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Abstract 

Background: The identification of genes that vary across spatial domains in tissues 
and cells is an essential step for spatial transcriptomics data analysis. Given the critical 
role it serves for downstream data interpretations, various methods for detecting spa-
tially variable genes (SVGs) have been proposed. However, the lack of benchmarking 
complicates the selection of a suitable method.

Results: Here we systematically evaluate a panel of popular SVG detection methods 
on a large collection of spatial transcriptomics datasets, covering various tissue types, 
biotechnologies, and spatial resolutions. We address questions including whether dif-
ferent methods select a similar set of SVGs, how reliable is the reported statistical sig-
nificance from each method, how accurate and robust is each method in terms of SVG 
detection, and how well the selected SVGs perform in downstream applications such 
as clustering of spatial domains. Besides these, practical considerations such as compu-
tational time and memory usage are also crucial for deciding which method to use.

Conclusions: Our study evaluates the performance of each method from multi-
ple aspects and highlights the discrepancy among different methods when calling 
statistically significant SVGs across diverse datasets. Overall, our work provides useful 
considerations for choosing methods for identifying SVGs and serves as a key reference 
for the future development of related methods.

Background
Advances in spatial transcriptomics have made it possible to identify genes that vary 
across spatial domains in tissues and cells [1]. The detection of spatially variable genes 
(SVGs) is essential for capturing genes that carry biological signals and reducing the 
high-dimensionality of the spatial transcriptomics data [1], which is akin to defin-
ing highly variable genes (HVGs) [2] in single-cell RNA sequencing (scRNA-seq) data 
[3]. These SVGs are therefore useful for various downstream analyses of spatial tran-
scriptomics data. Spatially variable genes are conceptually different from HVGs found 
in scRNA-seq data as, by definition, SVGs preserve the spatial relationships of tissues 
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and cells in the biological samples whereas HVGs do not necessarily preserve such 
relationships.

A fast-growing number of methods for SVG detection have been proposed in the 
recent literature. Some popular examples include SpatialDE [1] based on Gaussian pro-
cess; SPARK [4] and SPARK-X [5] based on mixed and non-parametric models, respec-
tively; SOMDE based on self-organizing map [6]; Giotto based on statistical enrichment 
of spatial network in neighboring cells [7]; nnSVG based on nearest neighbor Gauss-
ian processes [8]; MERINGUE based on nearest neighbor spatial autocorrelation [9], 
and Moran’s I as implemented in the Seurat package [10]. While various SVG detec-
tion methods have been incorporated into the typical workflows and pipelines for spatial 
transcriptomics data analysis such as the Giotto and Seurat packages, there is a lack of 
systematic evaluation and comparison of different methods. Essential questions includ-
ing the degree of agreement among different methods in terms of the ranking and selec-
tion of SVGs, the reproducibility of these methods in terms of SVG detection when 
the genes included in a given dataset changes, and the accuracy and robustness of SVG 
detection, and the utility of the selected SVGs to perform in downstream data analysis 
such as spatial domain clustering remain to be addressed. In addition, practical consid-
erations such as running time and memory usage required by each method have not 
been systematically benchmarked.

To fill this critical gap, we systematically evaluated a panel of eight popular SVG detec-
tion methods on a collection of 31 spatial transcriptomics and synthetic spatial datasets. 
These datasets together capture various sample and tissue types and major spatial bio-
technologies with different profiling resolutions, including Visium (10X Genomics), ST 
[11], Slide-seq [12], Slide-seqV2 [13], MERFISH [14], seqFISH+ [15], Stereo-seq [16], 
SM-Omics [17], and DBit-seq [18]. Our results shed light on the performance of each 
tested SVG detection method in various aspects and highlight some of the discrepancies 
among different methods especially on calling statistically significant SVGs across data-
sets. Taken together, this work provides useful information for considering and choosing 
methods for identifying SVGs while also serving as a key reference for future develop-
ment of SVG detection methods from spatial transcriptomics data.

Results
Evaluation framework and data summary

We designed an evaluation framework to gain insight into the performance of different 
SVG detection methods to call SVGs from a collection of real and simulated spatially 
resolved transcriptomics datasets (Fig.  1). These include spatial transcriptomics data 
with varying sequencing depths generated from a wide range of spatial profiling plat-
forms, species, tissue types, and spatial resolutions (Additional file 1: Fig. S1). Specifi-
cally, our evaluation framework entailed a wide range of comparative and benchmarking 
analyses to investigate key questions. First, we compared the concordance between 
the overall rankings of the SVGs between SVG tools and evaluated their dependence 
on mean gene expression to assess the variability among methods and their capacity to 
account for the bias between gene expression and variance. Next, we investigated the 
capacity of each SVG method to reproducibly rank SVGs independently of the pool of 
genes observed in the dataset or with induced sparsity in spots, to call ground truth 
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Fig. 1 Schematic summary of the evaluation framework used in this study

Table 1 Description of statistics used to rank genes and the p-value adjustment methods used by 
each package

SVG Method Statistic p-value adj.

