a test set drawn from a single dataset (ρ ~ 0.62 trained on Cui; ρ ~ 0.67 
trained on fused data; p = 0.001, paired t-test). In each case, the best performing 
model chosen by Auto-Sklearn was either a random forest regression or a gradient-
boosted decision tree model. In support of this observation, we trained a suite of 
different regressors individually and found that while all models benefited from data 
fusion, the gains were particularly large for random forest and gradient-boosted tree 
models (Additional file 1: Fig. S3). These findings suggest that both increased gen-
eralizability and accuracy can be achieved by integrating multiple data sources for 
training tree-based models for CRISPRi depletion.
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Segregating guide and gene effects produces a highly predictive model for CRISPRi guide 

efficiency

Our exploration of the features most predictive of gRNA depletion in competitive 
screens highlighted that features describing the targeted gene often made much larger 
contributions to the prediction than features describing the guide sequence. This is 
problematic for predicting guide efficiency from depletion screens, as this large gene-
to-gene variation in depletion must be removed to properly extract the contribution of 
guide efficiency.

To isolate guide efficiency from measurements of depletion, we developed a method to 
fit and remove gene effects using Mixed-Effect Random Forest (MERF) regression [32] 
(Fig. 2A). The MERF model handles data with an underlying cluster structure by defin-
ing two separate models: a linear model that captures random effects associated with the 
cluster, and a random forest (or other complex model) that captures fixed effects asso-
ciated with each individual measurement after removing cluster effects. These models 
are then jointly optimized in an iterative process using the expectation–maximization 
algorithm. In our case, the cluster structure corresponds to collections of guides target-
ing the same gene. Random effects capture the effects of features associated with each 
gene (e.g., expression level) as well as dataset. Fixed effects are fit to the residual guide 

Fig. 2 Segregating guide and gene effects produces a predictive model for CRISPRi guide efficiency. A 
An overview of the training process of the MERF model. The MERF model segregates depletion values 
into predictions from a fixed-effect random forest model capturing guide efficiency and a random-effect 
linear regression model capturing effects associated with the target gene and dataset. The trained 
fixed-effect random forest model is used for gRNA efficiency prediction and the web-based tool CIAO (ciao.
helmholtz-hiri.de). B Evaluating predictions of guide efficiency after removing gene effects. Spearman 
correlations between predictions and measured logFC for held-out genes. Genes were held out in tenfold 
cross-validation, and the reported median Spearman correlation was calculated across all held-out genes
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efficiency after removing the effects of the targeted gene, and correspond to features that 
could be manipulated in gRNA design (e.g., PAM and guide sequence, thermodynamic 
properties). The final fixed effect model can then be used to predict the relative effi-
ciency of guides targeting a gene of interest independently of gene features.

Since the fixed effect model from the MERF removes gene-specific effects to estimate 
guide efficiency, guide-wise cross-validation is not possible, as the true guide efficiency 
is unknown. As an alternative to guide-wise cross-validation, we developed a gene-wise 
cross-validation scheme. We trained new models using tenfold cross-validation, this 
time holding out all guides targeting a set of held-out genes (see also cross-validation, 
Methods; Additional file 2: Table S2), evaluating the Spearman correlation between pre-
dictions and measured depletion within each gene under the assumption that rank order 
should reflect guide efficiency within a gene. As a comparison, we retrained the previ-
ously published Pasteur model [20] on our training sets using the authors’ publicly avail-
able source code. Since the Pasteur model was designed to be trained on a single dataset, 
we implemented a scaling normalization method to make depletion values comparable 
across datasets (see Data integration, Methods; Additional file 1: Fig. S4) based on prior 
work on data fusion for Cas9 genome editing in eukaryotes [19]. A comparable nor-
malization factor is calculated automatically within the MERF model through clustering 
guides targeting the same gene (Additional file 1: Fig. S4E).

As we had previously observed in our evaluation of predictions of guide-wise deple-
tion, data fusion between multiple CRISPRi screens consistently improved performance 
across models for both the MERF and Pasteur model (Fig. 2B; p < 0.001 for the MERF 
trained on 3 datasets vs. MERF trained on any one dataset, paired t-test). The MERF 
trained on three datasets showed the best overall performance (ρ = 0.396 vs 0.366 for the 
retrained Pasteur model; p = 0.014, paired t-test). We additionally investigated two deep 
learning models, but neither had improved performance over the MERF (see Additional 
file 1: Supplementary Note), possibly due to the limited size of the training data. In sum, 
the MERF approach provides a straight-forward means of integrating datasets while iso-
lating effects important for guide efficiency.

