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Background
To delineate functional elements [1] in the human genome, two major complemen-
tary approaches have been developed. The first approach [2, 3] searches for conserved 
sequences that remain unchanged over evolution across species (e.g., human and 
mouse), assuming that mutations therein typically reduce fitness and are thus under 
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negative selection. The second approach [4, 5] omits evolutionary conservation and 
instead identifies sequences of biochemical activity through epigenomic profiling, such 
as ChIP-seq of H3K27ac to mark active enhancers [6]. The evolutionary approach has 
been empowered by genome sequencing and assembly for a growing number of species 
[7, 8]. In parallel, genome-wide catalogs of diverse biochemical marks have been gener-
ated in hundreds of human cell types and tissues [9, 10]. Collectively, the two approaches 
have enhanced our understanding of human genome function, especially for the vast 
non-coding regions that do not encode protein sequences.

Non-coding elements detected by the evolutionary and biochemical approaches are 
particularly relevant to human disease genetics, as GWAS often implicate non-coding 
regions [11]. Non-coding elements with either evolutionary [12] or biochemical [10] sig-
natures can help prioritize functional variants and yield mechanistic insights at GWAS 
loci. Additionally, genomic regions marked by each of the two approaches explain a 
much larger proportion of heritability for complex traits [13] than one would expect by 
the region sizes. Despite the progress, both approaches have limitations to define regu-
latory elements [1, 6], and thus each approach alone cannot fully inform the regulatory 
causes of heritable traits.

Inspired by previous efforts of combining evolutionary and biochemical approaches 
to prioritize regulatory sequences in mammalian genomes [14, 15], recent studies have 
adopted this concept to interpret non-coding variation underlying human traits. Inte-
grating evolutionary and biochemical data has proven effective in quantifying the fitness 
consequences of genetic variants [16, 17], outperforming methods that utilize a single 
data type [18, 19]. Besides the totality of phenotypic consequences (fitness), the integra-
tive approach is also useful to elucidate the genetics of a specific trait. DNase I hypersen-
sitivity sites in human fetal brains intersected with evolutionarily conserved sequences 
display a significant excess of de novo mutations concentrated exclusively in neurode-
velopmental disorders [20]. Human orthologues of H3K27ac [21] and open chromatin 
[22–24] peaks in mouse brains are enriched for GWAS signals of many brain-related 
traits in specific brain cell types. H3K27ac peaks in human livers [25] show significantly 
stronger heritability enrichments across 41 complex traits [26] when restricted to peaks 
with sequence age older than the marsupial-placental split [27] or peaks with conserved 
H3K27ac signal in mammals [25]. Although promising, these efforts only assessed 
regions with both evolutionary and biochemical signatures for a limited set of tissues 
and traits. The genetic effects of these regions on a wide range of traits across diverse tis-
sues remain largely unknown, impeding our ability to understand tissue-specific regula-
tion of hereditary traits [10].

Here, we revisit the classical idea of exploiting human-mouse sequence conservation 
to locate functional elements in the human genome [28, 29], which has informed many 
large-scale initiatives [9, 30]. Building on this simple but profound idea, we develop a 
human-mouse comparison method to identify human enhancer-like elements that dis-
play both sequence conservation and biochemical activity. We apply the method to 313 
epigenomic datasets across 106 tissues and cell types and employ the identified elements 
to analyze 468 GWAS of EUR and EAS ancestries. These elements not only show strong 
tissue-specific enrichments of heritability and causal variants for a wide range of traits 
but also nominate previously undescribed effector genes for BMI and schizophrenia, 
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revealing additional biological and clinical insights. Overall, we present a scalable and 
effective strategy to annotate the human genome with complementary lines of evolu-
tionary and biochemical evidence, and demonstrate its utility systematically across a 
host of tissues and traits.

Results
Human‑mouse comparisons identify conserved enhancer‑like sequences

We developed a simple method to identify putative human enhancers that exhibit 
sequence conservation in the mouse genome (Fig.  1a; Methods). Given a human tis-
sue or cell type (henceforth “context”), we first used its H3K27ac profile to empirically 
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Fig. 1 Identify and characterize sequence-conserved human enhancer-like elements. a Schematic 
of identifying ELEs (NC) and subsets with low (LC), moderate (MC) and high (HC) levels of sequence 
conservation. b Numbers of context-specific ELEs across 105 contexts. c, d Length (c) and evolutionary 
conservation score (d) distributions for NC, LC, MC, and HC ELEs. For b and d, each point denotes a median 
and each line denotes an interquartile range. e Numbers of overlapping pairs between ELEs and ENCODE 
cCREs. dELS and pELS, distal and proximal enhancer-like signature, respectively. PLS, promoter-like signature. 
DNH3, signature marked by DNase and H3K4me3. f Percentages of EUR and EAS common SNPs inside 
omnibus ELEs. g Percentages of EUR common SNPs inside context-specific ELEs. Each point denotes a 
context. h The heatmap shows the maximum correlations of SNP annotations based on NC context-specific 
ELEs from two context groups. BN, bone. CB, cancer (blood). CO, cancer (other). CV, cardiovascular. 
CN, connective. EN, endocrine. EP, epithelial. GI, gastrointestinal. IM, immune. MS, muscle. NR, neural. 
OM, omnibus. OT, other tissues (kidney, liver, lung). RP, reproductive. SK, skin. SC, stem cell. The scatter plot 
shows the pairwise correlations of SNP annotations based on NC and HC context-specific ELEs, where 
each point denotes a pair of contexts. i Correlations between a known SNP annotation and an ELE-based 
SNP annotation. Each point denotes a pair of an ELE-based SNP annotation and one of the 96 known SNP 
annotations. For h–i, the correlation of two binary annotations is quantified by Cramér’s V (from 0 to 1; V = 0 : 
no correlation; V = 1 : complete correlation). The correlation of a binary and a quantitative annotation is 
quantified by Pearson’s R (from –1 to 1; R = 0 : no correlation; |R| = 1 : complete correlation). For f–i, dashed 
lines have intercept 0 and slope 1
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determine putative enhancers across the human genome [5] and then intersected them 
with accessible chromatin regions identified in the same context. Since biochemical 
activity is not necessarily a definitive proof of enhancer function [1, 6], we cautiously 
termed these regions marked by H3K27ac and chromatin accessibility signals “enhancer-
like elements” (ELEs). Finally, we identified sequence-conserved ELEs by comparing 
human ELEs with the mouse genome [28, 29]. We specified the level of sequence con-
servation as the minimum proportion of bases mapped to gapless aligned blocks in the 
mouse genome (minMatch), with larger values indicating higher conservation levels. 
Under this definition, a higher level of sequence conservation would pose a more strin-
gent threshold for a given ELE to be classified as conserved. Consequently, the collec-
tion of conserved ELEs became a smaller subset of all ELEs as the conservation level 
increased.