Giotto k-means -log10(adjusted p-value) BH

Giotto rank -log10(adjusted p-value) BH

MERINGUE observed coefficient BH

Moran’s I observed coefficient BH

nnSVG LLR statistic BH

SOMDE LLR statistic q-value

SPARK-X -log10(adjusted p-value) BY

SpatialDE LLR statistic q-value
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SVGs from synthetic spatial data, and to define SVGs required to accurately cluster spa-
tial domains. Finally, using the spatial benchmarking datasets we compared the com-
putational cost in terms of speed and memory required for SVGs to be called by each 
method.

Concordance among SVG detection methods

To quantify the degree of agreement among the different SVG detection methods, we 
first obtained the ranking of genes in each dataset ordered from the most to least spa-
tially variable based on the statistics reported by each method (“Methods”, Table  1) 

Fig. 2 Concordance, statistical significance, and overlap of SVGs detected by different methods. a 
Concordance of SVG rankings reported from each SVG detection method. Each panel uses one SVG detection 
as an anchor and the y-axes are pairwise Spearman’s correlation coefficient for quantifying concordance in 
ranking of each pair of SVG detection methods. Points in each boxplot represent the result from a dataset. 
Boxplot centre line, median; box limits, upper and lower quartiles; whiskers, 1.5 times the interquartile range. 
b Statistical significance of SVGs detected by each method. SVGs are partitioned into three categories based 
on the adjusted p-values reported by each method (i.e., p = 0; 0 < p ≤ 0.05; p > 0.05) and presented as a 
percentage (y-axis). The datasets are ordered in terms of the decreasing proportion of genes observed in the 
orange category. The color bars denote various characteristics of the spatial dataset including the tissue type, 
spatial technology, number of spatial locations, and total number of genes expressed. c A proportional bar 
plot showing the percentage of unique (# of method = 1) and overlapping (# of method > 1) significant SVGs 
(adjusted p-value ≤ 0.05) reported by the SVG detection methods for each spatial transcriptomics dataset
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and correlated the SVG rankings from each pair of methods. These correlation results 
were summarized for each SVG detection method with respect to other methods 
across the spatial datasets in Fig.  2a and visualized individually in Additional file  1: 
Fig. S2. The choice to rank the genes based on transformed raw p-values or Benja-
mini Hochberg-adjusted p-values, or test statistics had negligible impact on most 
methods as there was an observed linear relationship between ranked p-values and 
ranked test statistics (Additional file 1: Fig. S3a-b). However, we found it was neces-
sary to rank Moran’s I based on the observed coefficient as genes with positive spa-
tial autocorrelation would be highly ranked, whereas the adjusted p-values exhibit a 
symmetric relationship at the two extremities (Additional file 1: Fig. S3c). The overall 
concordance results showed two groups of methods that highlighted an average simi-
larity (measured as the Spearman’s correlation of SVG statistics) of greater than 0.8 
across the spatial datasets (Fig. 2a). The most correlated pair of methods were Gio-
tto K-means and Giotto rank, as expected, because of a large overlap in their frame-
work to perform spatial network enrichment. The next group of correlated methods 
were MERINGUE, Moran’s I, and nnSVG. SOMDE, SPARK-X, and SpatialDE showed 
the least concordance with the other methods, suggesting the prioritization of SVG 
statistics by these methods, in particular SpatialDE, are different to other methods. 
Among the methods, we observed that SpatialDE demonstrated the highest variabil-
ity across datasets. Coloring the data points in Fig.  2a by the total number of spa-
tial spots and technology (Additional file 1: Fig. S4a-b) revealed an interesting trend, 
which was most striking in SpatialDE, where despite an overall low correlation in 
spatial statistics with all other methods a high correlation was observed in specific 
datasets derived from the 10X Visium platform. Overall, these results demonstrate 
that while we observed moderate-to-high correlation between SVG detection tools 
in terms of SVG ranking, we found considerable variability of reported SVG statistics 
across the computational methods, platforms, and datasets.

While the ranking of SVGs is useful for selecting the top candidates for subse-
quent analysis, in practice, statistical significance such as p-values is frequently used 
for selecting SVGs. To this end, we first partitioned the SVGs into three categories 
(i.e., p = 0; 0 < p ≤ 0.05; p > 0.05) based on the adjusted p-value reported from each 
computational method (Fig. 2b). We found that most methods report a large propor-
tion of SVGs at an adjusted p-value threshold of 0.05 on many datasets. Among the 
eight methods, nnSVG, MERINGUE, and SpatialDE, and to a lesser degree, SOMDE, 
reported a sizable proportion of SVGs with an adjusted p-value of 0. Interestingly, 
SOMDE reported on average the fewest number of significant SVGs with some 
datasets having almost no significant SVGs (Fig. 2b and Additional file 1: Fig. S4c). 
Intriguingly, we observed that despite the high correlation in SVG statistics (Fig. 2a), 
different methods predicted a vastly differing number of SVGs as significant using a 
p-value threshold of 0.05. However, we note that the overall pattern between meth-
ods is still similar when we compute the average concordance in gene sets of the 
top 200, 500, 1000, and all significant SVGs across all the datasets between methods 
(Additional file  1: Fig. S5). As before, SpatialDE demonstrated the least similarity 
against all other methods, followed by SPARK-X and SOMDE (Additional file 1: Fig. 
S5). Giotto KM and Giotto ranks again demonstrated a high similarity, but this time 
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Moran’s I’s gene sets tended to show a higher concordance with the Giotto methods 
rather than MERINGUE and nnSVG, suggesting that while the overall ranking in 
gene statistics may be similar between Moran’s I and MERINGUE and nnSVG, the 
top most significant SVGs identified by Moran’s I appear to be more similar to those 
of the Giotto methods (Additional file 1: Fig. S5). Importantly, despite the relatively 
high correlation in SVG statistics observed between methods, the number of SVGs 
found by all methods is strikingly low with many datasets having close to no over-
lapping SVGs across all eight computational methods (Fig.  2c). In addition, many 
unique genes were found by various individual methods in most datasets (Fig.  2c). 
Together, these findings highlight the discrepancy among methods when an adjusted 
p-value threshold of 0.05 was used for calling statistically significant SVGs.