Model interpretation with explainable AI illustrates rational design rules for CRISPRi

To understand the features underlying model performance, we again examined SHAP 
values for our fixed-effect random forest model using TreeExplainer (Fig.  3A; Addi-
tional file 2: Table S8) [30]. The strongest average effects were seen for distances from 
the start codon. It has previously been suggested that there is a negative correlation 
between distance from the start codon and guide efficiency [1], though this has been 
called into question in subsequent work [31]. To investigate this in our model, we plot-
ted the relationship between the distance to the start codon and SHAP value. The SHAP 
value plots indicated a strong enhancement of guide activity within 60 bases of the start 
codon, but only weak effects deeper in the coding sequence (Additional file 1: Fig. S5AB 
and DE), supporting the absence of a linear relationship between distance and guide effi-
ciency. There was a small but significant difference in the strength of the distance effect 
in the first 60 bases depending on whether a gene was the first in an operon (Additional 
file 1: Fig. S5C and F), suggesting that this effect may in part be due to interference with 
RNA polymerase recruitment or the initial stages of polymerase extension. Accordingly, 
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including an indicator of whether a guide targets the first gene in an operon in our fixed 
effect model improved cross-validation performance (Additional file 1: Fig. S5G).

Other top features involved residues in the vicinity of the PAM sequence (Fig. 3A and 
B). For instance, the presence of a cytosine directly downstream of the PAM increased 
guide efficiency, while guanosine at the same position decreased efficiency as has pre-
viously been observed for Cas9-based genome editing in eukaryotes [11]. This may in 
part be a result of sliding on the PAM sequence leading to formation of disfavored DNA 
bulges that destabilize the Cas9 complex [33]. Cytosine was favored at the variable posi-
tion of the NGG PAM, also previously reported for Cas9 editing [11, 14]. In contrast, 
directly before the PAM sequence at position 20 of the guide, guanine and particularly 
adenine negatively impacted silencing efficiency, while cytosine and thymine increased 
efficiency — almost the exact inverse of previous reports for Cas9 efficiency in eukar-
yotic genome editing applications [11, 14]. These effects within and around the PAM 
sequence appeared to interact with each other, as we saw several instances where com-
binations of features had weaker or stronger effects than would be predicted from the 
effects of the single features alone (Additional file 2: Table S9).

A saturating CRISPRi screen targeting purine biosynthesis genes independently validates 

performance of tree‑based models and data fusion

Our cross-validation results indicated that the MERF-derived fixed-effect random forest 
trained on multiple datasets outperformed other methods in predicting guide efficiency. 

Fig. 3 Important features for CRISPRi guide efficiency illustrate sequence preferences. A SHAP values for 
the top 10 features from MERF optimized random forest model. Global feature importance is given by the 
mean absolute SHAP value (left), while the beeswarm plot (right) illustrates feature importance for each 
guide prediction. CDS: coding sequence. B A summary of effects of sequence features. Increased SHAP 
values indicate features that lead to reduced guide efficacy, while decreased SHAP values indicate increased 
guide efficacy. The guide sequence is numbered G1 to G20 and the three positions of the PAM sequence are 
labeled P1, P2, and P3. Negative and positive numbers refer to positions preceding the guide sequence and 
following the PAM, respectively
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As independent validation, we initially explored low-throughput validation approaches, 
but the resulting data was too sparse to justify strong conclusions (Additional file 1: Fig. 
S6). To resolve this, we performed a high-throughput screen targeting nine genes from 
the purine biosynthesis pathway of E. coli known to be essential in minimal medium, 
spread across seven independent transcriptional units (Fig. 4A). These genes were not 
included in our initial training set as they are not essential in rich medium, providing a 

Fig. 4 Independent validation of model performance using a saturating screen of purine biosynthesis 
genes. A Transcriptional architecture of the 9 targeted purine biosynthesis genes in E. coli K12 MG1655. All 
possible gRNAs were designed for each gene; each blue vertical line represents a gRNA. In total, 750 gRNAs 
were designed. Grey boxes represent genes, black arrows transcriptional start sites. B Spearman correlations 
between the predicted scores and measured logFC across collected timepoints. C Enrichment of efficient 
guides, calculated as the percentage of the experimentally determined 20% most efficient gRNAs in the 
predicted 20% most efficient gRNAs. The gRNAs are ranked within each gene. D Positive predictive values 
for all gRNAs across all time points. The predicted positives are defined as the top 3 predicted most efficient 
gRNAs for each gene, while the positive class includes gRNAs within N-fold of the depletion value of the 
most strongly depleted gRNA for each gene (N = 1.5–5 with a step size of 0.5). The boundaries of the shaded 
regions and points indicate PPV values for each time point. The genes purE and purK were excluded in B–D. 
E Measured logFCs for each guide as a function of distance to the start codon for purC, purD, and purE. The 
shaded regions indicate the 95% confidence interval for the fitted regression line. Plots for the other 6 genes 
included in the screen are given in Additional file 1: Fig. S7E
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truly independent test set. To avoid any bias in guide selection, we saturated all potential 
target sites in each gene, ending with a total of 750 gRNAs, including between 35 and 
223 guides per gene. Duplicate samples were then collected at three time points dur-
ing growth in M9 minimal medium and gRNA depletion was measured with reference 
to input samples, normalized using a set of 50 gRNAs designed not to target any E. coli 
sequence. Of these nine genes, purE and purK showed only small variation in guide effi-
ciency (Additional file 1: Fig. S7A), and so were excluded as test genes.

