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Background
Expression quantitative trait locus (eQTL) mapping is often used to make inferences on 
the transcriptional consequences of genetic variants that have been identified through 
genome-wide association studies (GWAS). A challenge of eQTL studies is that the 
regulatory potential of a variant is often context-dependent, resulting in differences 
in eQTL effect strengths between tissues [1], cell types [2], and stimulations [3]. This 
hinders proper interpretation of disease-associated variants [4]. Many different strate-
gies have been employed to identify context-dependent eQTLs: for instance, the GTEx 
consortium generated data in many different tissues [5] and populations [6], and in the 
MetaBrain project, many brain eQTL datasets were combined to improve the ability to 
identify brain-dependent eQTLs [7]. Furthermore, single-cell RNA sequencing has been 
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instrumental in identifying cell type-dependent eQTLs within the same tissue [8–10]. By 
using ex vivo stimulations [3, 11, 12] or case control [13, 14] comparisons of eQTL effect 
strength, it is also possible to identify stimulation-dependent regulatory effects. How-
ever, the number of available contexts in these studies has remained somewhat limited, 
leaving many context-dependent eQTLs to be discovered.

Since data generation is expensive, various computational methods have been devel-
oped that do not rely on directly measured contexts or stimulations, but instead estimate 
factors that influence context-dependent eQTLs. The influence of such a context on 
eQTL effect sizes is often determined through interaction eQTL (ieQTL) analysis [15]. 
This principle has been applied previously to identify cell type-dependent eQTLs, for 
instance, by using predicted cell count measurements in bulk data to estimate the con-
tribution of different cell types to an eQTL effect [15, 16]. More complex models, such as 
sn-spMF, can detect factors representing tissue specificity of eQTL effects by using bulk 
data from different tissues [17]. To identify eQTLs dependent on contexts other than cell 
types or tissue, other genes have previously also been used in ieQTL analysis. For exam-
ple, blood-based gene expression levels of other genes were used previously to identify 
context-dependent effects [18], some of which were related to type 1 interferon signal-
ing. A recent study using the GTEx dataset also revealed context-dependent eQTLs that 
could be attributed to transcription factor levels [19]. The limitations of these methods 
are that not all confounding contexts might be known or easily measurable and that indi-
vidual (gene expression) measurements might not be perfect proxies for specific con-
texts and thus can be noisy. For instance, cell type quantifications can differ, depending 
on the used technology and gate settings whereas measured expression levels of specific 
genes are unlikely to perfectly reflect environmental stimuli or transcription factor activ-
ity. Methods to infer hidden variables (e.g., principal component analysis (PCA) [20], 
surrogate variable analysis (SVA) [21], probabilistic estimation of expression residuals 
(PEER) [22], and hidden covariates with prior (HCP) [23]) can also be used to identify 
proxies for contexts that have not been directly measured or are not readily predicted in 
a bulk dataset. By applying such methods on gene expression data, it is possible to cap-
ture components that can be tested as a potential proxy of a context that might influence 
eQTL effect strengths. Recent systematic comparisons between these hidden variable 
inference methods have shown that PCA is superior to the alternative hidden variable 
inference methods, being easy to use, magnitudes faster, and much easier to interpret 
[24]. However, principal components (PCs) often capture the gene expression variance 
explained by a mixture of different biological and technical signals in a single component 
[18]. Therefore, it is often unclear how to interpret the eQTLs that interact with such 
PCs.

To attempt to resolve these issues, we developed Principal Interaction Component 
Analysis through Likelihood Optimization (PICALO), a hidden variable inference 
method using expectation maximization that automatically identifies and disentangles 
technical and biological hidden variables, referred to as principal interaction compo-
nents (PIC), that serve as proxies for contexts. We applied PICALO to bulk RNA-seq 
eQTL datasets in the blood (n = 2932) and brain (n = 2440). We identified a set of highly 
informative PICs that together influence > 39% of eQTLs. The observed PICs are asso-
ciated with RNA quality, cell type composition, and environmental influences and can 
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be replicated across ancestries. We show that PICs less often capture a mixture of bio-
logical and technical contexts, as compared to expression PCs. Moreover, we show that 
between 62 and 64% of eQTL interactions are with technical PICs, highlighting the 
importance of proper correction for these effects when performing interaction analy-
sis. As such, PICALO is a self-supervised method to identify optimal proxy variables for 
hidden contexts that influence eQTL effect sizes.

Results
PICALO identifies eQTL context PICs through optimization of the interaction log‑likelihood

To identify the context that influences eQTL effect sizes (e.g., RNA quality, cell type 
composition, environmental factors), we use the genotype data and tissue expression 
data for known eQTLs in the relevant tissue (Fig. 1A). Using this data, PICALO identi-
fies the biological and technical context specific to the supplied data by mapping ieQTLs 
(Fig. 1B) and subsequently optimizing the likelihood of the interaction terms using an 
expectation maximization (EM) approach (Fig.  1C). In short, a starting position for 
the optimization (i.e., the expectation; an initial guess of a context such as expression 
PCs, marker gene expression, cell proportion, etc.) is used to identify an initial set of 
Benjamini–Hochberg false discovery rate [25] (BH-FDR  <  0.05) significant ieQTLs. If 
more than one possible starting position is supplied (e.g., multiple different expression 
PCs), the optimization is started with the starting position that had the highest number 
of ieQTLs. Next, the values of the starting position are adjusted to maximize the log-
likelihood of the interaction model for the set of included ieQTLs (this requires at least 
two ieQTLs). This adjusted vector is subsequently used as an updated expectation to 

Fig. 1 Graphical overview of the PICALO method. A PICALO takes eQTL data (i.e., gene expression and 
genotype dosage values) as input. B Map interactions with a starting position representing an initial guess 
of biological/technical context. C The starting position is optimized by maximizing the joint log‑likelihood 
on a per‑sample basis over multiple ieQTLs. D Mapping of the interactions and the subsequent optimization 
are repeated until convergence. The influence of the resulting principal interacting component (PIC) is 
regressed out from the gene expression data, and the process is repeated until no additional PICs and ieQTLs 
are identified. The resulting PICs capture technical and biological contexts such as cell type proportions. The 
illustrations shown in A, B and C are generated using dummy data
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reidentify a set of significant ieQTLs (most often increasing the size of the set of ieQTLs 
that were found in the initial ieQTL identification step), after which the process repeats 
until the vector no longer changes and thus convergence is reached. The resulting con-
text vector is referred to as a PIC (Fig. 1D). The gene expression data is then adjusted 
for this PIC and its interaction effect with eQTLs using ordinary least squares (OLS) 
regression, after which a second PIC can be identified. This procedure is repeated, until 
no additional significant ieQTLs can be found. The code for PICALO and an animated 
explanation of the method are available at https:// github. com/ molge nis/ PICALO. A 
more detailed description of the PICALO method is outlined in the “Methods” section.