Dependency of SVG statistics on gene expression levels

In scRNA-seq data, it is known that variance in gene expression is positively corre-
lated with gene expression level; therefore, most highly variable gene (HVG) detec-
tion methods implement procedures to account for this bias [2]. To test whether 
methods designed for SVG detection have the tendency to select genes with higher 
expression levels, we investigated the correlation between mean gene expression and 
the SVG statistics for each method and dataset pair. We found that indeed the rank-
ings of SVGs from most methods correlated positively with the mean gene expres-
sion (Fig.  3a, b). In particular, SPARK-X showed average correlations of around 

Fig. 3 Dependency of SVG statistics on gene expression level. a An example showing the positive correlation 
between SVG statistics reported from SPARK-X and mean gene expression across cells in the “Wu et al., Visium 
D2” dataset [14]. b Heatmap summarizing Spearman’s correlation of SVG statistics reported by each method 
and the mean gene expression in each dataset. The rows are ordered from the highest to lowest average 
dependency. c Boxplot of Spearman’s correlation of SVG statistics reported by each method and the mean 
gene expression across the spatial transcriptomics datasets
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0.8 across the datasets (Fig.  3c), and the Giotto methods and nnSVG showed cor-
relations of around 0.5 across the datasets, suggesting a high dependency of SVG 
ranking on gene expression for these methods. We also correlated the proportion 
of zeros in gene expression across cells against SVG ranking for each method (Addi-
tional file 1: Fig. S6a-b). Since the proportion of zeros is known to be negatively cor-
related with their expression levels, the negative correlation observed among each 
method and dataset pair further confirms the dependency we found between SVG 
ranking and gene expression among current SVG detection methods.

Dependency of SVG statistics across genes and spatial spots

We next assessed the reproducibility of gene ranks based on the SVG statistics reported 
from each method when either the number of genes or the total number of spatial spots 
included in a dataset changes. To this end, we randomly down-sampled the genes in all 
benchmarking datasets (Fig. 4a) to 50% and re-calculated the ranks of genes from the 
reported SVG statistics of each method on the down-sampled datasets. Most methods 
except for SpatialDE, and to a lesser extent nnSVG and Giotto KM, demonstrate a high 
fidelity in gene ranks across all datasets. Therefore, the methods that have a lower corre-
lation when the genes included in a dataset changes, do not independently calculate the 
SVG statistics for each gene (Fig. 4b). Although there is some variability in MERINGUE, 
SPARK-X, Moran’s I, Giotto rank and SOMDE, this variability may not have a significant 
impact on downstream analysis. These analyses reveal that the decisions made on gene 

Fig. 4 Reproducibility of SVG detection tools with down-sampling of the data. a Schematic of the 
experimental approach to determine the interdependency of genes in the calculation of SVG statistics. 
For the down-sampling, 50% of the genes were randomly down-sampled while keeping the number of 
spots equal. b Boxplots of the Spearman correlation results performed on all datasets colored by SVG 
method and ordered by increasing mean correlation coefficient. c, d As in a, b but for the investigation of 
the reproducibility of SVG methods with increased sparsity in spatial spots. The datasets were randomly 
down-sampled to 80% of the total number of spots. e Venn diagram illustrates the proportions of uniquely 
identified SVGs as described below in f. Boxplots of the proportion of false positive SVGs calculated as 
the proportion of SVGs uniquely identified in the down-sampled data divided by all the significant SVGs 
identified in the down-sampled data
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filtering, a common step in data pre-processing, may result in a change in SVG statistics 
and their ranking for some of the SVG detection methods.

Each spatial technology has a different capacity to capture spatial locations (Additional 
file 1: Fig. S1a) which may be due to the relatively low-throughput nature of some spa-
tial technologies or inefficiencies in sample preparation. To test the robustness of each 
method against the sparsity of spatial locations, we down-sampled all datasets to 80% of 
the total number of spatial spots and repeated the SVG detection (Fig. 4c).