We first compared our MERF-derived fixed-effect random forest to the published 
Pasteur model and our retrained version of the Pasteur model by calculating the Spear-
man correlation between predictions from each model and the measured logFC for each 
gene (Fig. 4B). As in our cross-validation, we saw large boosts in performance for models 
trained on fused datasets (ρ ~ 0.478 for the original Pasteur vs. ρ ~ 0.569 for our retrained 
Pasteur model; p < 0.001, paired t-test), with a smaller further boost in correlation for 
the fixed-effect model from the MERF (ρ ~ 0.589; p < 0.001 MERF vs. original Pasteur 
model, paired t-test). To independently validate the importance of features previously 
identified by our SHAP analysis, we constructed a series of MERF models lacking either 
distance features or sequence features for each of the four sequence positions with the 
largest mean SHAP values (Additional file 1: Fig. S7B). This analysis showed removing 
any of these features leads to significant reductions in Spearman correlation on our vali-
dation screen (p < 0.001 for all comparisons, paired t-test). We also trained a baseline 
random forest model using the activity scores calculated to retrain the Pasteur model 
(Additional file 1: Fig. S7C). We found that this model performed slightly, but not signifi-
cantly (p = 0.33, paired t-test), worse than the MERF indicating that our ability to handle 
non-linear feature interactions may be the primary driver of improved performance. We 
additionally tested several methods for predicting CRISPRi or CRISPR editing efficiency 
in eukaryotic organisms, but all exhibited poor performance on our purine screen data-
set (Additional file 1: Fig. S7D).

To further investigate differences in performance between the three methods, we 
devised two additional metrics based on potential use cases. For the first, we calculated 
how well each method enriches for efficient guides, defined as being in the top 20% of 
guides for each gene based on observed depletion, mimicking guide selection that might 
be done in the context of genome-wide screening. Our fixed-effect model led to 10–15% 
increases in median enrichment of efficient guides relative to the original Pasteur model 
(p = 0.002, paired t-test), and 4–10% increases relative to our retrained version of the 
Pasteur model (p = 0.006, paired t-test), depending on the selected time point (Fig. 4C). 
For the second, we calculated the positive predictive value for each method when select-
ing the top three guides targeting each gene, mimicking guide selection that might be 
done when designing guides to selectively silence a particular gene of interest. For the 
fixed-effect model, there was a 79% chance of selecting a guide that led to depletion 
within two-fold of the most efficient guide for each gene (Fig.  4D), compared to 67% 
and 60% for our retrained and the original Pasteur model, respectively (p = 0.004 and 
p < 0.001, paired t-test). Given that the most efficient guides we observed across genes 
were depleted ~ 60–1000-fold (Fig. 4E; Additional file 1: Fig. S7E), a two-fold deviation 
still represents substantial depletion. Qualitatively similar differences in PPV between 
methods were seen using different thresholds for efficiency or when picking the top four  
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or five predicted most efficient guides (Additional file 1: Fig. S7F). In summation, we 
find that data fusion improves performance across model types in our completely  
independent validation screen, and that the fixed-effect random forest model from  
the depletion MERF further increases performance over the previous methods on a 
variety of realistic tasks.

Discussion
In this study, we developed a predictive model for CRISPRi guide efficiency using mixed-
effect machine learning and integrated data from three gene essentiality screens in E. 
coli. Our approach was based on two primary insights: that effects from the targeted 
gene dominate over the effects of guide efficiency in depletion screens, and that fusing 
data across multiple screens can improve prediction accuracy and generalizability. We 
trained a mixed-effect random forest model (MERF) that uses a linear random-effect 
model to capture the confounding effects of the targeted gene and dataset and a fixed-
effect random forest that captures the residual effect of guide efficiency on depletion. 
We showed that this fixed-effect random forest model improves on previous predictive 
models using both gene-wise cross-validations on our training data as well as a fully 
independent screen of guides targeting purine biosynthesis genes essential in minimal 
medium. These investigations provide a blueprint for developing similar predictive mod-
els in the absence of direct measurements of guide efficiency, both for other CRISPR-Cas 
systems [34] and technologies, as well as for CRISPRi in different bacteria where design 
rules may vary. We have made a web server for predicting CRISPRi guide efficiency 
using our MERF publicly available at: https:// ciao. helmh oltz- hiri. de.

Beyond developing a predictor for CRISPRi guide efficiency, our process of model 
development and validation provided several new insights into the behavior of CRISPRi 
screens. Strikingly, we found that gene expression was the single largest contributor to 
predictions of gene depletion as measured by SHAP values, where higher expression was 
associated with higher depletion. As the availability of transcriptomics data may be lack-
ing for some organisms, we also tested the possibility of using the codon adaptive index 
(CAI) as a proxy, with promising results (Additional file 1: Fig. S7 GH and I), indicating 
that this observation is not an artifact of the expression dataset we used.