We applied this method to context-matched H3K27ac and chromatin accessibility pro-
files across 106 contexts in humans (Additional file 1: Table S1). First, we generated all 
ELEs for each context without considering sequence conservation in the mouse genome, 
denoted as NC ELEs. The median NC ELE count per context is 35,065 (range: 8309–
112,362). Across all NC ELEs, the median length is 1119 bp (range: 100–194,631 bp). We 
then created three non-disjoint sets of conserved ELEs in the same context by setting the 
sequence conservation level as 0.1, 0.5, and 0.9, denoted as lowly (LC), moderately (MC) 
and highly conserved (HC) ELEs, respectively. As expected, there are fewer HC ELEs 
than NC ELEs in the same context (median decrease: 29,296; Fig. 1b), and HC ELEs are 
shorter than NC ELEs (median decrease: 450 bp; Fig. 1c).

For each set (NC, LC, MC, HC), we further aggregated all context-specific ELEs across 
106 contexts and merged overlapping segments into non-overlapping ones to pro-
duce an “omnibus” version (Additional file 2: Fig. S1a), resulting in 338,743 unique NC, 
247,504 LC, 222,160 MC, and 132,717 HC omnibus ELEs (Additional file 2: Fig. S1b). 
The increased element counts are expected, because omnibus ELEs accumulate ELEs 
from diverse contexts, most of which are unique to a single context. Of all HC omni-
bus ELEs, 52.1% are indeed HC ELEs from one context (Additional file 2: Fig. S1c), and 
57.6% consist of HC ELEs from one context group (Additional file 2: Fig. S1d).

To assess their evolutionary and biochemical relevance, we overlapped the four sets of 
ELEs with the 100-vertebrate phastCons scores [18] (Fig. 1d) and the human candidate 
cis-regulatory elements (cCREs) from ENCODE [9] (Fig.  1e; Methods). Reassuringly, 
HC omnibus ELEs are more evolutionarily conserved than NC omnibus ELEs (median 
increase: 0.11; one-sided Wilcoxon P < 2.2× 10−308 ). More than 90% of the omnibus 
ELE-cCRE pairs contain enhancer-like signatures irrespective of sequence conservation. 
We observed similar patterns for context-specific ELEs. Together, the results show that 
all ELEs are often biochemically active, while conserved ELEs display both evolutionary 
and biochemical signals.

While the vast majority of ELEs map to promoter-distal regions that are more than 
2 kb away from a transcriptional start site (TSS), a small fraction of ELEs may lie in 
close proximity to promoters. Specifically, approximately 1–3% of the omnibus ELEs fall 
within 200 bp of an annotated TSS, and roughly 4–9% of the omnibus ELE-cCRE pairs 
possess promoter-like signatures that are marked by H3K4me3 strength and TSS prox-
imity (Methods). These ELEs may denote TSS-proximal enhancers [31], enhancer-like 
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promoters [32], or other functional elements around canonical promoters [9]. Com-
pared to NC ELEs, HC ELEs tend to overlap with a TSS more frequently (3.1% versus 
0.9%; Additional file 2: Fig. S1e) and capture more promoter-like signatures (8.8% versus 
4.3%; Fig. 1e). These observations recapitulate previous findings that promoters are more 
conserved across species than enhancers [25, 30].

To assess their regulatory functions, we tested motif enrichments in ELEs (Methods). 
Despite their smaller coverage of the human genome compared with all ELEs (Fig. 1b, c), 
conserved ELEs contain many significantly enriched motifs (Additional file 1: Table S2). 
Specifically, we identified 151 unique motifs in HC ELEs showing strong enrichments 
( ≥ 2-fold and P ≤ 1.0× 10−12 ) in at least one context against the GC-matched random 
background. To avoid confounding caused by context specificity, we repeated this analy-
sis with the background being all ELEs in the same context and identified enrichments 
for 186 unique motifs. Some enriched motifs are relevant to the context from which HC 
ELEs are derived. For example, HC ELEs derived from neural progenitors are enriched 
for a DBX2 motif (2.09-fold, P = 1.0× 10−100 ), consistent with the brain-specific mRNA 
expression of DBX2 and its regulatory role in age-related neurogenic decline [33]. The 
motif enrichments confirm high concentrations of regulatory sequences in conserved 
ELEs, forming a basis to interpret non-coding variation.