Across all methods, there is some degree of variability in Spearman’s correlation 
among datasets due to the induced sparsity (Fig.  4d). In particular, we found that the 
variability among datasets and the degree of sensitivity to spot sparsity tend to be greater 
for methods that rely on neighborhood adjacency relationships like nnSVG (uses spa-
tial covariance functions in Gaussian Processes using a nearest neighbor Gaussian pro-
cess model), SOMDE (uses self-organizing map to cluster neighboring cells into nodes), 
MERINGUE (uses neighborhood relationships encoded by a Voronoi Tessellation and 
Delaunay-derived weighted adjacency matrix), and the Giotto methods (uses a Delaunay 
triangulation network based on cell centroid physical distances). Conversely, methods 
that were less sensitive were SPARK-X, SpatialDE, and Moran’s I. The reliance on such 
nearest neighborhood maps or distance-based networks in the former group of methods 
may explain the sensitivity to sparsity as it affects the detection of SVGs based on its 
expression between neighbors in a spatial network.

To investigate the capacity of the methods to correctly identify SVGs and avoid the 
detection of false positive SVGs with induced down-sampling of the spatial spots, we 
next quantified the proportion of SVGs that are uniquely identified in the down-sampled 
data (Fig. 4e). We consider that the original full dataset has the most power to detect 
SVGs and any significant SVGs that are detected in the down-sampled data but not in 
the original data are false positives. We visualized the proportions of all significant SVGs 
identified in the down-sampled data that are either identified as significant in the full 
data or unique to the down-sampled data (Fig. 4f ). Our findings show that SPARK-X, 
SOMDE and SpatialDE performed the best in terms of identifying the lowest proportion 
of false positive SVGs with down-sampling of the data. Although the performance of 
SOMDE suffers under induced sparsity, the low proportion of false positive SVGs may 
be explained by the fact that SOMDE tends to select fewer SVGs overall compared to 
other methods (Fig. 2b). Again, for most methods, there is high variability among data-
sets, which suggests that a method’s performance may be dataset dependent under 
sparse conditions.

Overall, our down-sampling experiments of genes and spots show that the perfor-
mance of most methods to detect significant SVGs may be affected by changes in the 
gene number and sparsity of spatial spots. This has important implications when con-
sidering the most suitable method that is insensitive to gene filtering and dataset quality.

Accuracy of SVG methods in detecting SVGs using synthetic spatial transcriptomics data

To test the accuracy of the SVG detection methods, we next simulated spatial transcrip-
tomics datasets with ground truth SVGs and spatially invariant genes using scDesign3 
[19] (Additional file 1: Figs. S7-S9). To enable representation of the diverse sequencing 
technologies and tissue histologies in real spatial data, we simulated in silico data from 
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nine data sources covering nine distinct spatial masks, five tissue histology types, two 
spatial platform technologies, and diverse sequencing depths (590–1937 genes, 59–194 
spatially variable genes, and 369–4895 spatial spots). We then performed SVG detec-
tion on the simulated datasets using the eight methods and evaluated their performance 
by calculating the true positive rate (TPR) and the false discovery rate (FDR) across 
three adjusted p-value thresholds (0.01, 0.05, and 0.1) (see “Methods” for details). At the 
adjusted p-value thresholds of 0.01 and 0.05, we found that SPARK-X, SOMDE, nnSVG, 
and SpatialDE performed well with a high TPR and a low FDR (Fig. 5 and Additional 
file 1: Fig. S10). Under adjusted p-value thresholds of 0.01, 0.05, and 0.1, Giotto rank, 
Moran’s I, and nnSVG all demonstrated a high TPR but suffered from a high level of 
false positive identification. Compared to the other methods, the Giotto methods and 
Moran’s I performed relatively poorly in the simulation, displaying the highest FDRs in 
most datasets (Fig.  5a, b). These methods tended to identify a greater proportion and 
number of significant SVGs (Additional file  1: Fig. S10b-c). These findings reveal that 
for methods, except SPARK-X and SOMDE, the estimated FDRs (i.e., adjusted p-value 
thresholds) do not accurately represent the true FDRs for SVG detection in these simu-
lated datasets.

Performance on clustering spatial domains

A key task in spatial transcriptomics data analysis is to identify spatial domains that mark 
distinctive cell and tissue types in a biological sample. One approach to achieve this is to 
cluster profiled locations into spatial domains using SVGs. To compare the capacities 
of SVGs identified by each method in clustering the spatial domains, we took advan-
tage of the spatial transcriptomics data of an E9.5 mouse embryo given the availability 
of tissue annotations in these samples (Fig.  6). First, we performed SVG calling using 
each SVG detection method. Then taking a varying number of top SVGs, we computed 
the top 20 principal components (PCs) using the feature-selected spatial transcriptomics 
data. Using either spatially aware clustering tools (BayesSpace [20] and SpaGCN [21]) or 