Similarly, our saturating purine validation screen revealed previously unobserved fea-
tures of CRISPRi depletion screens. It has been suggested that CRISPRi guide efficiency 
is highest near the transcription start site and declines further into the coding sequence 
[1, 25]. In contrast to this, we saw at least three distinct patterns of depletion across 
genes (Fig.  4E and Additional file  1: Fig. S7E): purC and purM showed the expected 
trend towards decreasing efficiency along the gene; the majority of genes had good and 
bad guides distributed across the length of the gene with no clear positional preference; 
and purE and purK showed very little variation in guide efficiency. These differences in 
the relationship between distance to the start codon and guide efficiency were surpris-
ing, as distance features were clearly important to our model predictions (Fig. 3A). We 
attempted to train a model excluding distance features, but this substantially degraded 
performance on predicting depletion in our high-throughput screen (Additional file 1: 
Fig. S7GH and I). Investigation of the effects of our distance feature on predictions 
indicates a sensitive region of ~ 60 bases from the start codon where silencing is more 

https://ciao.helmholtz-hiri.de
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effective, possibly associated with transcription start sites or the early steps of transcrip-
tional elongation (Additional file 1: Fig. S5); additional work will be required to confirm 
this. In sum, our screen of guides targeting purine biosynthesis genes highlighted some 
unexpected features of CRISPRi while also independently validating the improved per-
formance of our random forest model compared to previous approaches.

Prediction of guide efficiency will become increasingly important with more complex 
applications of CRISPR technologies. In particular, the potential for multiplexing CRIS-
PRi could be transformative when compared to established technologies. One example 
of this would be in screening for fitness interactions between genes. The current state-
of-the-art is based on arrayed mating of single gene deletion libraries [35, 36], which 
is both labor intensive and technically challenging, and becomes increasingly so when 
querying higher-order interactions [37]. A similar example is in metabolic engineering 
where multiplexed CRISPRi can be used to modulate biosynthetic pathways to optimize 
production of a particular metabolite for industrial applications [38]. The development 
of CRISPR array technologies that can co-express as many as 22 guides simultaneously 
[9, 10] should accelerate the development of these approaches. However, large-scale, 
multiplex applications will require better tools for guide design to ensure robust results. 
Individually screening guides for activity quickly becomes prohibitive when one consid-
ers applications that require hundreds or thousands of guides. The machine learning 
approach presented here provides a straight-forward solution to this problem.

While we focused here on applications of CRISPRi with dCas9 in E. coli, the tech-
niques we have developed are in principle generic and could be extended to CRISPRi 
with any catalytically-dead nuclease in any bacterium of interest, or even to entirely dif-
ferent CRISPR technologies. For instance, we recently applied the same basic method-
ology to investigate the features underlying autoimmune activation of Cas13 targeting 
cellular RNA [34]. It is becoming increasingly clear that the performance of CRISPRi 
depends on both genetic background and the specific Cas protein used. For instance, 
Streptococcus pyogenes dCas9 expression has low silencing efficiency in some bacteria 
and can even be toxic [39], forcing the adoption of alternative Cas effector nucleases 
[40]. Alternative Cas effectors have large differences in their PAM preferences and the 
stringency of the PAM requirement [41]; presumably, alternative dCas proteins may also 
respond differently to the other gene and guide features described here. The approach 
outlined here, applying autoML and explainable AI to rapidly arrive at a description of 
the design rules underlying the efficiency of CRISPRi silencing, provides a means to 
rapidly characterize the behavior of new dCas proteins as genome-wide screening data 
becomes available.

Conclusions
Prediction of CRISPR guide efficiency is essential to the effective application of CRISPR-
based technologies. However, training prediction algorithms requires large amounts 
of data, and direct measurements of guide efficiency are often difficult to obtain at the 
scale required for machine learning applications. Here we have developed a mixed-effect 
machine learning approach that can use more easily obtained indirect measurements to 
produce an accurate predictor of guide efficiency. We applied this to predicting CRIS-
PRi guide efficiency in bacteria from depletion screens, producing a best-in-class guide 
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efficiency prediction method and identifying key features that affect gene silencing. Our 
method should be broadly applicable to predicting the efficiency of CRISPR guides in 
systems where only indirect measurements of guide activity are available.

Methods
Training datasets

We collected the data from three previous CRISPRi genome-wide essentiality screens in 
E.coli K12 MG1655 [21, 25, 31]. The sequence, targeted gene, gene position, and fitness 
effect of each gRNA were retrieved from the supplementary information of each study. 
Gene sequences and positions were updated to be consistent with the latest reference 
genome version (NCBI: NC_000913.3). We discarded gRNAs from the Wang data set 
previously removed as having insufficient read counts [25] or sequences from the Rous-
set and Cui datasets that differed from the reference sequence due to differences in the 
genome versions. 8099 gRNAs targeting the coding-strand within the coding regions of 
essential genes were extracted in total from all three datasets.