We applied PICALO to bulk RNA-seq eQTL datasets in the blood (BIOS [18]; Fig. 1A) 
and brain (MetaBrain [7]; Fig. 1A). In short, the blood dataset is a large-scale effort from 
various biobanks in the Netherlands, containing genotype and gene expression data 
from peripheral blood of population-based samples. The brain dataset is a large-scale 
meta-analysis of previously published human brain datasets, including multiple brain 
regions. In the brain, we confined ourselves to the cortex samples from European ances-
try. We performed a strict sample selection filter (see the “Methods” section), to exclude 
any outlier samples, resulting in the inclusion of 2932 samples in the blood and 2440 
samples in the brain. We downloaded the summary statistics for the primary eQTLs of 
each respective study. After filtering, 13,010 eQTLs remained in the blood and 12,080 
eQTLs in the brain.

We first  log2 transformed the uncentered gene expression data and adjusted the 
expression data for known technical covariates such as sex, genotype multidimensional 
scaling (MDS) components, and dataset indicator variables while retaining the mean and 
standard deviation. Since we observed high correlations between RNA-seq alignment 
metrics and measured cell type proportions (Additional file 1: Fig. S1), we did not cor-
rect for these metrics as this would remove part of the cell type signal. Moreover, by not 
explicitly correcting for alignment metrics, we could evaluate PICALO’s performance to 
distinguish between technical and biological effects. We used the first 25 PCs over this 
matrix as starting positions for the EM algorithm representing our initial guesses of the 
eQTL context. After applying PICALO, we observed a large increase in the significance 
of the interaction term for a large proportion of ieQTLs, for instance, for TUBB2A and 
C9orf78 (−  log10p-value increase 71.9 and 45.3) in the blood (Fig. 2A) and FAM221A and 
ADAMTS18 (−  log10p-value increase 41.5 and 49.3) in the brain (Fig. 2B). We identified 
31 PICs in the blood having a total of 5894 significant interactions (BH-FDR < 0.05) with 
4169 unique eQTLs (32%; Fig. 2C; Additional file 1: Fig. S2A; Additional file 2: Table S1; 
Additional file  3: Table  S2). In the brain, we identified 21 PICs having a total of 5481 
interactions with 4058 unique eQTLs (39%; Fig.  2D; Additional file  1: Fig. S2B; Addi-
tional file 2: Table S1; Additional file 3: Table S3). Each PIC showed little to no correla-
tion with other PICs (Pearson r < 0.07 for the blood and < 0.04 for the brain; Additional 
file 1: Fig. S3) and the majority of ieQTLs interacted with only one PIC (72% in the blood 
and 75% in the brain), suggesting PICs capture unique effects. The first five PICs cor-
related moderately with the starting positions (average Pearson r = 0.64 ± 0.13 for the 
blood and 0.51 ± 0.08 for the brain; Additional file  1: Fig. S4), while subsequent PICs 
showed lower correlations (average Pearson r = 0.20 ± 0.15 for the blood and 0.17 ± 0.1 
for the brain; Additional file 1: Fig. S4).

https://github.com/molgenis/PICALO
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Fig. 2 Examples of PICALO optimization for ieQTLs. A ieQTL for the genes TUBB2A and C9orf78 with 
expression PC6 before optimization and resulting PIC5 after optimization in blood. B ieQTL for the genes 
FAM221A and ADAMTS18 with expression PC6 before optimization and resulting PIC2 after optimization in the 
brain. C The number of eQTLs tested in the blood and brain and the respective number of eQTLs that have 
an interaction with one or more PICs or expression PCs. D The number of ieQTLs for the first five PICs in the 
blood. E The number of ieQTLs for the first five PICs in the brain. F Regression plot showing the correlation 
between PIC1 and estimated RNA‑seq sample quality calculated as the per‑sample expression correlation 
with the overall average expression. G Pearson correlation heatmaps correlating PIC (top) and expression 
PC (bottom) to RNA‑seq alignment metrics in the blood. The correlation p‑values are corrected for multiple 
testing with Benjamini‑Hochberg, and only correlations with an FDR < 0.05 are shown. Note that many of the 
expression PCs correlate significantly with RNA‑seq alignment metrics while only a limited number of PICs 
show a significant correlation
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PICs are robust and replicate better than expression PCs

In order to evaluate to what extent PICALO is able to reconstruct hidden covariates, we 
performed a simulation study. Using the effect sizes as observed in the real data, we sim-
ulated expression data containing three hidden contexts. PICALO is able to robustly and 
efficiently identify simulated interaction context even if the starting vector has minimal 
correlation with the actual context (r ~ 0.2; Additional file 5: Supplementary note). How-
ever, PICALO’s reconstruction performance decreases if the starting vector does not 
interact with a sufficient amount of ieQTLs (Additional file 1: Fig. S5; Additional file 5: 
Supplementary note). Moreover, we down-sampled both the brain and blood eQTL 
datasets and observed that the power to detect ieQTLs is dependent on factors such as 
sample, the number of eQTLs affected by specific contexts, and the overall effect sizes of 
these interactions (Additional file 1: Fig. S6). Since EM algorithms can yield results that 
depend on the choice of the initial starting position (i.e., expectation), we evaluated to 
what extent this was the case for PICALO. We re-optimized the first five PICs in blood 
using each of the 25 expression PCs as independent starting positions and compared the 
results (Additional file 1: Fig. S7; Additional file 5: Supplementary note). We observed 
that PICs capture unique effects that can be robustly identified using PICALO, but that 
the order in which PICs are identified can be dependent on the starting position. We 
then further assessed the robustness of the identified PICs in the blood and brain by 
splitting each expression matrix into genes that map to odd chromosomes (discovery) 
and genes that map to even chromosomes (replication). We then identified expression 
PCs and PICs using the odd chromosome (eQTL) genes and subsequently determined 
how many ieQTLs could be identified with those components on the even chromosome 
eQTLs. Generally, we observed that PICs with at least 40 ieQTLs replicated in the odd 
chromosome eQTLs. In the blood, we identified 6 PICs with at least 40 ieQTLs in the 
odd chromosome eQTLs with which 1658 unique even chromosome eQTLs showed a 
significant interaction (31%). Comparatively, the same number of expression PCs inter-
acted with 1552 unique even chromosome eQTLs. In the brain, the difference was even 
larger with 1376 unique even chromosome eQTLs showing a significant interaction 
compared to 1105 for the same number of expression PCs. Most notably, PICs show a 
higher specificity than expression PCs by only interacting with one gene in 82% of cases 
compared to 74% for expression PCs in the blood and 88% compared to 61% in the brain 
(Additional file 1: Fig. S8).