Fig. 5 Spatially variable gene detection performance across 9 simulated datasets. a Scatter plot of 
observed true positive rate (y-axis) and false discovery rate (x-axis) of spatially variable gene detection by 
the benchmarked tools at six adjusted p-value cut-offs at 0.1, 0.01, and 0.05. Each dot is color-coded by the 
cut-off used. The two horizontal lines represent the true FDRs of 0.01 and 0.05. b The proportion of ground 
truth SVGs among significant SVGs determined by each method at an FDR-adjusted p-value of 0.01
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canonical clustering approaches (k-means, hierarchical, Louvain, and Leiden clustering 
using the SINFONIA framework [22]), we performed clustering on the top 20 PCs and 
calculated the concordance between the clustering results and the pre-defined spatial 
domains to measure the performance of the SVGs to delineate the anatomical locations. 
By taking a large range in the number of features used (between 100 and 1900 features), 
we were able to observe an overall increasing trend in performance with an increasing 
number of SVGs used for all SVG methods, with the accuracy in classification peak-
ing at around 900–1100 SVGs (Fig. 6). While this observation was broadly consistent, 
the pattern differed for some clustering and SVG method combinations. For example, 
hierarchical clustering demonstrated a decreasing trend in accuracy with increasing 
number of SVGs used unlike most clustering methods. The overall pattern was consist-
ent between different concordance measures, including Fowlkes-Mallows index (FMI), 

Fig. 6 Performance of SVGs selected by each method for clustering spatial domains in mouse embryos. 
Proportion spatial locations annotated to one of sixteen tissue domains in the E9.5 mouse embryo. 
Concordance in the clustering outputs and the pre-defined spatial domains in the mouse embryo was 
computed across a range of top SVGs (between 100 and 1900 genes) selected by each method. Clustering is 
performed using two spatial clustering methods (BayesSpace and SpaGCN) and four non-spatial clustering 
methods (SINFONIA’s Louvain and Leiden, k-means, and hierarchical clustering). Concordance between the 
clustering outputs and the pre-defined spatial domains is quantified in terms of the adjusted Rand index
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normalized mutual information (NMI), and purity score (Additional file  1: Fig. S11). 
These results suggest that while the selection of the number of top SVGs used in clus-
tering will depend on the data using approximately between 900 and 1300 genes for the 
dataset tested led to the highest accuracy in clustering of spatial domains across most 
conditions.

Computational time and memory usage

Computational time and memory usage are key considerations in practical applications, 
especially for large spatial transcriptomics data analyses. In our evaluation, we config-
ured a standard virtual machine, with 16 OCPUs and 256 GB of memory and recorded 
the runtime and the peak memory usage for each SVG detection method on each data-
set (Fig. 7). As expected, we found the computational time and the peak memory usage 
are both positively correlated with the number of spatial locations in the datasets. In 
terms of computational time, comparison across methods revealed that SPARK-X is the 
fastest method and scales extremely well with the number of spatial locations. While 
SOMDE is the second best in most cases, it is significantly slower compared to SPARK-
X. In contrast, SpatialDE performed poorer especially on datasets with large numbers 
of spatial locations. Giotto KM performed poorly in most of the datasets but does 
scale better than SpatialDE with the number of spatial locations in datasets. Similarly, 
nnSVG scaled better with the number of spatial locations than SpatialDE but was slower 
on datasets with many genes. In terms of peak memory usage, we found that SOMDE 
uses the least peak memory across all datasets and SPARK-X ranked the second in most 
cases although it has a significantly higher peak memory usage. In comparison, the two 

Fig. 7 Evaluation of computational speed and peak memory usage of SVG detection methods. a 
Computation time in units of minutes and b peak memory usage in units of GiB across datasets



Page 12 of 21Chen et al. Genome Biology           (2024) 25:18 

methods implemented in Giotto and SpatialDE show high peak memory usage especially 
in datasets with many spatial locations. While there is a trade-off between speed and 
memory usage, taken together, these results suggest that SPARK-X and SOMDE are the 
most efficient methods in terms of speed and memory usage for SVG detection.

Discussion
We found that, for most methods, a significant proportion of genes were detected as 
SVGs under the adjusted p-value of 0.05 in most of the tested datasets (Fig.  2b and 
Additional file 1: Fig. S4c). However, the overlaps across the eight methods were rela-
tively small considering the large numbers of SVGs identified from each SVG detection 
method (Fig. 2c), suggesting large discrepancies among SVG detection methods when 
a significance cut-off is used to filter for SVGs. Consistent with this, in our simulation 
study where ground truth SVGs were introduced into simulated spatial transcriptomics 
data, we found that for some methods, in particular the Giotto methods and Moran’s I, 
the estimated FDRs did not accurately represent the true FDRs in most of the synthetic 
datasets (Fig. 5). These results highlight that the estimation of statistical significance is 
difficult and there is much room for improvement. It also cautions the use of and the 
reliance on such statistical significance from some of the current SVG detection tools for 
drawing data and biological conclusions.