Feature engineering

A Python script (feature_engineering.py) was used to compute 138 sequence, thermo-
dynamic, genomic, and transcriptomic features (Table S1). 30-mer sequences, from 4 bp 
upstream of gRNA to 3 bp downstream of the PAM sequence, were one-hot encoded 
to 120 (30 × 4) features. Thermodynamic features including minimum free energy for 
different interactions (the hybridization of gRNA and target DNA, the hybridization 
of the seed region of gRNA and target DNA, the homodimer of gRNA, and the mono-
mer of gRNA) were computed using the ViennaRNA Package [26]: RNAduplex (version 
2.4.12) for RNA:RNA hybrids; RNAduplex (version 2.1.9 h) for DNA:RNA hybrids [27]; 
RNAfold (version 2.4.12) for single RNA folding. The seed region was defined as the 8 nt 
PAM-proximal region in the gRNA. The CRISPRoff score (deltaGB) was calculated using 
the energy function in the CRISPRoff pipeline v1.1.2 [42] with ViennaRNA Package ver-
sion 2.2.5 (deltaGB_calculation.py). Homopolymer was defined as the number of con-
secutive repetitive nucleotides in the gRNA sequences. Genomic features including gene 
and operon organizations were based on the reference genome, essential genes as deter-
mined in the Keio collection [24], and transcriptional unit definitions from RegulonDB 
[43]. Transcriptomic data including gene expression levels across growth at ten different 
ODs were obtained from a previous study [28]. Minimal or maximal expression levels 
were calculated across the range of ODs until the growth phase when cells were col-
lected in each CRISPRi screen: OD 1.4 for the Wang dataset, and all ODs for the Rousset 
and Cui datasets. The codon adaptation index (CAI) for each gene was calculated using 
CAIcal [44]. The resulting feature sets are available on GitHub.

Cross‑validation for machine learning methods

To evaluate the models for depletion prediction, training, and test sets were split guide-
wise based on unique gRNA sequences. tenfold cross-validation was used to evaluate 
model performance. 10 test sets, with the number of samples ranging from 786 to 855 
targeting 245 to 262 genes, were kept identical regardless of training data. The mini-
mum and median Hamming distances were 6 and 21 between the train and test sets 
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in each iteration and between test sets, as calculated with the Hamming function from 
SciPy (version 1.10.0) (Virtanen et al., 2020). For each iteration, the Spearman correla-
tion between measured depletion values and predicted values for all test samples was 
calculated.

To evaluate the models for gene efficiency prediction, training, and test sets were split 
by gene based on gene identifier. tenfold cross-validation was used to evaluate model 
performance. 10 test sets, with the number of samples ranging from 624 to 806 gRNAs 
targeting 30 or 31 genes, were kept identical regardless of training data. The minimum 
and median Hamming distance between the train and test sets in each iteration and 
between test sets were 7 and 21. For each iteration, the Spearman correlation between 
measured depletion values and predicted values for each held-out gene was calculated. 
For MERF, predictions were performed using the fixed-effect model. The gRNAs used in 
each train-test split are listed in Table S2.

Predictive models for depletion

The automated machine learning toolkit auto-sklearn (version 0.10.0) [22] was used 
to develop optimized machine learning regression models. For auto-sklearn, the 
AutoSklearnRegressor function was used and all possible estimators were included, 
which include a variety of tree-based and linear regression methods. We allowed one 
hour to search for an optimal model, with six minutes allowed to optimize each set of 
models and hyperparameters. tenfold cross validation was used as the resampling strat-
egy to avoid overfitting. Models were evaluated using mean square error. Feature types 
for each feature are listed in Table S12. The selected models were saved and used with 
scikit-learn for downstream analysis.

Simple linear regression, LASSO, elastic net, SVR, random forest, and histogram-
based gradient boosting models were separately trained using scikit-learn (version 
0.22.2) [23].

Segregation of guide and gene effects with MERF

We removed genes with less than 5 gRNAs in each dataset to stabilize estimates of 
median gRNA activity scores for a fair comparison between the MERF and models 
requiring scaling data integration (see below), resulting in 7400 gRNAs in total. This 
included 1618 gRNAs targeting 171 genes from E75 Rousset/E18 Cui and 4164 targeting 
300 genes from Wang.

MERF models were trained using the package merf (version 1.0). Hyperparameters for 
the final fixed-effect random forest model were optimized using hyperopt (version 0.2.5) 
[45]. The search space included: “bootstrap” either True or False, “n_estimators” from 50 
to 1000 with a step of 10, “max_features” from 0 to 1, “max_depth” from 2 to 30 with a 
step of 1, “min_samples_leaf” from 1 to 20 with a step of 1, “min_samples_split” from 2 
to 20 with a step of 1 (for more details, see MERF_crispri.py on GitHub). 129 guide-spe-
cific features were assigned as fixed effects, while 9 gene-specific features were assigned 
as random effects. The random effect matrix was standardized with the default Stand-
ardScaler function from scikit-learn. 301 unique gene IDs were used as cluster IDs. To 
train simplified models excluding transcriptomic measurements (Fig. S7E–G), the CAI 
value, gene length, gene GC content, and dataset were included for the random-effect 
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model. The output from the complete MERF model was in the range of − 12 to + 2, and 
output from the fixed-effect random forest was in the range of − 7 to − 2.5.