PICs capture more interaction variance using fewer components than PCA

We then compared the PIC ieQTLs with expression PC ieQTLs (i.e., the starting posi-
tion on which PICs are identified) to evaluate to what extent applying PICALO on top of 
PCA improves in the inference of eQTL context. Using an equal number of expression 
PCs as the number of identified PICs, we found that PICs interact with a higher propor-
tion of unique eQTLs than expression PCs (5.4% increase in blood, 14.9% increase in 
brain; Fig. 2C). We then evaluated to what extent the variance explained by the interac-
tion terms of the ieQTL models (i.e., interaction variance) was captured by the identified 
PICs. For this, we adjusted the expression data for the PICs and their interactions and 
evaluated if we could detect any ieQTLs on the residuals using the first 25 expression 
PCs (i.e., the starting positions with which the PICs were optimized). We observed only 
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a limited number of ieQTLs (7 in the blood, 4 in the brain), indicating that the majority 
of interaction variance that is captured by the first 25 PCs is also captured by PICs. We 
extended this analysis by also evaluating the first 100 PCs and observed an additional 
239 ieQTLs in the blood and 40 in the brain. To confirm that more PICs can be identified 
at the cost of higher computational complexity, we reperformed PICALO while doubling 
the number of starting vectors to 50 and reducing the minimum number of EM-iter-
ations to 15. This resulted in 10 additional PICs, each interacting with < 20 eQTLs in 
the blood and no additional PICs in the brain. The addition of extra starting vectors did 
not influence any of the first 21 PICs. Together, these results suggest that the number 
of PICs is dependent on the number of starting vectors supplied to PICALO. However, 
additional starting positions only marginally increase the total number of ieQTLs, while 
increasing the computational cost substantially.

RNA‑seq quality and technical confounders are major drivers of eQTL effect sizes 

in the blood and brain

We have shown that PICs are robust proxies for contexts that affect eQTL effect sizes. 
However, since PICs lack specific annotation, further analysis is required for interpreta-
tion. To provide these annotations, we correlated the PICs to known technical factors 
(e.g., estimated RNA-seq sample quality, RNA-seq alignment metrics, sample annota-
tions; Additional file 6: Table S4 and Additional file 7: Table S5) and biological pheno-
types (e.g., measured or predicted cell type proportions; Additional file 6: Table S4 and 
Additional file 7: Table S5). Subsequently, we evaluated single-cell expression of genes 
that highly correlate with PICs to further investigate cell type enrichments. Finally, we 
performed gene set enrichment analysis to investigate pathway and cell type enrichment 
of positively and negatively correlated genes using the ToppGene suite [26]. Analogous 
to other types of hidden variables, PICs may capture the influence of multiple distinct 
biological and technical factors. Like those other methods, factors with a large effect on 
eQTLs can be the dominant source of variance within a single component, allowing for 
the classification of PICs into predominantly technical and non-technical contexts. This 
enables the correction of technical influences while retaining informative biological vari-
ance for downstream analyses.

The PIC1 that was identified in the blood and the PIC1 identified in the brain indi-
vidually interact with a substantial number of eQTLs (3426 in the blood and 2868 in the 
brain; Fig. 2D, E). Upon further analysis, both PIC1s showed a high correlation with esti-
mated RNA-seq sample quality (blood Pearson r = 0.56, Fig. 2F; brain Pearson r = − 0.66, 
Additional file 1: Fig. S9B) that we calculated per sample as the correlation between the 
gene expression per gene and the average expression per gene over all samples. Notably, 
in the blood, the correlation per cohort was substantially higher (Pearson r > 0.82) than 
the joint correlation (Pearson r = 0.56), suggesting heterogeneity of the estimated RNA 
quality and consequently that PIC1 provides a more reliable quality measure, perhaps 
by capturing multiple aspects of technical variation in a single component. We further 
observed that 88% of eQTLs that interact with PIC1 have a positive interaction effect, 
suggesting an increased effect size in high-quality samples, both in the blood and in the 
brain. Since we did not correct the expression data for RNA-seq quality, it makes sense 
that PIC1 reflects this.
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We then determined how many PICs were affected by RNA-seq alignment metrics and 
compared this to expression PCs. We calculated the Pearson correlations between each 
PIC and RNA-seq alignment metrics (e.g., those from PICARD, FastQC; Fig. 2G; Addi-
tional file 1: Fig. S10) and observed that 10 out of 31 PICs had a significant PIC-metric 
correlation in the blood (9.4% of pairs; BH-FDR < 0.05) and 7 out of 21 PICs in the brain 
(16.1% of pairs). In contrast, for an equal number of expression PCs, we observed that 29 
out of 31 expression PCs had a significant correlation in the blood (41.7% of pairs) and 
21 out of 21 expression PCs in the brain (49% of pairs). This indicates that PICs distin-
guish technical from non-technical factors using fewer components than PCs and that 
most PICs do not reflect known technical confounders. We further observed that PIC1 
shows significant interaction effects for many more eQTLs, as compared to the number 
of significant interaction effects for expression PC1, both in the blood and in the brain. 
This indicates that while RNA quality (captured by both PIC1 and PC1) has a substantial 
effect on eQTL effect sizes, PIC1 reveals many more eQTLs that have a significant inter-
action effect with RNA quality.

We next classified PICs as being predominantly technical if they were correlated sig-
nificantly with an RNA-seq alignment metric, but not with one of the cell-count propor-
tions or other biological factors. Using this principle, we determined that PIC1, PIC4, 
and PIC8 are predominantly technical in the blood (Figs. 2G and 3A) and PIC1, PIC4, 
and PIC7 in the brain (Additional file 1: Fig. S10A; Fig. 4A). In total, the technical PICs 
accounted for 3760 interactions (64%) with 3555 unique eQTLs (27%) in the blood and 
3416 interactions (62%) with 3140 unique eQTLs (31%) in the brain. The remaining 

Fig. 3 A Pearson correlation heatmap correlating PICs to measured cell type proportions in the blood. The 
correlation p‑values are corrected for multiple testing with Benjamini‑Hochberg, and only correlations with 
an FDR < 0.05 are shown. B Regression plot showing the correlation between PIC2 and myeloid lineage cell 
proportions (granulocyte + monocyte) in the blood. C Simplified overview of the blood cell type lineage with 
annotations of PICs describing distinct (groups of ) cell types using measured cell type proportions, gene 
set enrichments, and single‑cell expression enrichment. Positive and negative signs indicate the direction of 
the effect. Only the first 10 PICs are considered. An image of the top layer cell type is created with BioRe nder. 
com. D Negatively correlating eQTL genes interacting with PIC10 showed enrichment for type II interferon 
signaling as annotated by the Interferome Database Annotation

https://BioRender.com
https://BioRender.com
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non-technical PICs accounted for 2134 interactions (36%) with 1617 unique eQTLs 
(12%) in the blood and 2065 interactions (38%) with 1671 unique eQTLs (16%) in the 
brain. In the blood and brain combined, we identified non-technical interaction effects 
for 3065 unique genes.

For the interpretation of the non-technical PICs, we confined ourselves to those PICs 
with a minimum of 40 ieQTLs based on our simulation analyses (first 10 PICs in the 
blood, first 7 in the brain). We note however that true eQTL context may interact with 
only a handful of genes, and therefore, highly informative biological context might be 
overlooked (Additional file 5: Supplementary Note).