To capture their genetic variation, we mapped ELEs to biallelic autosomal single-
nucleotide polymorphisms (SNPs) with minor allele frequency above 0.05 (henceforth 
“common SNPs”) in the EUR and EAS populations [34]. In total, 30.1% of 5,961,159 EUR 
common SNPs lie within NC, 24.9% within LC, 17.9% within MC, and 3.6% within HC 
omnibus ELEs. These percentages are the same up to three decimal places for 5,469,053 
EAS common SNPs (Fig. 1f ). We also mapped context-specific ELEs to common SNPs 
and observed a similar trend of ELEs with a higher level of sequence conservation cov-
ering fewer common SNPs (Fig. 1g), consistent with the patterns of ELE count (Fig. 1b) 
and length (Fig. 1c).

To investigate context specificity, we examined correlations between the annota-
tions of common SNPs (henceforth “SNP annotations”) for all ELEs in all context pairs 
(Fig.  1h; Additional file  1: Table  S3). Reassuringly, correlations are generally stronger 
(average increase: 0.12; Wilcoxon one-sided P = 4.4 × 10−35 ) when ELEs belong to 
the same context group (e.g., ascending aorta and tibial artery, Cramér’s V = 0.73 ) 
than when they are in distant groups (e.g., neural progenitor and smooth muscle cell, 
V = 0.08 ). The correlations are high in different but related contexts, such as immune 
and blood cancer groups (both rich in immune cells, V = 0.53 ) and cardiovascular and 
gastrointestinal groups (both rich in muscle and connective cells, V = 0.69 ). Conserved 
ELEs produce concordant results for the same context pairs (Pearson’s R = 0.87− 0.99 ; 
Fig. 1h), showing that conserved ELEs preserve the context specificity of all ELEs.

We also correlated 96 known annotations [26] with ELE-based SNP annotations 
(Fig. 1i; Additional file 1: Table S4). The NC omnibus ELE annotation is weakly correlated 
with most of the 96 annotations (median V = 9.9× 10−2 ; 2.2× 10−4 ≤ V ≤ 0.58 ). The 
strongest correlation is for a context-merged H3K27ac annotation [13], consistent with 
the construction of NC omnibus ELEs (Fig.  1a; Additional file  2: Fig. S1a). Compared 
to the NC omnibus ELE annotation, the HC omnibus ELE annotation is far less cor-
related with existing SNP annotations (median V = 6.5× 10−2 ; 9.0× 10−5 ≤ V ≤ 0.27 ; 
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Wilcoxon one-sided P = 2.3× 10−9 ). The strongest correlation is for an evolutionary 
constraint annotation [19], consistent with the role of sequence conservation in the 
identification of HC ELEs. We observed even weaker correlations between context-spe-
cific ELE annotations and existing SNP annotations (NC: 1.1× 10−7 ≤ V ≤ 0.50 ; HC: 
1.3× 10−6 ≤ V ≤ 0.25 ). The identified ELEs, especially HC ELEs, yield new SNP anno-
tations that are not strongly correlated with existing SNP annotations, suggesting their 
potential to capture additional genetic signals of complex traits.

HC ELEs explain heritability independent of known SNP annotations

Enrichments of common SNP heritability for complex traits have been shown in various 
SNP annotations [13, 26, 35]. Because of their potential functions (Fig. 1d, e) and weak 
correlations with existing SNP annotations (Fig. 1i), we hypothesized that SNP annota-
tions based on ELEs could be enriched in heritability, independent of contributions from 
known SNP annotations. To test this hypothesis, we used S-LDSC [13] to analyze 468 
GWAS (Additional file 1: Table S5) and 4 SNP annotations of omnibus ELEs from this 
study (Methods; Additional file 1: Table S6). For each GWAS, we first applied S-LDSC 
to the annotation of NC omnibus ELEs while conditioning on 96 previous SNP anno-
tations [26]. We then analyzed each of three annotations of conserved (LC, MC, HC) 
omnibus ELEs with S-LDSC while conditioning on the NC omnibus ELEs and 96 previ-
ous annotations. For each GWAS and annotation, we summarized the S-LDSC analysis 
by (1) heritability enrichment ( ≥ 1 ), defined as the proportion of heritability explained 
by SNPs in the annotation divided by the proportion of SNPs in the annotation, and (2) 
standardized effect size ( τ ⋆ ≥ 0 ), defined as the proportionate change in per-SNP herit-
ability associated with a 1-standard deviation increase of the annotation, conditioned 
on all other annotations. The heritability enrichment indicates the marginal effect of an 
annotation, while τ ⋆ indicates the unique effect of an annotation.

In the meta-analysis across all 468 GWAS, we observed a significant heritability 
enrichment for NC omnibus ELEs (1.71-fold, one-sided P = 6.9× 10−263 ), consistent 
with previous findings [13, 26]. We also found NC omnibus ELEs uniquely informa-
tive for per-SNP heritability conditional on 96 known annotations, as quantified by 
τ ⋆ = 0.029 (one-sided P = 1.7× 10−2 ). When analyzing conserved omnibus ELEs, 
we identified a rising signal strength along the sequence conservation level (Fig.  2a). 
Specifically, we obtained 4.88-fold heritability enrichment ( P = 5.4 × 10−325 ) for 
HC omnibus ELEs, compared to 2.29-fold ( P = 3.0× 10−277 ) for MC and 1.93-fold 
( P = 1.7× 10−341 ) for LC. Conditional on NC omnibus ELEs and 96 previous annota-
tions, we estimated τ ⋆ = 0.255 ( P = 4.8× 10−65 ) for HC omnibus ELEs, compared to 
τ ⋆ = 0.101 ( P = 2.8× 10−13 ) for MC and τ ⋆ = 0.086 ( P = 1.8× 10−6 ) for LC. Together, 
the results demonstrate a significant effect of HC omnibus ELEs on heritability, which is 
not explained by NC omnibus ELEs or known SNP annotations.