In all cases, the fixed effect was used for prediction (i.e., in cross-validation and valida-
tion with the purine screen), requiring only features associated with the guide sequence.

Data integration for retrained Pasteur and deep learning models

For the Pasteur and deep learning models, logFC values were scaled to integrate the 
datasets, adapted from a previously applied data fusion method [19]. First, the mean of 
logFCs of E75 Rousset and E18 Cui were calculated and used as the scaled logFC (Fig. 
S4B–D). Then linear regression was performed between the logFCs in Wang and scaled 
logFCs in E75 Rousset for 378 overlapping gRNAs. All of the logFCs from Wang were 
then scaled by the fitted slope and intercept values (Fig. S4B). The 378 overlapping  
gRNAs in Wang were excluded in the subsequent training. Activity scores were cal-
culated by subtracting the scaled logFC of each gRNA from the median scaled logFC  
for each gene across all 3 datasets (Fig. S4A). For cross-validation, scaling was  
performed within each test fold to avoid possible leakage of information between  
test and training sets.

Deep learning model implementation and training

Deep learning models were trained using pytorch (version 1.8.1) [46] and pytorch-
lightning (version 1.5.10). For our custom 1D CNN model, sequence features were pro-
cessed using 1D convolutional layers and later concatenated with other guide features 
(Fig. S8A). Concatenated features were further processed with fully connected layers. 
Three 1D convolutional layers were implemented sequentially with input channels 4, 64, 
and 64, output channels 64, 64, and 32, kernel size 5, 3, and 1, and stride 2, 2, and 1, 
respectively. For fully connected layers, output dimensions are 128, 64, 32, and 1 (which 
is predicted gRNA efficiency). The first three fully connected layers are accompanied by 
batch normalization [47], ReLU, and dropout [48] (p = 0.5). We trained the model using 
AdamW [49] optimizer with learning rate of 0.001 and batch size of 32.

For CGx_CRISPRi, we implemented the CRISPRon architecture (CGx) modified to 
include our nine non-sequential guide features (distance features, thermodynamic fea-
tures, etc.) concatenated to the processed sequential features. To test the effect of incor-
porating the deltaGB score [42], the four thermodynamic features were replaced with 
deltaGB, resulting in concatenating five non-sequential guide features to the processed 
sequential features. We trained the model using the Adam optimizer [50] with a learning 
rate of 0.001 and batch size of 32. We additionally tested a learning rate of 0.0001 and 
batch size of 500 as used in the original CRISPRon implementation [19], but saw only 
minor differences in performance (Table S7).

Model interpretation

Tree-based models, including depletion prediction models, and the fixed-effect model 
from MERF were interpreted using TreeExplainer from the python shap package (ver-
sion 0.39.0) [30].
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SHAP values were calculated using the “shap_values” function in TreeExplainer with 
80% of the samples for depletion prediction models and all samples for guide efficiency. 
SHAP value plots were generated with the “summary_plot” function in shap.

SHAP interaction values were calculated using the “shap_interaction_values” func-
tion in TreeExplainer with 1000 guides. Absolute SHAP interaction values were aver-
aged over 1000 samples. The rank of interaction was obtained based on the sorted mean 
absolute SHAP interaction values across all unique feature pairs. To compare interac-
tion effects to expectations based on single-feature SHAP values, four feature combina-
tions were considered: both absent (− / −), only the first feature present (+ / −), only the 
second feature present (− / +), and both present (+ / +). For the top 5,000 interacting 
feature pairs, the SHAP values for each feature in samples with each combination of fea-
tures were extracted. For each feature pair (F1 and F2), the expected value for + / + was 
calculated as the sum of the median F1 SHAP values for + / − samples with the median 
of F2 SHAP values for − / + samples, while the expected value for − / − was calculated 
as the sum of the median F1 SHAP values for − / + samples and the median of F2 SHAP 
values for + / − samples.

Strains and growth conditions

All strains, plasmids, and primers are listed in Supplementary Table S15, S16, and 
S17. E. coli cells were grown in Lysogeny Broth (LB) (10 g/L NaCl, 5 g/L yeast extract, 
10  g/L tryptone) at 37  °C with shaking at 250  rpm. To maintain plasmids, the antibi-
otics ampicillin, chloramphenicol, and/or kanamycin were added at 50  µg/mL, 34  µg/
mL, and 50 µg/mL, respectively as necessary. For screening experiments, E. coli MG1655 
was grown in M9 minimal medium (1 × M9 salts, 1 mM thiamine hydrochloride, 0.4% 
glucose, 0.2% casamino acids, 2  mM MgSO4, 0.1  mM CaCl2) supplemented with the 
appropriate antibiotics.