Specific types of cells, interferon signaling, and prior cytomegalovirus infection influence 

eQTL effect size in the blood

To interpret the non-technical PICs in the blood, we first correlated their values with 
measured cell counts and combinations of cell types from the same lineage (Fig.  3A; 
Additional file  1: Fig. S11A). For 7 out of 10 PICs, we observed a significant correla-
tion (PIC1-PIC3, PIC6-PIC9; BH-FDR < 0.05). For example, PIC2, interacting with 1120 

Fig. 4 A Pearson correlation heatmap correlating PICs to predicted cell type proportions in the brain. The 
correlation p‑values are corrected for multiple testing with Benjamini‑Hochberg, and only correlations with 
an FDR < 0.05 are shown. B Regression plot showing the correlation between PIC2 and glial proportion 
(microglia + oligodendrocyte + astrocyte) in the brain. C Simplified overview of the brain cell type lineage 
with annotations of PICs describing distinct (groups of ) cell types using predicted cell type proportions, 
gene set enrichments, and single‑nucleus expression enrichment and replication. Positive and negative 
signs indicate the direction of the effect. Only the first seven PICs are considered. Images of the bottom layer 
cell types are created with BioRe nder. com. D Rb replication statistics for the replication of eQTLs interacting 
with the first five PICs discovered in samples of European ancestry (EUR) and replicated in samples of 
African ancestry (AFR). E Regression plot showing the interaction t‑values of PIC2 ieQTLs discovered in EUR 
and replicated in AFR. Blue points are significant in both datasets, the statistics of which are shown in blue. 
The shaded area indicates the 95% confidence interval. F Example of replicating ieQTL: rs891134 affecting 
ADAMTS18 gene expression and interacting with PIC2. The left plot shows the interaction in EUR, and the 
right plot shows AFR. The x‑axis shows the PIC2 scores, the y‑axis shows the covariate corrected gene 
expression, and each dot represents a sample. The p‑values are calculated using the unconditional ieQTL 
analysis. Colors indicate SNP genotype. Values under the alleles are Pearson correlation coefficients

https://BioRender.com


Page 10 of 26Vochteloo et al. Genome Biology           (2024) 25:29 

eQTLs, showed the strongest correlation with myeloid lineage cell percentage (Pearson 
r = 0.77; Fig. 3B), consisting predominantly of neutrophils. Furthermore, for PIC7, inter-
acting with 60 eQTLs, we observed a correlation with measured eosinophil proportion 
(Pearson r = 0.36).

We then evaluated whether PICs were enriched for certain cell types and biological 
processes by correlating the PICs with gene expression levels and splitting the genes into 
groups of positively and negatively correlating ones. Using the top 200 positively and 
200 negatively correlated genes per PIC (Additional file 8: Table S6), we tested for gene 
set enrichments (Additional file  9: Table  S7) and evaluated expression in purified and 
single-cell datasets (Additional file 1: Fig. S12 and Fig. S13). This analysis further sup-
ported the neutrophil association for PIC2 and the eosinophil association for PIC7. Fur-
thermore, we were able to assign putative labels of (sub)types of cells to 6 more PICs 
(Fig. 3C). For PIC5 (103 ieQTLs), for example, we found that the positively correlating 
genes showed a strong enrichment of erythrocyte-specific genes (ToppCell enrichment 
p-value < 1.4 ×  10−233). Moreover, this PIC was enriched for red blood cell pathways, 
such as for the uptake of oxygen and release of carbon dioxide (pathway enrichment 
p-value = 6.7 ×  10−11), among others (Additional file  9: Table  S7). The results for PICs 
with < 40 ieQTLs but with clear annotations can be found in Additional file 5: Supple-
mentary note.

Next, we evaluated if the top 200 positively and negatively correlated genes per PIC 
were enriched for certain pathways. In the Zhernakova et al. study [18], which uses the 
same data as this study, an interaction module was identified that was a proxy for type 1 
interferon response. Here, we found that PIC10 was enriched for the interferon signal-
ing pathway (pathway enrichment p-value = 1.6 ×  10−36). While the number of affected 
eQTLs by PIC10 was lower than the number of eQTLs affected by the equivalent mod-
ule in Zhernakova et al. (44 as compared to 145), the enrichment p-value for the inter-
feron signaling pathway was substantially more significant (p-value = 1.6 ×  10−36 versus 
p-value = 2 ×  10−6). Finally, by using the interferome database annotation [27], we found 
that 21 out of 22 genes that positively correlate with PIC10 were involved in type 2 inter-
feron signaling (Fig. 3D).

Finally, we found a significant correlation (Pearson r = − 0.29, p-value = 5.97 ×  10−15; 
Additional file  1: Fig. S14A-B) between PIC3 and the presence of antibodies against 
cytomegalovirus (CMV). This was determined by a CMV infection signal that was 
calculated from an aggregate of multiple IgG antibody profiles enriched in a PhIP-seq 
experiment for 1433 samples [28]. These CMV antibodies can be indicative of a past 
or latent infection with CMV, which is expected for 45% of the Dutch population [29]. 
Latent CMV infection can have a lasting effect on the immune system [30] and increases 
monocyte differentiation [31], and CMV can reprogram monocyte gene expression [32, 
33]. We also observed a correlation between the CMV antibodies and expression PC5 
(r = − 0.29, p-value = 1.14 ×  10−15). Although PIC3 and PC5 seem very similar at first 
glance (Additional file 1: Fig. S14C; Pearson r = 0.66), we observed that PC5 was corre-
lated with multiple cell type proportions (maximum absolute Pearson r = 0.27 with neu-
trophil proportion; Additional file 1: Fig. S14D), while PIC3 was not (maximum absolute 
Pearson r = 0.14 with monocyte proportion; Additional file 1: Fig. S14D). This difference 
emphasizes how PICs, unlike expression PCs, can disentangle the influence of CMV 
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infection on eQTLs into separate components, either affecting cell type proportions or 
gene regulation.

Specific types of cells influence eQTL effect size in the brain

In contrast to the PICs in the blood, the PICs identified in the brain were harder to anno-
tate since no measured cell type proportion measurements were available for this data-
set. However, by using the predicted cell type proportions as used in de Klein et al. [7] 
(Additional file 1: Fig. S11B), gene set or pathway enrichment analysis (Additional file 9: 
Table  S7), a comparison with brain single-cell expression from ROSMAP (Additional 
file 1: Fig. S13B), a comparison with cell type ieQTLs by de Klein et al. [7], and finally a 
replication using the single-nucleus based eQTL dataset by Bryois et al. [34] (Additional 
file 1: Fig. S15 and Additional file 1: Fig. S16), we were able to assign putative labels to a 
total of three out of seven PICs.

In order to determine the replication of PIC ieQTLs, we evaluated different aspects 
of replication: allelic concordance (AC), Rb [35], and π1 [36]. AC is an indication of the 
proportion of effects that have a shared direction and are significant in both discovery 
and replication dataset, Rb estimates the correlation between effect slopes while control-
ling for potential covariance in standard errors of those slopes, and π1 estimates the pro-
portion of effects that are true positive in the replication cohort but does not take into 
account effect direction and can be dependent on replication dataset sample size.