As a sensitivity analysis, we restricted the meta-analysis to a previously described set 
[26] of 47 independent datasets (Fig. 2a). Despite the larger standard errors (SEs) caused 
by the fewer datasets meta-analyzed, we obtained similar heritability enrichments for all 
four annotations ( P ≥ 0.44 for difference). We also estimated similar τ ⋆ for HC omnibus 
ELEs ( P = 0.43 for difference), highlighting the robustness of our results based on this 
SNP annotation.



Page 7 of 28Zhu et al. Genome Biology            (2024) 25:1  

We further meta-analyzed results (Additional file 1: Table S7) stratified by study popu-
lations (Fig. 2b) and trait categories (Additional file 2: Fig. S2), reaching two conclusions 
consistent with the full analysis (Fig. 2a). First, HC omnibus ELEs have stronger herita-
bility enrichments than NC omnibus ELEs ( 2.12− 6.13 fold increase). Second, HC omni-
bus ELEs have significantly positive effect sizes (median τ ⋆ = 0.33 and P = 3.6× 10−5 
across 28 strata) conditional on NC omnibus ELEs and 96 known annotations. Across 
three populations, the meta-analysis of 48 EAS GWAS produced the strongest enrich-
ment for HC omnibus ELEs (6.33-fold, P = 1.6× 10−27 ; τ ⋆ = 0.396 , P = 2.2× 10−8 ). 
Within EUR GWAS, the meta-analysis of 8 cardiovascular traits produced the strong-
est enrichment (8.13-fold, P = 6.2× 10−6 ; τ ⋆ = 0.682 , P = 6.8× 10−8 ). Within UK 
Biobank, the meta-analysis of 19 medication use traits produced the strongest enrich-
ment (6.04-fold, P = 6.6× 10−11 ; τ ⋆ = 0.525 , P = 2.2× 10−13 ). Despite quantitative dif-
ferences, the qualitative finding remains the same: HC ELEs are more informative than 
NC ELEs for heritability enrichment.
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To assess replicability, we examined the S-LDSC results of 13 traits that each had two 
independent EUR GWAS with comparable sample sizes. For all four annotations of the 
omnibus ELEs, we obtained similar results between two independent datasets of the 
same trait ( P > 0.05/13 for difference; Fig. 2c).

To evaluate the transferability of our findings across populations, we compared the 
results of 34 traits that each had EUR and EAS GWAS available. Across annotations 
and traits, we obtained concordant estimates between EUR and EAS (Fig.  2d; herit-
ability enrichment: R = 0.91 , P = 7.6× 10−52 ; τ ⋆ : R = 0.63 , P = 1.9× 10−16 ). Further-
more, we found no evidence of population heterogeneity for the same annotation and 
trait ( P > 0.05/34 for difference). The estimates tend to be smaller in EUR than EAS 
(heritability enrichment: slope = 0.93 , SE = 0.052 ; τ ⋆ : slope = 0.86 , SE = 0.068 ; Meth-
ods), which is consistent with our meta-analysis stratified by populations (Fig. 2b) as well 
as a recent EAS-EUR comparison across 29 traits and 100 regulatory annotations [35]. 
Overall, the results not only indicate comparable heritability enrichments for EUR and 
EAS in all omnibus ELEs regardless of sequence conservation, but also show consistently 
stronger enrichments in HC than in NC omnibus ELEs for both populations.

HC ELEs show context‑specific heritability enrichments

Having established the strong heritability enrichment for HC omnibus ELEs, we next 
assessed context-dependent enrichments for HC ELEs (Additional file 1: Table S8). Spe-
cifically, we analyzed the annotation of HC context-specific ELEs from each context 
against each GWAS with S-LDSC, while conditioning on all ELEs in the same context 
and 96 previous annotations (Methods). We quantified the significance of context-spe-
cific enrichment by a one-sided P-value that tests τ ⋆ > 0 , controlling for effects of all 
other annotations.

We first meta-analyzed results across groups of related traits and contexts. For many 
trait groups, we observed top-ranked enrichments in HC ELEs derived from contexts 
highly relevant to the traits (Fig.  3a; Additional file  1: Table  S9; Additional file  2: Fig. 
S3). HC ELEs derived from the nervous system show strong enrichments for mental 
disorders ( τ ⋆ = 0.556 , P = 1.7× 10−59 ) and a wide range of traits related to behav-
ior ( τ ⋆ = 0.451 , P = 1.4 × 10−125 ), sleep ( τ ⋆ = 0.422 , P = 2.5× 10−76 ), reproduction 
( τ ⋆ = 0.367 , P = 1.1× 10−8 ), and diet ( τ ⋆ = 0.359 , P = 1.3× 10−162 ). HC ELEs derived 
from the immune system show strong enrichments for immune diseases ( τ ⋆ = 0.543 , 
P = 9.4 × 10−24 ) and blood cell traits ( τ ⋆ = 0.226 , P = 1.0× 10−9 ). Other examples 
include bone for bone traits ( τ ⋆ = 0.332 , P = 1.1× 10−29 ), connective tissue for early 
growth traits ( τ ⋆ = 0.456 , P = 7.2× 10−11 ), and kidney for kidney traits ( τ ⋆ = 0.998 , 
P = 4.2× 10−9 ). The significantly positive τ ⋆ estimates indicate that HC ELEs provide 
additional information about heritability conditional on ELEs in the same context. Fur-
thermore, top enrichments of HC context-specific ELEs are consistently stronger than 
enrichments of HC omnibus ELEs based on the same GWAS, recapitulating the tissue 
selectivity of heritable traits [10, 13].