Validation of GFP silencing by flow cytometry in E. coli and S. Typhimurium

To investigate gene repression efficiency, 19 sgRNAs were selected to target the coding 
strand of a degfp reporter gene at different positions in E. coli BL21(DE3) (Table S15). 
Cells were initially transformed with three compatible plasmids encoding dCas9, a 
degfp-targeting sgRNA, and a deGFP reporter (Table S17). For normalization pur-
poses, a positive control strain harboring a non-targeting sgRNA and a negative control 
strain lacking the degfp encoding reporter plasmid was included. Overnight cultures of 
cells harboring the above-mentioned plasmids were back-diluted to  OD600 ~ 0.01 in LB 
medium with ampicillin, chloramphenicol, and/or kanamycin and incubated with shak-
ing at 250 rpm at 37 °C, until reaching an  OD600 of 1. Cultures were then diluted 1:25 in 
1 × phosphate-buffered saline (PBS) and analyzed on an Accuri C6 flow cytometer with 
C6 sampler plate loader (Becton Dickinson) equipped with CFlow plate sampler, a 488-
nm laser, and a 530 + / − 15-nm bandpass filter. Forward scatter (cutoff of 11,500) and 
side scatter (cutoff of 600) were used to eliminate non-cellular events. The mean green 
fluorescence value (measured by the FL1-H channel) across 30,000 events within a gate 
set for E. coli was used for further analysis. The log fold repression of each gRNA was 
calculated as the ratio between the difference in fluorescence values between the gRNA 
and negative control, and the difference between the positive and the negative control, 
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followed by log transformation. The mean log fold repression across three replicates was 
compared to predicted values from the machine learning models (Table S10 and S12).

For experiments with S. Typhimurium, the procedure was similar, but cells were grown 
until an  OD600 of ~ 0.8 before analysis on an Accuri C6 flow cytometer. To eliminate 
non-cellular events, the forward scatter (cutoff of 10,000) was used and the mean green 
fluorescence value (FL1-H) across 30,000 events within a gate set for S. Typhimurium 
was used for data analysis as described above across four replicates (Table S10 and S12).

Generation of the sgRNA library for purine biosynthesis genes

Nine genes (purA, purC, purD, purE, purF, purH, purK, purL, purM) in the purine 
biosynthesis pathway in E. coli MG1655 were selected for the saturating screen in M9 
minimal medium. All possible 20 nt gRNAs with an NGG PAM, GC content between 
30 and 85%, and without BbsI restriction sites were included in the library, resulting in 
750 gRNAs (Table S13). The minimum and median Hamming distance of the 30-mer 
sequences between the 750 gRNAs and the training data from three essentiality screens 
were 7 and 21.

For the sgRNA library, plasmid DC512 served as a backbone, following a previously 
established protocol [9]. To generate a library with 800 sgRNAs (including 50 rand-
omized non-targeting sgRNAs; Table S13), 800 forward and reverse oligonucleotides 
each encoding one spacer and a 4-nt junction, were synthesized as an oPool (1600 oligos 
at 10 pmol/oligo) by Integrated Device Technology (IDT). The same 5′ and 3′ assembly 
junction sequences were used for all spacer pairs leading to the same integration site 
within the backbone (5′ TAGT overhang at the 5′ end and a 3′ AAAC overhang at the 
3′ end). Supplementary Table S17 contains the specific oligonucleotides and assembly 
junctions used for the library generation. The oligos were phosphorylated and annealed 
to form dsDNA with a 5′ and 3′ overhang. The steps of phosphorylation and anneal-
ing were combined and conducted in one pot, by adding 8,000 fmol of the oPool and 
1 µl T4 polynucleotide kinase (10 units) to 5 µl 10 × T4 ligation buffer and then, adding 
water until reaching a final volume of 50 µl. After mixing briefly by pipetting the mix was 
incubated at 37 °C for 30 min in a thermocycler and then incubated at 65 °C for 20 min 
in a thermocycler to heat-inactivate the kinase. For the annealing of the forward and 
reverse oligo pairs, the following thermocycler steps were added: 95 °C for 5 min, 94 °C 
for 15 s, decrease by 1  °C, and hold for 30 s for 79 cycles. For integrating the dsDNA 
inserts into DC512, 400 fmol of the dsDNA, 20 fmol of backbone plasmid, 0.5 µL of T4 
ligase (1000 units), and 1.5 µL of BbsI (15 units) were added to 2 µL of 10 × T4 ligation 
buffer, then water was added to reach a total volume of 20 µl. A thermocycler was used 
to perform 35 cycles of digestion and ligation (37 °C for 2 min, 16 °C for 5 min) followed 
by a final digestion step (60 °C for 10 min) and a heat inactivation step (80 °C for 10 min). 
After NdeI digestion (37 °C, 1 h) of the ligation mix to remove any remaining original 
backbone plasmids and subsequent ethanol precipitation, 10 µl of the ligation mix was 
transformed into electrocompetent E. coli NEB10 beta (NEB, Ipswich, MA, USA), fol-
lowing the manufacturer’s instructions. After transformation and recovery in 1 ml SOC 
for 1 h at 37 °C with shaking at 250 rpm, different dilutions of the recovered cells were 
plated on LB agar containing the appropriate antibiotic and incubated for 16 h to check 
the number and color of the resulting colonies (ensuring a ~ 58X coverage). The rest of 
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the recovered culture was added to 100 mL LB medium containing the appropriate anti-
biotic and incubated at 37 °C with shaking at 250 rpm to  OD600 ≈ 1. Cells were harvested 
by centrifugation and subjected to plasmid extraction. Sanger sequencing was used to 
validate the library plasmid DNA.