First, PIC2, which has a significant interaction with 896 eQTLs, correlated strongly 
with predicted glia proportion (Pearson r = 0.65). Moreover, PIC2 showed a high rep-
lication with single-nucleus eQTLs from oligodendrocytes (AC = 88%, Rb = 0.83, 
π1 = 0.87; Additional file 1: Fig. S15 and Fig. S16), the most common glial cell, further 
supporting this association. Second, for PIC5, we identified 315 ieQTLs and strong cor-
relations with predicted astrocyte (Pearson r = 0.48) and oligodendrocyte proportion 
(Pearson r = − 0.45) as well as a high enrichment of cell type-specific genes for these cell 
types (p-value < 1.5 ×  10−136 for astrocyte and p-value < 6.2 ×  10−99 for oligodendrocyte). 
This association is further supported by a high replication rate with astrocyte sn-eQTLs 
(AC = 76%, Rb = 0.67, π1 = 0.58; Additional file 1: Figs. S15 and S16). The results for PICs 
with < 40 ieQTLs but with clear annotations can be found in Additional file 5: Supple-
mentary note.

Top brain PICs replicate well across datasets

Lastly, we evaluated how well PIC ieQTLs replicate across datasets. For this, we 
used the PICs identified in the 2440 brain samples from European ancestry (EUR) 
and replicated them in 311 brain samples from African ancestry (AFR). Given that 
the AFR samples originate from cohorts that also include EUR samples, we expect 
to replicate both biological as well as technical contexts in the AFR samples. We 
observed that the top two PICs replicate very well (PIC1: AC = 76%, Rb = 0.89, 
π1 = 0.3; PIC2: AC = 66%, Rb = 0.76, π1 = 0.33; Fig. 4D, E; Additional file 1: Fig. S17; 
Additional file 10: Table S8). The high concordance of technical PIC1 is most likely 
due to the overlap of shared confounding effects between EUR and AFR samples 
originating from the same cohorts. As expected, the remaining PICs replicate less 
well as the number of ieQTLs decreases with subsequent PICs, and they capture a 
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lower proportion of interaction variance. For the biological PIC2, annotated as glial 
cell proportion, a total of 10 ieQTLs were replicated. This included ADAMTS18 
(Fig.  4F), which has previously been identified as oligodendrocyte-specific [37]. 
This finding supports our earlier observation that PIC2 captures glial proportion 
differences.

Discussion
In this manuscript, we have highlighted a possible confounding effect of technical vari-
ation on the detected interaction eQTLs. Although RNA-seq quality metrics or expres-
sion PCs are usually considered as confounders, their interactions with genotype are, to 
our knowledge, never accounted for. However, such effects could be observed when sam-
ples with lower quality have increased error margins in their measured expression com-
pared to samples with higher quality. For instance, when the samples would be stratified 
on RNA quality, this could result in different observed eQTL effect sizes, because of the 
differences in eQTL detection power between high-quality and low-quality samples, in 
turn resulting in an interaction effect.

Overall, the purpose of PICALO is to identify hidden contexts that mediate eQTL 
effect sizes. As reported before [2], we have shown that cell type proportion is an 
important biological context to consider. However, although eQTLs are plentiful, 
our results suggest that a modest proportion of eQTLs identified in bulk data are 
context-specific for biological contexts. This could be because cell type regulatory 
effects can be shared between cell types from the same lineage or because they could 
be dependent on extracellular stimulation. We therefore underline that even after 
PICALO optimization, we expect the number of true interaction eQTLs to be lim-
ited to a small set of genes.

PICALO has a number of limitations. Like any hidden variable inference method, the 
identified PICs do not have a direct functional annotation and therefore require fur-
ther analyses for proper interpretation. While we have shown that this is feasible, we 
acknowledge that the confidence in the annotation is dependent on the quality and avail-
ability of ground truth information such as gene pathways, cell type specificity of genes, 
and phenotypic and technical covariates in the dataset. Furthermore, while we have 
shown that PICs are independent to each other and capture distinct effects, as well as are 
able to disentangle technical from biological effects, it is still possible that PICs capture 
a mixture of contexts which may complicate the interpretation. As a result, the interpre-
tation of PICs, interacting with only a small set of eQTLs, should be done with caution. 
Moreover, the performance of PICALO is dependent on factors such as sample size, 
the number of eQTLs affected by specific contexts, and the overall effect sizes of these 
interactions. We envision that sample sizes of molecular QTL datasets will increase sub-
stantially in the near future. PICALO is particularly well suited to such larger datasets, 
because it will benefit from having more significant ieQTLs to start optimization with, 
resulting in improved power to increase the number and accuracy of identified hidden 
contexts. Finally, we note that PICs are currently restricted to additive, linear effects and 
that lowly expressed genes cannot be included as their interactions cannot be properly 
corrected for.
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Conclusions
We have developed PICALO, a hidden variable inference method that applies an EM 
algorithm to identify hidden contexts that affect eQTL effect sizes. We have applied it 
to a large blood and brain bulk eQTL dataset and identified a considerable number of 
contexts and ieQTLs, reflecting thousands of genes, which is a substantial improvement 
over Zhernakova et al. who reported significant interactions for only 12% of the eQTLs 
[18]. While we could also assign a biological label to thousands of ieQTLs, many of the 
identified eQTLs interacted with technical PICs. This could suggest that for a large pro-
portion of eQTLs, the effect size depends on technical covariates even after stringent 
correction. We therefore reason that the technical PICs identified by PICALO can be 
used to remove additional technical variance from eQTL studies to further improve 
eQTL effect size estimates, which in turn might improve downstream analyses with 
GWAS signals such as colocalization or Mendelian randomization. We demonstrated 
that PICALO outperforms PCA by capturing this technical effect within a limited num-
ber of components and showing better replication of the ieQTLs. Overall, the identified 
PICs describe highly relevant biological and technical eQTL contexts without knowing 
them a priori. Moreover, they provide better differentiation between technical and bio-
logical influences, while using fewer components as compared to PCA.

Application of PICALO is not limited to bulk RNA-seq and could also be applied in 
single-cell data to identify stimulation contexts and specific types of cells including the 
less frequent ones. We have shown that expression PCs can be used as a starting posi-
tion for PICALO (i.e., the initial guess of eQTL context), but we do note that it is also 
possible to use marker gene expression levels or cell-type proportions. We expect that 
PICALO can also be applied to other quantitative phenotypes, such as clinical data, 
ancestry information, or other molecular phenotypes such as protein levels. While we 
have focused on cis-eQTLs in this study, PICALO could also be applicable to trans-
eQTLs. For many trans-eQTLs, it is currently unclear whether they are the consequence 
of cell type proportion differences or actual regulatory effects [38], a distinction that can 
potentially be improved using a combination of PICs identified by PICALO.

To sum up, PICALO is insightful for the analysis of eQTL datasets to detect the rele-
vant contexts that influence eQTLs. Currently, our method is especially well-powered in 
large sample sizes, but various large-scale eQTL and pQTL studies are currently under-
way or have just been completed [38, 39]. Therefore, we believe PICALO will prove 
highly useful in the future, enabling the discovery of previously unknown contexts that 
influence eQTL effect sizes and consequently potentially improving the interpretation of 
disease-associated variants.