We also observed context-dependent enrichments in the meta-analysis of related con-
texts for a single trait. Specifically, for 34 traits with both EUR and EAS GWAS avail-
able, we often identified the strongest enrichments of HC ELEs from the same context 
group (Fig.  3b). For example, HC ELEs derived from the nervous system show the 
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strongest enrichments in EUR and EAS for BMI, schizophrenia, and smoking initia-
tion. Other examples are bone for adult height and immune system for eosinophil count. 
Across all contexts and traits, we obtained concordant estimates of τ ⋆ between EUR and 
EAS ( R = 0.53 , P = 1.4 × 10−253 ) and found no evidence of population heterogeneity 
( P > 0.05/(34 × 105) for difference). As in the omnibus results (Fig. 2d), we estimated 
smaller τ ⋆ for HC context-specific ELEs in EUR than in EAS ( slope = 0.69 , SE = 0.018 ). 
Overall, the results showcase the transferability of heritability enrichments for HC con-
text-specific ELEs across populations.

Lastly, we examined individual contexts for a given trait (Fig. 3c). As expected, individ-
ual enrichments are weaker than meta-analyzed enrichments, but the top-ranked ones 
still inform trait-relevant contexts. Some top-ranked enrichments are straightforward to 
interpret, such as kidney for urine albumin-creatinine ratio, osteoblast for bone mineral 
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Fig. 3 Assess common SNP heritability enrichments for HC context-specific ELEs. For HC context-specific 
ELEs from each of the 105 contexts, we compute the standardized effect size ( τ ⋆ ) estimate and P-value 
for testing τ ⋆ > 0 conditional on all ELEs in the same context and 96 known annotations. a Estimates 
meta-analyzed within each of the 17 context groups (Additional file 1: Table S1) for 5 groups of related traits 
in EUR GWAS. Additional results are shown in Additional file 2: Fig. S3. b Estimates meta-analyzed within each 
of the 17 context groups for 5 traits that have both EUR and EAS GWAS available. Numerical results for a 
and b are available in Additional file 1: Table S9. c Estimates of 105 individual contexts for 5 exemplary traits. 
Numerical results are available in Additional file 1: Table S8. For a–c, each point denotes an estimate and each 
error bar denotes ±1.96 SE. The color legend is provided in Additional file 2: Fig. S1j
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density, and MCF-7 for breast cancer. Some top-ranked enrichments are less direct but 
functionally relevant nonetheless. HC ELEs derived from the thymus (where T cells 
mature) show the strongest enrichment among 105 contexts for primary sclerosing chol-
angitis (PSC), followed by HC ELEs derived from T cells. This adds to the considerable 
evidence linking T cells to the pathogenesis of PSC [36]. HC ELEs derived from fibro-
blasts (connective tissue) show the strongest enrichment for carpal tunnel syndrome 
(CTS), consistent with the fibrosis of subsynovial connective tissue in CTS patients [37].

HC ELEs capture more heritability than H3K27ac‑conserved ELEs

Our identification of HC ELEs differs from previous work of detecting human enhancers 
aligned with H3K27ac signals in other mammals [25]. To compare the two approaches, 
we exploited 14 contexts that each had data of human chromatin accessibility, human 
and mouse H3K27ac available (Additional file 1: Table S10). For each context, we created 
two sets of HC ELEs based on the same level of sequence conservation (minMatch = 0.9) 
with the mouse genome (Fig. 1a) and mouse H3K27ac peaks (Additional file 2: Fig. S4a; 
Methods), respectively. We then assessed heritability enrichments for the two sets of HC 
ELEs on the same GWAS (Additional file 1: Table S11). Though using less information, 
we observed stronger heritability enrichments for HC ELEs based on the mouse genome 
(10.9-fold, P = 5.4 × 10−14 ; τ ⋆ = 0.158 , P = 8.9× 10−215 ) than for HC ELEs based on 
mouse H3K27ac peaks (8.4-fold, P = 4.9× 10−15 ; τ ⋆ = 0.079 , P = 6.1× 10−121 ) in the 
meta-analysis across GWAS and contexts (Additional file  1: Table  S12). We obtained 
similar results when restricting to an independent set of GWAS (Additional file 2: Fig. 
S4b) or individual contexts (Additional file  2: Fig. S4c). Besides capturing more herit-
ability than H3K27ac-conserved ELEs, HC ELEs do not require human-mouse H3K27ac 
data in the same context, thus widening applicability.

HC ELEs harbor an excess of likely causal variants

Besides heritability enrichment, we examined fine-mapped GWAS variants in ELEs. 
Specifically, we intersected all omnibus ELEs (NC) and the conserved subsets (LC, MC, 
HC) with 515,848 fine-mapped variants [38] of 94 traits whose posterior inclusion prob-
abilities (PIPs) were estimated by two different approaches (FINEMAP; SUSIE) inde-
pendent of any SNP annotation (Methods). For each trait and annotation, we computed 
the fraction of fine-mapped variants inside the elements with PIPs above a given thresh-
old. We further compared these fractions with the fraction of all fine-mapped variants 
that had PIPs above the same threshold in the same trait, to quantify enrichments.

Across 94 traits (Fig. 4a), we observed consistently larger fractions (median increase: 
0.5− 9.2% ) and stronger enrichments (median increase: 5.6× 10−3 − 1.7 ) of fine-
mapped variants in HC than in NC omnibus ELEs, as PIP thresholds varied from 0 to 
0.5. For example, across 94 traits we obtained a median 13.9% of variants with SUSIE-
estimated PIP ≥ 0.1 among the fine-mapped variants residing in HC omnibus ELEs, 
compared to 10.1% for MC, 9.4% for LC, 8.9% for NC, and 6.1% for the whole genome. 
We obtained highly concordant results between SUSIE and FINEMAP (e.g., R = 0.99 for 
HC omnibus ELEs), confirming the robustness of our findings to fine-mapping meth-
ods. We also observed similar patterns in individual traits (Fig.  4b; Additional file  1: 
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Table  S13). Altogether, the results demonstrate a significant enrichment of putative 
causal variants in HC omnibus ELEs.