We also discovered that SVGs identified by most methods show a strong positive cor-
relation with their expression levels (Fig.  3). We note that a similar relationship was 
found between gene variability and expression level in scRNA-seq data and most com-
putational methods designed for HVG detection actively correct for such a “bias” [2]. 
While we could not rule out the possibility that genes that vary spatially are also highly 
expressed, future work should be performed to investigate the biological basis and plau-
sibility for such a correlation. During practical application, it is important to be aware of 
the tendency of current SVG detection tools to select genes with high expression levels. 
Future method development will be required to account for this effect such as to retain 
relatively lowly expressed genes such as transcription factors in downstream analysis. In 
addition, we found that for most methods the relative rankings of SVGs change when 
different pools of genes and spots are included in the datasets (Fig. 4c, f ). While consid-
ering the interdependency among genes may provide useful information for identifying 
SVGs, it is important to be aware that different SVG detection results may be obtained 
when different pre-processing steps were used to filter genes prior to SVG analysis.

Lastly, SVG detection can be viewed as a feature selection step in spatial transcrip-
tomics data analysis, where useful features (i.e., SVGs) are selected and/or uninformative 
ones are removed. In particular, the current SVG detection methods can be considered 
as unsupervised approaches where no information such as cell types, cell states, or spa-
tial domains are required. A great amount of work has been done in feature selection 
in single-cell data analysis [23], including unsupervised methods and more advanced 
methods that perform combinatorial feature selection using supervised learning such 
as embedded feature selection using random forest and wrapper feature selection using 
genetic algorithms. We anticipate that future development of SVG detection methods 
will explore the utility of information such as cell types and states to identify SVGs that 
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not only independently mark the spatial variability but also those that cooperate across 
multiple genes and together define spatial variability. We believe these developments 
will introduce additional computational new challenges but will undoubtedly lead to 
new biological insight from spatial transcriptomics data analyses.

Conclusions
SVG selection is an essential step for spatial transcriptomics data analysis and can have 
a significant impact on their downstream interpretation. An increasing number of SVG 
selection methods have been proposed. Yet, questions such as method reproducibility, 
reliability, accuracy, and robustness are critical for their applications and downstream 
data analysis. This study provides a much-needed benchmark of current SVG methods 
which will serve as guide for SVG method selection and their future development.

Methods
SVG detection methods

Datasets were first filtered by first removing cells whose top-50 highly expressed genes 
contributed to 50% of the total counts and then genes that were expressed in fewer than 
30 cells. Log normalization of raw counts was performed prior to SVG detection as per 
the recommended default for each method. The same reproducible seed was set prior to 
running each method.

Giotto KM and Giotto rank

Giotto [7] requires a spatial Delaunay triangulation network to be built on reduced 
dimensions to represent the spatial relationships. Then, statistical enrichment using 
Fisher’s exact test of binarised expression in spatial nearest neighbors is performed to 
determine SVGs. The two methods differ in their binarization method. In Giotto KM, 
expression values for each gene are binarised using k-means clustering (k = 2); oth-
erwise, simple thresholding on rank is applied in Giotto rank (default = 30%). Thus, a 
gene is considered an SVG if it is highly expressed in neighboring cells. Normalization 
was performed using normalizeGiotto() under default parameters. SVG detection was 
thus performed with two different approaches k-means and rank using binSpect(bin_
method = ”kmeans”) and binSpect(bin_method = ”rank”) respectively, following the 
author’s tutorial. https:// rubd. github. io/ Giotto_ site/ artic les/ mouse_ visium_ kidney_ 
200916. html.

Moran’s I

Moran’s I ranks genes by the observed spatial autocorrelation [19, 20] to measure the 
dependence of a feature on spatial location. Weights are calculated as 1/distance. Raw 
counts were first normalized using SCTransform(). Using Seurat v4.1.1, SVGs were 
detected using FindSpatiallyVariableFeatures(selection.method = “moransi”) and statis-
tics for all features were returned. p-value adjustment was manually performed using the 
BH method.

https://rubd.github.io/Giotto_site/articles/mouse_visium_kidney_200916.html
https://rubd.github.io/Giotto_site/articles/mouse_visium_kidney_200916.html
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MERINGUE

MERINGUE identifies spatially variable genes using neighborhood adjacency relation-
ships and spatial autocorrelation. MERINGUE first represents cells as neighborhoods 
using Voronoi tessellation. Then, the resulting Delaunay-derived weighted adjacency 
matrix and a matrix of normalized gene expression is used to calculate Moran’s I. Raw 
counts were CPM-normalized using scuttle::normalizeCounts() and the default filtering 
distance was used to generate the weighted adjacency matrix. Statistics and p-values for 
all features were returned. P-value adjustment was manually performed using the BH 
method.

nnSVG

nnSVG is based on scalable estimation of spatial covariant functions in Gaussian pro-
cess regression using nearest neighbor Gaussian process (NNGP) models. The BRISC 
algorithm [21] was used to implement the NNGP model and obtain maximum likeli-
hood parameter estimates for each gene. A likelihood ratio test is performed to rank 
genes by estimated LR statistic values. Log normalization was performed using 
scater::LogNormCounts prior to running nnSVG() with default parameters (k = 10). 
Where default parameters were unsuccessful, the number of nearest neighbors was fine-
tuned from k = 5 to k = 15.