Methods
General description of PICALO

PICALO is an EM-based algorithm for the identification of known and unknown contexts 
that influence the regulatory effect of genetic variants on gene expression. PICALO takes as 
input a set of eQTLs and their corresponding expression and genotype data, as well as a set 
of starting positions (e.g., potential context components). Optional arguments allow for the 
correction of technical covariates both with and without an interaction term. PICALO can 
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deal with missing genotypes and can work with multiple, heterogeneous eQTL datasets. In 
this paper, we show the use of expression PCs as a starting position; however, other quan-
titative phenotypes or characteristics such as cell type fractions or marker genes can also 
be used. Using this data, PICALO identifies hidden variables that maximally affect eQTL 
effect sizes (i.e., PICs) in three steps. These steps are detailed below.

Step 1: eQTL inclusion criteria and data pre‑processing

PICALO allows for the filtering of eQTLs based on the following metrics: eQTL p-value 
(default < 0.05), genotype call rate (default > 0.95), number of samples per allele (default > 2), 
minor allele frequency (MAF; default > 0.05), and Hardy–Weinberg equilibrium p-value 
(default > 1 ×  10−4). If the input data consists of multiple datasets, the call rate is calculated 
per dataset and all samples of the same dataset are considered missing if the call rate is 
not met. Note that eQTLs for which the included samples have a low average expression 
(e.g.,  log2 (trimmed mean of M values; TMM + 1) < 1) should be manually removed prior to 
applying PICALO.

Step 2: correcting the gene expression levels for technical confounders

For the gene expression, PICALO expects the input to be  log2-transformed, centered per 
gene, and z-transformed per sample over all genes. To correct for technical confounders, 
PICALO constructs a design matrix encompassing all supplied technical covariates and 
automatically includes dataset indicator variables if more than one dataset is used. An extra 
term for the interaction between a technical covariate and genotype can be included as well. 
If applicable, dataset indicator variables always include a term for the interaction with geno-
type to correct for possible dataset-specific interactions. Before the identification of each 
PIC, the input gene expression data is corrected for all terms in the design matrix using 
OLS regression in which samples with missing genotypes are ignored and remain missing. 
The residuals are used as gene expression input for step 3.1. After identification, each PIC is 
included in the design matrix with a term for the interaction with the genotype.

Step 3.1: expectation—identification of interaction eQTLs

As the first part of the EM step, PICALO identifies the starting position that has the high-
est number of significant ieQTLs. A graphical overview of this step is shown in Additional 
file 1: Fig. S19A. The starting position is an initial guess of the eQTL context and is here-
after referred to as context. The significance of an ieQTL is analyzed as follows: first, the 
genotype and context effects are regressed out from the expression data, ensuring that only 
the interaction term explains any variance in the model. PICALO then forces the distribu-
tion of the gene expression levels and the context(s) into a normal distribution per dataset 
by ranking with ties to prevent the influence of outliers. Per eQTL, the significance of the 
interaction term is calculated by comparing the residual sum of squares (RSS) of two linear 
models: one without (Eq. 1) and one with (Eq. 2) the interaction term included.

(1)y = β1 + βg • g + βc • c + ε

(2)y = β1 + βg • g + βc • c + βgxc • g • c + ε
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where
y = gene expression;β = beta; g = genotype; c = context

ε = residuals; gxc = genotype context interaction

The interaction p-value is calculated using a one-sided F-statistic with (1, n − 4) 
degrees of freedom after which BH multiple testing correction is applied per context. 
Only ieQTLs that are significant (BH-FDR <  0.05) are used for the optimization step. 
If there are less than two ieQTLs available for optimization for any of the samples, the 
program is halted.

Step 3.2: Maximization — optimization of interaction component

For the optimization of the context, PICALO maximizes the log-likelihood of the inter-
action model (Eq. 3) over all significant ieQTLs considering each sample individually. A 
graphical overview of this step is shown in Additional file 1: Fig. S19B. For clarity, first, 
consider the case in which only one ieQTL is optimized. Using the beta estimates as cal-
culated in Eq. 2, the log-likelihood of these beta values, given the observations (e.g., gene 
expression levels, genotype, context), can be calculated as follows:

where
L = likelihood;β = beta; s = standard deviation; n = sample size;

p = probability; y = gene expression; g = genotype; c = context

gxc = genotype context interaction

In other words, the likelihood of the model equals the joint probability of the model 
residuals coming from a normal distribution with a mean 0 and a standard deviation 
of s2 . In contrast to how the likelihood is traditionally applied (i.e., likelihood of model 
parameters given the data), PICALO calculates the likelihood of the context value for a 
single sample given the model parameters. The underlying assumption is that the con-
text estimate of a given sample has a certain margin of error but that this error has an 
average of 0 over all samples (i.e., the model parameters are error-free). PICALO cal-
culates the log-likelihood of samplei having context value ci given that βc and βgxc are 
true. In other words, PICALO adjusts the value for ci to maximize the log-likelihood of 
the complete model while all other observations and parameters, especially all values 
for c  = ci , are kept fixed. In the case of a single ieQTL, this translates to adjusting the 
context value of each sample (Additional file 1: Fig. S20A) and determining the change 
in log-likelihood (Additional file 1: Fig. S20B). In principle, the log-likelihood is maximal 
for a given sample when its context value intersects with the regression line of its corre-
sponding genotype group.

We assume s2 to be constant since we forced the expression and context distributions 
into a normal distribution per dataset by ranking with ties (see step 3.1). As a result, 
maximizing the log-likelihood equals minimizing the RSS of the model (Eq. 4).

(3)

L(β1,βg ,βc,βgxc, s
2) =

log
n

i=1

p yi|gi, ci;β1,βg ,βc,βgxc, s
2 =

n

i=1

logp yi|gi, ci;β1,βg ,βc,βgxc, s
2 =

−n
2 log2π − nlogs − 1

2s2

n

i=1

yi − β1 + βg • gi + βc • ci + βgxc • gi • ci
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where
y = gene expression;β = beta; g = genotype; c = context

gxc = genotype context interaction

Extending this concept to m ieQTL models, we can find the joint maximum log-
likelihood by identifying the context value that gives the lowest RSS over all ieQTLs. 
This optimum can be calculated efficiently by describing the log-likelihood per sample 
and per model as coefficients of a second-degree polynomial, summing these together 
per sample, and finally identifying the focus of the joint function (Additional file 1: Fig. 
S20B).

We then repeat this process by using the optimized context as input context at the 
start of step 3.1. Note that in the second round, the optimized context is always used 
as the starting context for optimization; therefore, the starting position selection step 
is skipped. If the minimum number of iterations has been reached (default 5), and the 
Pearson correlation between the current and previous optimized context vectors is 
above the tolerance (default ≥ 0.999), the covariate is considered converged and the loop 
is terminated. This converged covariate is referred to as a PIC. In some cases, the opti-
mization step can get stuck in an oscillating loop in which the values of the context in 
subsequent iterations are reverted to those of previous ones. If this occurs, the context is 
also considered converged and the iteration (e.g., current or previous) with the highest 
number of ieQTLs is returned as PIC. Steps 2 and 3 are repeated until the required num-
ber of PICs is identified or < 2 ieQTLs are available for optimization. Note that a specific 
starting position can be used more than once to derive a PIC. As a result, the number of 
PICs that PICALO identifies is not limited to the number of starting positions that are 
supplied.