Purine screen experiment

E. coli strain MG1655 was initially transformed with a dCas9 encoding plasmid (2.0 kV, 
200 Omega, and 25 μF). The resulting strain SG332 was then transformed with the 
sgRNA library by electroporation and recovered in 900 µl SOC for 1.5 h at 37 °C with 
shaking at 250  rpm. Different dilutions of the recovered cells were plated on LB agar 
containing the appropriate antibiotics and incubated for 16 h to check the number of 
the resulting colonies (~  565 colonies). The recovered culture was back-diluted to  OD600 
0.01 in LB medium with appropriate antibiotics and incubated at 37  °C with shaking 
for 13 h. Subsequently, 5 mL of the culture was sampled and the library was extracted 
by miniprep (Nucleospin Plasmid, Macherey–Nagel) to obtain the initial sgRNA dis-
tribution. The calculated amount of culture to reach  OD600 0.01 in 50 ml M9 minimal 
medium, was sampled and washed twice with M9 minimal medium to remove traces of 
the LB medium. The culture was incubated at 37 °C with shaking until it reached  OD600 
1, allowing ~ 6 replications. 5 ml of the culture was sampled at  OD600 0.2 and  OD600 0.6, 
and at  OD600 1, and the library was extracted by miniprep. The experiment was per-
formed in duplicate starting from two independent transformations of MG1655 with the 
plasmid library.

Library sequencing

The sequencing library was generated using the KAPA HiFi HotStart Library Amplifica-
tion Kit for Illumina® platforms (Roche) and the primers listed in Supplementary Table 
S17. The first PCR adds the first index. The second PCR adds the second index and flow 
cell-binding sequence. The amplicons of the first and second PCR reactions were puri-
fied using solid-phase reversible immobilization beads (AMPure XP, Beckman Coulter) 
following the manufacturer’s instructions to remove excess primers and possible primer 
dimers. The sequencing library samples, with the required DNA concentrations rang-
ing from 100 pg to 200 ng in a total volume of 10 µL, were submitted to the HZI NGS 
sequencing facility (Braunschweig, Germany) for paired-end 2 × 50 bp deep sequencing 
with 800,000 reads per sample on a NovaSeq 6000 sequencer.

Sequencing data processing

Paired-end reads were merged using BBMerge (version 38.69) [51] with param-
eters “qtrim2 = t, ecco, trimq = 20, -Xmx1g”. Merged reads with perfect matches were 
assigned to the gRNA library using a Python script. After filtering guides for at least 
1 count per million in at least 4 samples, read counts of each gRNA were normalized 
by factors derived from non-targeting guides using the trimmed mean of M-values 
method in edgeR (version 3.28.0) [52]. An extra column was added to the design matrix 
to capture batch effects between the two replicate experiments. Differential abun-
dance (logFC) of gRNAs between time points and the input library was estimated using 
edgeR, and a quasi-likelihood F-test was used to test for significance after fitting in a 
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generalized linear model. Spearman correlation between the logFC and predicted scores 
was calculated for each gene in the purine biosynthesis pathway. For the percentage of 
efficient gRNAs in predicted efficient gRNAs, gRNAs were first ranked for each gene 
based on the measured logFC at each time point and the most strongly depleted 20% of 
gRNAs were considered efficient. Predicted values from each model were also ranked 
for each gene and the top 20% were considered to be predicted efficient, followed by 
the calculation of the enrichment of efficient gRNAs in the predicted efficient gRNAs. 
For the positive predictive value calculation, gRNAs with logFC values within N-fold of 
the maximum fold change value in each gene were classified as true positives, while the 
best 3 to 5 predicted gRNAs were defined as predicted positives. The positive predictive 
values were calculated with the formula PPV = TP/( TP + FP) for all gRNAs at each time 
point for each fold (N = 1.5–5 with step of 0.5, TP = true positive, FP = false positive).

Scoring functions from previous studies

Adapted Python scripts (gRNADesigner.py and DeepSpCas9.py on GitHub) from the 
source codes of gRNA Designer and DeepSpCas9 were used to calculate the predicted 
scores. The source code of TUSCAN (https:// github. com/ Bauer Lab/ TUSCAN) was 
directly used. For SSC, we used the web-based application at http:// crispr. dfci. harva rd. 
edu/ SSC/ with the option CRISPR inhibition or activation and 20nt gRNA length. For 
the Pasteur model, the trained LASSO model was saved from the implemented Python 
script (Pasteur_model.py on GitHub) based on the jupyter notebook available on GitLab 
(https:// gitlab. paste ur. fr/ dbika rd/ ecowg1).
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