SOMDE

A SOM neural network is used to adaptively integrate nearest neighbor data into differ-
ent nodes, achieving a condensed representation of the spatial transcriptome. SVGs are 
identified on a node-level, using spatial location and gene meta-expression information. 
A squared exponential Gaussian kernel is applied to generate log-likelihood ratio values 
wherein a likelihood ratio test is performed to rank genes by estimated LLR statistic val-
ues. The procedure was performed as per the recommended tutorial at https:// github. 
com/ Whirl First/ somde using python. k = 10 was chosen as the default nearest neighbors 
when constructing the SOM across all benchmarking datasets to preserve local spatial 
patterns across both small and large datasets. Where default parameters were unsuc-
cessful, the number of nearest neighbors was fine-tuned from k = 5 to k = 20.

SPARK‑X

SPARK-X is a non-parametric method that relies on a robust covariance test framework, 
including the Hilber-Schmidt independence criteria test and the distance covariance 
matrix test. A test statistic is observed by measuring the similarity between two relation-
ship matrices based on gene expression and spatial coordinates respectively. A p-value 
is computed for each distance covariance matrix constructed and a Cauchy combined 
p-value is reported. sparkx() was run under default parameters.

SpatialDE

SpatialDE fits a linear mixed model for each gene with Gaussian kernels and decom-
poses the gene variation into spatial or non-spatial variation. The non-spatial variation 
is separately modeled using observed noise, and the spatial variation is explained by an 
exponential covariance function. For each Gaussian kernel, a p-value is calculated from 

https://github.com/WhirlFirst/somde
https://github.com/WhirlFirst/somde
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the likelihood test to rank genes by estimated LR statistics. SpatialDE was run under the 
python implementation and the procedure was as follows in the tutorial by the authors 
as in https:// github. com/ Teich lab/ Spati alDE.

Correlation of ranked gene statistics

To calculate pairwise Spearman’s correlation between each method for each dataset, the 
corresponding gene statistics were used as outlined in Table 1. Where a comparable gene 
statistic was not reported by a method, the − log10(adjusted p-value) was used to rank the 
genes.

Identifying significant SVGs

Significant SVGs were typically defined as genes with an adjusted p-value of < 0.05. Spe-
cifically for Moran’s I, genes that have a positive spatial autocorrelation coefficient and 
an adjusted p-value of < 0.05 were selected as significant.

Dependency across genes

To assess the dependency across genes in SVG analysis, we randomly down-sampled 
50% of genes from all datasets that ran successfully. We next applied each SVG detection 
method and calculated SVG statistics of remaining genes in the down-sampled dataset 
as per Table  1. The relative rank of these genes was compared with their rank in the 
original full dataset to assess if there is any change of relative ranking when other genes 
were included in the dataset. Methods that lead to a different ranking of SVGs in the 
down-sampled dataset when additional genes were included are considered as calculat-
ing spatial variability of a gene depending on the presence and absence of other genes.

Robustness against sparsity

To assess how each method performs against sparse data, we randomly down-sampled 
80% of spots from all datasets that ran successfully. After applying each SVG detection 
method, we evaluated the performance of each method in two aspects. To assess the 
impact of sparsity on the relative rankings of the gene statistics, we computed Spear-
man’s correlation of the original dataset and the down-sampled dataset using the sta-
tistics reported in Table 1. To assess the extent of sparsity on the significantly detected 
SVGs, we visualized the proportion of uniquely detected SVGs because of the subsam-
pling against the total number of SVGs significantly detected in the original dataset.

Simulation of spatial transcriptomics data

To evaluate the capacity of methods to detect SVGs with high sensitivity and specific-
ity, we simulated a set of spatial transcriptomics data using scDesign3 [22], providing 
us with ground truth spatially variable genes. The synthetic data were generated using 
real spatial transcriptomics datasets from Additional file 1: Fig. S1a. Simulation of real-
istic spatial transcriptomics data was performed following the default settings of scDe-
sign3. To enable fast computation of the model parameters estimated from the real data, 
we simulated up to approximately 2000 genes and for each dataset generated 10% of all 
genes as spatially variable. The synthetic datasets model parameters from nine datasets 
from seven independent studies that cover different sequencing technologies (Visium 

https://github.com/Teichlab/SpatialDE
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and DBiT-seq), tissue histologies (breast cancer, brain, embryo, and cancer), number 
of spatial spots (369–4895 spatial spots) and sequencing depths (590–1937 genes and 
59–194 spatially variable genes).

Benchmarking of simulation studies

To evaluate the performance of the SVG detection methods on the simulated data, we 
calculated the receiver operating characteristic curve based on the statistics or p-values 
of the genes, indicating the capacity of methods to rank truly spatially variable genes 
before non-variable ones. We next calculated the true positive rate (TPR) and the false 
discovery rate (FDR) to evaluate FDR control at six adjusted p-value thresholds (1e–100, 
1e−50, 1e−10, 0.01, 0.05, and 0.1) for each simulated dataset. The cutpointr package 
[23] was used to calculate the TPR and FDR performance metrics.