Data pre‑processing

We made use of the bulk RNA-seq eQTL datasets collected by BIOS [18] (peripheral 
blood; n = 3997) and MetaBrain [7] (multiple brain regions; n = 8727). For BIOS, we con-
fined ourselves to the samples included in eQTLgen (n-samples = 3831, n-cohorts = 9) 
[38] and used the RNA-seq data as aligned and pre-processed for that project. For Meta-
Brain, we confined ourselves to the cortex samples of European ancestry (EUR; n-sam-
ples = 2683, n-cohorts = 14) and African ancestry (AFR; n-samples = 319, n-cohorts = 3). 
The EUR samples were used for discovery and the AFR samples for replication and were 
processed independently. In short, all samples were realigned in the same manner, and 
the genotyping array data was imputed using the Haplotype Reference Consortium 
(HRC) panel. Details on the quality control can be found in the respective manuscripts.

Genotype data processing

We first ran MixupMapper [40] to identify sample mix-ups in BIOS. In short, Mixup-
Mapper identifies cis-eQTLs on a dataset and determines if samples are more often 
an outlier than could be expected by chance. This resulted in 15 possible sample 
mix-ups that were excluded from the BIOS dataset. For MetaBrain EUR, we removed 
223 genetically similar individuals (pihat > 0.125) as calculated with PLINK 2.0 [41]. 

(4)
∑n

i=1

(

yi −
(

βi + βg • gi + βc • ci + βgxc • gi • ci
))
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Furthermore, we excluded all samples for which RNA-seq alignment metrics or sex 
information was unavailable, as well as datasets with less than 30 samples. Over the 
remaining samples, we determined the first four MDS components over the geno-
type data using PLINK. We included variants that passed the following thresholds: 
MAF > 0.1, Hardy–Weinberg exact test p-value > 0.001, and missingness per variant 
< 5%. We then pruned the SNPs using the independent pairwise setting with a win-
dow size of 1000  kb, step size of 50, and R2 threshold of 0.5. In total, 289,059 vari-
ants for BIOS and 52,635 variants for MetaBrain EUR passed pruning and were used 
to identify the first four MDS components (Additional file 1: Fig. S21). In BIOS, we 
then excluded a total of 20 samples that had a z-score > 3 standard deviations on one 
of the four components. For MetaBrain EUR, we observed that European Nucleotide 
Archive (ENA) samples formed a separate cluster (Additional file  1: Fig. S22), most 
likely because these samples have RNA-seq-derived genotypes. While these geno-
types are reliable and can be used for local imputation and eQTL mapping, we found 
that the non-genome-wide coverage induced batch effects when applying PICALO. 
We therefore excluded this dataset consisting of 243 individuals. In the MetaBrain 
AFR samples, we excluded 8 outlier samples. Finally, 2932 samples remained in BIOS, 
2440 samples in MetaBrain EUR, and 311 samples in MetaBrain AFR for which we 
reidentified the genotype MDS components to use as technical confounders (Addi-
tional file 1: Fig. S23A and B).

Initial eQTL context prediction and gene expression pre‑processing

We used the TMM-normalized expression data for BIOS and MetaBrain separately. 
First, we estimated an initial guess of the eQTL context required by PICALO by per-
forming PCA over the uncentered, but covariate-corrected gene expression matrix. This 
procedure was as follows: we selected the included samples, removed genes with no var-
iation,  log2-transformed, and saved the mean and standard deviation per gene. As covar-
iates, we used dataset indicator variables, sex, and the four genotype MDS components 
which we regressed out using OLS regression. We then restored the mean and standard 
deviation in the residuals, as calculated per gene prior to the covariate correction, and 
then performed PCA analysis (Additional file 1: Fig. S23C and D). The first 25 expression 
PCs were saved as starting positions (i.e., expectations) for maximization by PICALO.

We then pre-processed the gene expression matrix to use as input for PICALO. For 
this, we took the TMM expression data for BIOS and MetaBrain (performed sepa-
rately) and applied the following steps: we selected the included samples, removed 
genes with no variation, performed  log2-transformation, centered and scaled the 
genes, and z-score transformed the samples.

Last, we prepared the gene expression matrix to be used for gene set enrichment 
analysis. For this, we took the gene expression matrix as prepared above (i.e., TMM 
 log2-transformed, centered and scaled, z-transformed) and corrected for the included 
technical covariates (i.e., sex, four genotype MDS components, and dataset indicator 
variables) from the expression data using OLS regression. To verify that there was 
no major residual between-datasets variance, we performed PCA and observed that 
datasets clustered together (Additional file 1: Fig. S23E and F).
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eQTL data processing

We next downloaded eQTLs for BIOS and MetaBrain from molge nis26. gcc. rug. nl 
and metab rain. nl. We only included primary eQTLs and excluded meta-gene eQTLs. 
We further removed eQTLs for which the genes had an average expression (TMM 
 log2 + 1) < 1 in our sample subset, or for which the SNP had a MAF < 5%, Hardy–Wein-
berg exact test p-value < 0.0001, or those that had less than two samples in each genotype 
group. This left 13,010 eQTLs for BIOS and 10,280 eQTLs for MetaBrain that we used 
for downstream analyses.

PICALO analysis

We determined the optimum number of expression PCs to correct for by testing 0 up to 
and including 100 expression PCs in steps of 5 and determined the number of expression 
PCs that maximizes the number of found ieQTLs. This resulted in 40 expression PCs for 
the blood and 80 for the brain that were included as technical covariates (note that the 
first 25 PCs of these sets were used as proxies of eQTL context and serve as starting 
positions for PICALO). We further included dataset indicator variables, sex, and the first 
four genotype MDS components including their interactions with genotype as technical 
covariates. We then ran PICALO with a minimum of 50 iterations and a maximum of 
100 iterations. We found that forcing a higher minimum number of iterations (default is 
5) can in rare situations result into more robust PICs as the program has more time to 
climb out of local minima. We do note that in the majority of the cases, the model con-
verged within 20 iterations.

Detection of eQTL interacting with PICs or expression PCs

In order to make a fair comparison between the number of ieQTLs with PICs versus 
expression PCs, we remapped these interactions separately from PICALO similar to 
those outlined in the “Methods” section step 1 and step 3.1. However, in this case, we 
did not remove the genotype and covariate effects from the expression data prior to 
performing the F-test. Moreover, we performed this as a conditional analysis: first, we 
determined the ieQTLs significant for the first input context (PIC or expression PC). 
Then, we corrected for the first input context and its interaction with the genotype from 
the gene expression levels using OLS regression. Finally, we repeated this process for 
subsequent input contexts, where all previous input contexts were also included in the 
OLS regression correction. This conditional analysis ensures that the number of ieQTLs 
is not inflated due to correlated covariates.