To characterize the context specificity of fine-mapping enrichments, we intersected 
the HC ELEs of 17 context groups (Additional file  1: Table  S1) with the 515,848 fine-
mapped variants (Fig. 4c; Additional file 1: Table S14). For each trait and group, we calcu-
lated the fraction of fine-mapped variants residing in HC ELEs from this context group 
with PIPs above 0.1. We compared this fraction with the fraction of all fine-mapped vari-
ants that had PIPs above 0.1 in the same trait, producing a one-sided binomial P-value 
to quantify enrichments. Similar to heritability enrichments (Fig.  3), context-specific 
enrichments of fine-mapped variants in HC ELEs highlight trait-relevant contexts. 
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Fine-mapped variants for BMI show a stronger enrichment in HC ELEs from the neu-
ral ( 16.7% , P = 6.6× 10−9 ) and endocrine ( 20.0% , P = 8.5× 10−9 ) groups than the HC 
omnibus ELEs ( 12.9% ). For estimated glomerular filtration rate, fine-mapped variants 
are strongly enriched in HC ELEs from the kidney group ( 29.6% , P = 4.1× 10−16 ; omni-
bus: 14.0% ), Other examples include immune-related HC ELEs for blood cell phenotypes 
( 18.8− 45.0% , P = 6.5× 10−9 − 7.6× 10−6 ; omnibus: 13.6− 25.2% ) and cardiovascular-
related HC ELEs for blood pressure traits ( 17.1− 26.8% , P = 3.7× 10−11 − 8.6× 10−7 ; 
omnibus: 10.8− 12.6%).

HC ELEs aid prioritization of trait‑associated regulatory elements

To prioritize trait-associated regulatory elements based on conserved ELEs, we extended 
RSS-NET [39], a method that simultaneously infers genetic enrichments and associa-
tions from GWAS summary statistics and genomic annotations (Methods; Additional 
file  2: Note S1). After validating this RSS-NET extension through simulations (Addi-
tional file 2: Note S2 and Figs. S5-8), we applied it to analyze the omnibus ELEs in the 
GWAS of BMI [40] (Fig. 5) and schizophrenia [41] (Fig. 6). As a sanity check, we exam-
ined enrichments produced by RSS-NET in each trait. Reassuringly, HC omnibus ELEs 
are more enriched in genetic associations than omnibus ELEs for both traits (Figs.  5a 
and 6a), mirroring the pattern of S-LDSC results (Additional file 1: Table S6). As such, 
we focused on the genetic associations of HC omnibus ELEs hereafter.

To quantify the genetic association between an ELE and a trait, we computed a pos-
terior probability for each ELE that at least one SNP in this element is associated with 
the trait ( P1 ; Methods), assuming that HC omnibus ELEs are enriched for associations 
with this trait ( PH

1  ). For comparison, we also computed P1 for the same element-trait 
pair assuming (1) no enrichment ( PB

1  ) and (2) enrichment for NC omnibus ELEs ( PN
1  ). 

Here, we used a significant association cutoff of PH
1 ≥ 0.9 , which yielded false positive 

rates less than 7.6× 10−4 and false discovery rates less than 0.1 across all simulation sce-
narios (Additional file 2: Fig. S8).

The enrichment-informed PH
1  increases the inferred number of genetic associations 

(Additional file 1: Table S15; Additional file 2: Fig. S9). Of 100,591 HC omnibus ELEs, 
781 are associated with BMI at PH

1 ≥ 0.9 , compared to 304 at PN
1 ≥ 0.9 and 229 at 

PB
1 ≥ 0.9 (Fig. 5b). Similarly, 173 HC omnibus ELEs are associated with schizophrenia at 

PH
1 ≥ 0.9 , compared to 13 at PN

1 ≥ 0.9 and 19 at PB
1 ≥ 0.9 (Fig. 6b). Of 33,745 HC omni-

bus ELEs present in neural samples (a context highly relevant to BMI [42] and schizo-
phrenia [43]; Fig. 3b), the same trend holds for BMI (394 at PH

1 ≥ 0.9 , 168 at PN
1 ≥ 0.9 , 

132 at PB
1 ≥ 0.9 ) and schizophrenia (105 at PH

1 ≥ 0.9 , 10 at PN
1 ≥ 0.9 , 14 at PB

1 ≥ 0.9 ). 
The enhanced evidence for genetic associations (measured by PH

1  ) is attributed to the 
enrichment-informed design of RSS-NET for prioritizing associations at HC ELEs. Spe-
cifically, once the enrichment of HC ELEs is identified for a trait, RSS-NET automati-
cally increases the prior association probability and effect size for SNPs therein, which in 
turn increases the posterior association probability and effect size for these SNPs (Addi-
tional file 2: Note S3). The results further demonstrate the potential of our approach to 
identify additional regulatory elements associated with complex traits that might other-
wise be missed by GWAS alone.
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To assess regulatory functions of the identified associations, we searched for 
sequence motifs significantly enriched in a target set of trait-associated elements 
( PH

1 ≥ 0.9 ) relative to a background set of non-associated elements ( PH
1 ≤ 0.1 ). For 

both the target and background, we only used HC omnibus ELEs present in neu-
ral samples (Additional file  2: Fig. S1f-i) to minimize confounding introduced by 
sequence conservation or context specificity. We identified 127 and 3 enriched motifs 
from 394 and 105 HC ELEs associated with BMI (Additional file  1: Table  S16) and 
schizophrenia (Additional file  1: Table  S17), respectively. Furthermore, we linked 
trait-associated elements containing top-ranked motifs to their putative target genes 
using a variety of functional genomic resources (Methods; Additional file 2: Figs. S10-
S14). Many linked genes are functionally and therapeutically relevant to the trait of 
interest (Additional file 2: Fig. S15), as reported below.
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HC ELEs inform candidate effector genes for BMI