Clustering and concordance quantification

To quantify the utility of SVGs in spatial domain clustering, we used varying number 
of top significant SVGs (between 100 and 1900 genes) reported from each method to 
subset the expression matrix, compute principal component analysis, and performed 
clustering on the top 20 principal components to cluster the E9.5 mouse embryo spa-
tial transcriptomics data into 13 tissue domains based on the original annotation [16]. 
We performed 10 repeats by random subsampling of the spatial data to 80% of the 
total number of spatial spots for each repeat. We performed either spatial clustering 
using the default settings (unless otherwise stated) of BayesSpace [24] (gamma = 2 and 
nrep = 1000) and SpaGCN [25] or k-means, hierarchical, Louvain, and Leiden clustering. 
The total number of clusters was set to the total number of spatial domains observed in 
the data. In particular, we performed a binary search to tune the resolution parameter as 
described in SINFONIA [26] to tune the clustering in the two community-based clus-
tering algorithms. To assess the clustering performance of the SVGs defined by various 
SVG detection methods, we used the adjusted Rand index (ARI), the normalized mutual 
information (NMI), the Fowlkes-Mallows index (FMI), and purity to evaluate the con-
cordance between the clustering labels and the spatial domains. Each metric was calcu-
lated as follows:

Adjusted Rand index

Let T  denote the known ground truth spatial domains of spots, P denote the pre-
dicted clustering labels from k-means clustering, N  denote the total number of spatial 
locations, xi denote the number of spots assigned to the i th cluster of P , yi denote the 
number of spots that belong to the j th unique label of T  , and nij denote the number of 
overlapping spots between the i th cluster and the j th unique label. The Rand index 
(RI) denotes the probability that the obtained clusters and the spatial domain labels 
agree on a randomly chosen pair of spots. The adjusted Rand index (ARI) adjusts for 
the expected agreement by chance.
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Normalized mutual information

Normalized mutual information (NMI) assesses the similarity between the obtained 
cluster labels and the ground truth spatial locations, scaled between 0 and 1. We cal-
culate the NMI as follows:

where H(.) is the entropy function.
A comparison of ARI and NMI presented in previous studies [27, 28] suggest ARI is 

preferred when there are large equal-sized clusters, while NMI is preferred in the pres-
ence of class imbalance and rare clusters.

Fowlkes‑Mallows index

The Fowlkes-Mallows index (FMI) measures the similarity in two clustering results 
and is defined as the geometric mean of the precision and recall. The FMI is calcu-
lated using the following equation:

Where TP is the number of true positives, which are pairs of spots that are in the same 
spatial domain in both the true and predicted labels; FP is the number of false positive, 
which are pairs of spots that are in the same cluster in the predicted clusters but in dif-
ferent clusters in the ground truth labels; and FN is the number of false negatives, which 
are pairs of spots that are in the same cluster in the ground truth labels but in differ-
ent clusters in the predicted clusters. The score is adjusted to a range between 0 and 1, 
where a value of 1 signifies when all the spatial spots are correctly labelled. A higher FMI 
denotes a greater similarity between the two clustering results.

Purity

Purity is scored in terms of whether the clusters contain only spots of the same spatial 
domain. Purity equals to 1 if all the spots within the same cluster correspond to the 
same spatial domain. The purity score is computed using the following equation:

Where H(T |P) indicates the uncertainty of true labels based on the predicted labels.
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Time consumption and memory usage

To measure computational consumption for each method, a standard virtual machine with 
16 OCPUs and 256 GB was used. Where methods offered parallelization (Giotto, SPARK-
X, nnSVG, SOMDE, and SpatialDE) all available cores when it was possible to specify, were 
utilized to record the running time. For all methods run in R, the elapsed time to run each 
method was evaluated using the system.time() function. The peak memory usage was moni-
tored using gc(). For methods run in python, perf_counter() from the time package was used 
to record the elapsed time. To record the peak memory usage, get_traced_memory() was 
used from the tracemalloc package.

Supplementary Information
The online version contains supplementary material available at https:// doi. org/ 10. 1186/ s13059- 023- 03145-y.

Additional file 1: Fig. S1. Summary information and statistics of the spatial transcriptomics datasets used for 
evaluating concordance, statistical significance, and reproducibility of SVG detection methods in this study. Fig. S2. 
Pairwise correlation of SVG rankings reported by each method for individual spatial transcriptomics datasets. Fig. S3. 
Comparison of different gene statistics to rank SVGs. Fig. S4. (a-b) Boxplot of correlations of SVG rankings reported 
by each method against all other methods. Each dot denotes the results for a spatial transcriptomics dataset. The 
dots are coloured (a) by the total number of spatial spots in the dataset or (b) by the spatial technology platform. (c) 
Bar plot denoting the number of statistically significant SVGs reported by each method for each spatial transcriptom-
ics dataset. An adjusted p-value threshold of 0.05 reported by each method for each dataset. Fig. S5. Heatmaps of 
the overlap of SVGs reported by each method for each spatial transcriptomics dataset. Fig. S6. Relationship between 
SVG statistics and proportion of zero of genes. Fig. S7. Simulation of spatial transcriptomics data. Fig. S8. Spatial pat-
terns of spatially variant genes. Fig. S9. Spatial patterns of spatially invariant genes. Fig. S10. ROC curves of spatially 
variable gene detection. Fig. S11. Performance of SVGs selected by each SVG method for clustering spatial domains 
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