Simulation analysis

To evaluate the performance of PICALO, we tested it using a simulation study using sim-
ulated expressed with biologically reliable genotype interactions. We simulated the main 
eQTL effects for 13,059 cis-eQTLs, using a main genotype effect-size and minor allele 
frequency as we had observed per cis-eQTL in the blood data. For each eQTL, we also 
modeled a context and interaction effect with the context and main context effect, again 
as observed using the first three expression PCs forced into a normal distribution per 
dataset by ranking with ties (i.e., mean = 0, standard deviation = 1) in the blood data. To 
generate the three simulated contexts, we randomly sampled from a normal distribution 

https://molgenis26.gcc.rug.nl
https://metabrain.nl


Page 19 of 26Vochteloo et al. Genome Biology           (2024) 25:29  

with mean 0 and standard deviation 1 (Additional file  1: Fig. S5A and B; Additional 
file 5: Supplementary note). As a starting vector for PICALO optimization, we simulated 
three random starting vectors that showed a certain correlation with the simulated con-
texts, ranging from 0 to 1.0 in increasing steps of 0.1. We then ran PICALO on each 
set of starting vectors, permitting us to ascertain for each of these starting vectors to 
what extent PICALO yielded PICs that reflected the simulated contexts. We defined the 
reconstruction accuracy as the Pearson correlation between the identified PIC and the 
simulated context. Since the order of PICs is dependent on the effect size of the simu-
lated contexts, we assign each PIC to the context with the highest correlation.

Detection of ieQTLs for different sample sizes and effect sizes

We evaluated to what extend PICALO is applicable to datasets with different sizes. For 
this, we randomly selected between 250 and 2500 samples in steps of 250 and applied 
PICALO using the same set of eQTLs and starting vectors for each subset. We retained 
the relative contribution of each dataset to the total sample size identical over each sub-
set. In the brain, we excluded n = 250 to prevent datasets from being excluded due to too 
few samples (minimal 30 samples per dataset).

Replication of ieQTLs within the dataset

We evaluated the robustness of the identified PICs in the blood and brain by splitting 
each expression matrix into genes that map to odd chromosomes (discovery) and genes 
that map to even chromosomes (replication). We chose to use the odd chromosomes 
for discovery since it had a higher number of genes and eQTLs. Moreover, we did not 
consider genes that mapped to the sex chromosomes. We then identified expression PCs 
and PICs using the odd chromosome (eQTL) genes and ascertained how many ieQTLs 
could be identified with those components on the even chromosome eQTLs. We consid-
ered ieQTLs with a BH-FDR < 0.05 to be significant.

Gene set enrichment analysis

In order to annotate the PICs, we performed functional enrichment of cell types and 
pathways using the ToppGene functional analysis tool [26]. For this, we used the covar-
iate-corrected gene expression matrix and forced the expression distribution per gene 
into a normal distribution per dataset by ranking with ties. We removed genes that had 
an average expression (TMM  log2 + 1) < 1 in our sample subset and calculated the Pear-
son correlation between each PIC-gene pair. Two sets of gene enrichment analyses were 
performed: (1) over the top 200 genes with the highest or lowest significant (BH-FDR 
<  0.05) Pearson correlation z-score and (2) over the ieQTL genes. In both cases, the 
results were split into positively and negatively correlating genes. Standard ToppGene 
settings were used, and only significant results were reported (FDR < 0.05).

BLUEPRINT purified cell expression data

We downloaded the BLUEPRINT [42] bulk RNA-seq expression of purified venous 
blood and cord blood fractions from http:// bluep rint- data. bsc. es/. In case of multiple 
experiments on the same cell type, we took the mean fragments per kilobase of tran-
script per million (FPKM) value per gene. Genes with a mean FPKM smaller than one 

http://blueprint-data.bsc.es/
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and that showed no expression in at least 90% of the cell types were excluded. We  log2 
transformed the FPKM + 1 values and performed a center and scaling per sample.

ROSMAP brain single‑cell expression data

We downloaded the ROSMAP [43] single-nucleus RNA-seq data from Synapse. This 
dataset encompasses 80,660 single-nucleus transcriptomes from the prefrontal cortex of 
48 individuals with varying degrees of Alzheimer’s disease pathology. The pre-process-
ing of the data is described in de Klein et al. [7]. In short, we normalized the expression 
matrix on a per individual per cell type basis. We then created pseudobulk expression 
matrices for each broad cell type (excitatory neurons, oligodendrocytes, inhibitory neu-
rons, astrocytes, oligodendrocyte precursor cells, microglia, pericytes, and endothelial 
cells) by calculating the average expression per gene and per individual. We included 
only genes that showed expression in at least 90% of the cell types and then performed a 
center and scaling per sample.

Cell type expression enrichment of PICs

The BLUEPRINT and ROSMAP expression in different blood and brain cell types was 
used to evaluate if the genes associated to PICs show cell type-specific expression pat-
terns. The same top 200 associated genes were used for the gene set enrichment analysis. 
Per cell type, we calculated the mean expression of the associated genes to evaluate if the 
PICs reflect cell type composition differences.

Replication of cell type context PIC ieQTLs in single‑nucleus eQTLs

We replicated the ieQTLs for the first five PICs in brain single-nucleus derived eQTL 
summary statistics published by Bryois et  al. [34]. We overlapped their summary sta-
tistics with the PIC ieQTLs and found that, dependent on the cell type, between 3796 
and 5774 overlapped. We calculated a BH-FDR on the p-values of the ieQTLs that were 
significant in the respective cell type. Furthermore, we calculated three different meas-
urements of agreement (AC, π1 [36], and Rb [35]) using the ieQTLs that had a significant 
interaction with the PIC. Since the summary statistics did not include standard errors 
or MAF values, we predicted beta and standard errors using the MetaBrain Cortex-EUR 
MAF together with the eQTL sample size, beta, and p-value [44] from Bryois et al. to 
calculate Rb metrics. To calculate the π1, we took the Bryois et al. eQTL p-values and 
calculated the proportion of true null p-values (π0) with the pi0est function from qvalue 
[45] and subsequently calculated π1 as 1 − π0.

Replication of brain PIC ieQTLs across datasets

In order to test if PIC ieQTLs are robust across datasets, we replicated the ieQTLs 
identified in the brain (MetaBrain EUR; n = 2440) in the MetaBrain AFR subset 
(n = 311). We used the expression matrix as described for the gene set enrichment 
analysis and prepared the gene expression for AFR in an identical manner. We did 
not run PICALO on the AFR samples, but rather we first calculated the Pearson cor-
relation between PIC values and gene expression levels in the EUR subset. In the AFR 
subset, we then used a dot product to associate the AFR gene expression levels with 
PIC-gene correlations observed in the EUR subset. This provides an estimate of the 
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EUR PIC values in the AFR subset. We then performed ieQTL analysis in the EUR 
and AFR datasets as outlined in the “Detection of eQTL interacting with PICs or 
expression PCs” section, but in this case, we did not perform conditional analysis. Per 
PIC, we calculated a BH-FDR over the p-values of the ieQTLs that were significant 
in EUR. Furthermore, we calculated three different measurements of agreement (AC, 
π1 [36], and Rb [35]) as described in the replication with Bryois et al. Since both betas 
and standard errors were available for this replication, no estimation based on MAF 
and p-value was required.
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