The 394 BMI-associated HC ELEs show the strongest enrichment of a sequence 
motif recognized by MEIS1 (Fig.  5c), which has key roles in adipogenesis [44] and 
neural development [45]. Of 210 BMI-associated HC ELEs that contain the MEIS1 
motif, 107 are connected to 507 putative target genes (Additional file 1: Table S18). 
Pathway analysis of these genes highlights multiple BMI-relevant processes, includ-
ing apelin signaling, pituitary gland development and insulin secretion (Additional 
file 1: Table S19). Though not implicated in GWAS [40, 46], apelin and its receptors 
are involved in energy metabolism [47] and obesity [48].

The 394 BMI-associated HC ELEs are also strongly enriched for a DLX3 motif 
(Fig. 5d), which is essential for vertebrate development [49]. There are 154 BMI-asso-
ciated HC ELEs containing the DLX3-binding motif, 74 of which are further linked 
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Fig. 6 Prioritize HC ELEs for schizophrenia. Legends of a, b are the same as those in Fig. 5a, b. c Schizophrenia 
associations of 26 HC ELEs that contain instances of the enriched motif TCT TAT GCTT. d Schizophrenia 
associations of 27 HC ELEs that contain instances of the enriched motif SGTT CTG GTT. For c, d, the rest is the 
same as Fig. 5c, d. e Overlap of the putative target genes (59 for TCT TAT GCTT-instance and 59 for SGTT CTG 
GTT-instance HC ELEs) with genes implicated in knockout mouse phenotypes. f, g Putative target genes of 
schizophrenia-associated HC ELEs with the enriched motif SGTT CTG GTT that cause neural, cardiac, or both 
types of knockout mouse phenotypes (f) and neural, cardiac, or both types of human Mendelian traits (g). For 
f, g, genes shown in bold font are implicated in both knockout mouse phenotypes and human Mendelian 
traits
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to 309 putative target genes (Additional file 1: Table S20). These genes are enriched 
in multiple processes related to body weight, such as pancreas development, apelin 
signaling, and adipogenesis (Additional file 1: Table S21).

To assess their biological and clinical themes, we looked up the 568 unique putative 
target genes of BMI-associated HC ELEs that contain the MEIS1 or DLX3-binding 
motif in external databases (Additional file  1: Table  S22; Methods). Of the 568 genes, 
407 and 146 are associated with knockout mouse phenotypes and human Mendelian 
traits, respectively. More than half of the 407 knockout mouse genes show growth (213), 
metabolic (217) and neural (228) phenotypes. A considerable fraction of the 146 Men-
delian genes cause diseases characterized by growth (50), metabolic (17) and neural (59) 
phenotypes. Many of the neural genes are also related to growth and metabolism. Of 
228 genes with neural mouse phenotypes, 181 (79.4%) have growth or metabolic phe-
notypes. Of 59 Mendelian genes with neural manifestations, 27 (45.8%) affect growth. 
We identified similar patterns when analyzing putative target genes informed by MEIS1 
and DLX3-binding motifs separately (Fig. 5e). The gene results, together with the neural 
enrichments of heritability (Fig. 3b) and fine-mapped variants (Fig. 4c), reinforce the key 
role of brain on body weight regulation [42].

Integrating BMI-associated HC ELEs with genes that affect mouse body weight and 
human monogenic obesity helps prioritize effector genes for BMI. Apart from the 
well-known obesity genes [42] (LEP, PCSK1, NTRK2), we identified several BMI effec-
tor genes that have not been reported in GWAS [40, 46] but are supported by multi-
ple converging lines of evidence (Additional file 2: Figs. S10-S12). For example, CDK5 is 
a strong candidate for BMI: CDK5 encodes cyclin-dependent kinase 5 (Cdk5) that has 
diverse functions [50] in neurons, adipocytes and beta cells; Cdk5 affects obesity and 
diabetes through phosphorylation of PPARγ [51]; and a mutation in CDK5 causes lissen-
cephaly with multiple neurodevelopmental features [52]. HSD11B1 is another plausible 
BMI effector: HSD11B1 encodes 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) 
that plays key roles in obesity and related metabolic diseases [53]; 11β-HSD1 overex-
pressed in adipose leads to visceral obesity and hyperphagia in mice [54]; and mutations 
in HSD11B1 affect the regeneration of cortisol [55], a steroid hormone associated with 
obesity [56]. Furthermore, CDK5 and HSD11B1 are therapeutic targets of preclinical 
(L-751250) and Phase 1 (AZD8329) drugs for obesity, respectively, and our results pro-
vide genetic support for early stage development (Additional file 2: Fig. S15).

HC ELEs inform candidate effector genes for schizophrenia

The 105 schizophrenia-associated HC ELEs show strong enrichments of motifs recog-
nized by POU3F3 (Fig. 6c) and HAND1::TCF3 complex (Fig. 6d), all of which are rel-
evant to schizophrenia. POU3F3 is essential for cerebral cortex development [57]. TCF3 
regulates neocortical development through Wnt-β-catenin signaling [58]. HAND1 is 
critical for placenta development [59], which has been associated with the genetic risk of 
schizophrenia [60].

We identified 26 and 27 schizophrenia-associated HC ELEs containing POU3F3 and 
HAND1::TCF3-binding motifs respectively, further suggesting 86 unique putative target 
genes (Additional file 1: Tables S23-S25). Of the 31 genes related to Mendelian diseases, 
19 (61.3%) have neural indications. Among 59 genes with knockout mouse phenotypes 
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available, many have immune (22), growth (43), and neural (38) phenotypes. Of 38 neu-
ral genes, 11 (28.9%) and 29 (76.3%) have immune and growth phenotypes in knock-
out mice, respectively. We observed similar neural-immune and neural-growth overlaps 
when analyzing POU3F3 and HAND1::TCF3 target genes separately (Fig.  6e). These 
findings recapitulate the roles of immunity [61] and early development [43] in the etiol-
ogy of schizophrenia.

Many putative target genes of schizophrenia-associated HC ELEs with the 
HAND1::TCF3-binding motif cause both neural and cardiac knockout mouse phe-
notypes (Fig.  6f ) and human Mendelian traits (Fig.  6g), likely due to the key role of 
HAND1 in heart development [59]. Our results highlight three genes (CACNA1C, 
HYLS1, PMM2) with neural-cardiac roles. CACNA1C has been repeatedly identified in 
GWAS of schizophrenia [41] and causes arrhythmia associated with autism [62]. Both 
HYLS1 and PMM2 have not been implicated in GWAS (Additional file  1: Table  S26), 
but their neural-cardiac roles are relevant to schizophrenia. HYLS1 encodes hydroletha-
lus syndrome protein 1, which regulates the biogenesis and signaling of cilia [63]. Cilia 
are antenna-like organelles with essential roles in cerebral cortical [64] and cardiac [65] 
development. A mutation in HYLS1 causes hydrolethalus syndrome [66] characterized 
by developmental defects of the fetal brain and heart. Mutations in PMM2 cause a con-
genital disorder of glycosylation [67] with neurological and cardiac manifestations [68]. 
Glycosylation has been linked to cardiovascular [69] and neuroinflammatory [70] dis-
eases, as well as schizophrenia [71]. In sum, HAND1::TCF3 target genes with neural-
cardiac roles provide a means to elucidate the genetic causes of comorbidity between 
schizophrenia and cardiovascular diseases [72].

Discussion
We present a simple and scalable strategy to identify human enhancer-like elements that 
are highly conserved in the mouse genome (HC ELEs) for 106 tissues and cell types. 
Across 468 GWAS of EUR and EAS ancestries, we demonstrate that HC ELEs harbor a 
significant excess of genetic signals for human complex traits, as measured by common 
SNP heritability and fine-mapped variants. We further show that HC ELEs capture these 
signals independent of existing SNP annotations, therefore providing a unique interpre-
tation of non-coding variation in complex traits.

Integrating HC ELEs with GWAS and gene regulatory networks further helps pinpoint 
previously undescribed but functionally relevant genes for BMI (e.g., CDK5, HSD11B1) 
and schizophrenia (e.g., HYLS1, PMM2). Despite convergent evidence supporting their 
roles in the biology of BMI and schizophrenia, these genes prioritized by our approach 
were not identified by the same GWAS data used in our analysis, nor by the updated 
GWAS with much larger sample sizes, nor by the multi-omics integrative analysis of 
these GWAS data at the time of this study [40, 41, 46, 73, 74]. Identifying these genes 
post-GWAS presents two challenges. First, although CDK5 and HSD11B1 are within the 
loci (± 500 kb) of known GWAS hits of BMI (rs2907948, P = 1.3× 10−13 ; rs12140373, 
P = 7.7× 10−11 ), these loci contain many protein-coding genes (28 and 10, respec-
tively), thus complicating the nomination of likely causal genes. Our approach helps 
address this challenge by shortlisting genes on the same regulatory circuit as HC ELEs 
that are strongly associated with the GWAS trait ( PH

1 ≥ 0.9 ), based on the premise that 
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enhancers affect a trait through their downstream genes [38]. Second, HYLS1 and PMM2 
are more than 950 kb away from any GWAS hits of schizophrenia ( P ≤ 5× 10−8 ), ren-
dering their discoveries through standard GWAS or integrative strategies difficult. Our 
approach helps address this challenge by first identifying trait-associated HC ELEs 
and then linking them to genes that are far away from GWAS signals via long-range 
enhancer-gene connections. As high-quality enhancer-gene maps are becoming availa-
ble [38, 75], enhancer-centric approaches like ours will prioritize effector genes for com-
plex traits beyond GWAS.

Our findings have several other important implications for the genetic architecture of 
complex traits. First, compared to all ELEs, HC ELEs display fewer sequence changes 
across species but stronger enrichments of trait heritability and causal variants, support-
ing the model of negative selection on genetic variants to affect complex traits [13, 26, 
41]. Second, HC ELEs capture consistent signals between EUR and EAS ancestries, high-
lighting the potential of cross-species methods like ours to improve the transferability 
of genetic findings across human populations [35]. Third, though imperfectly conserved 
between humans and mice, HC ELEs retain regulatory functions to affect complex traits 
in a tissue-specific manner, corroborating the functional robustness of ultraconserved 
enhancers to mutations [76]. Fourth, HC ELEs highlight human sequences with high 
similarity in the mouse genome, suggesting a path to test human GWAS discoveries in 
mice [77].

While the idea of combining evolutionary and biochemical data has proven broadly 
useful [14–17, 25], our study demonstrates several key strengths of implementing this 
idea specifically for multi-omics integrative analysis in GWAS. First, we use the human-
mouse sequence comparison [28, 29] to locate functional elements for hundreds of tis-
sues and cell types, whereas existing studies often examine a single tissue [21–26]. The 
scalability of our method to many tissues enables the interpretation of GWAS findings 
through tissue-specific gene regulation [10]. Second, unlike many studies that use either 
H3K27ac [21, 25, 26] or chromatin accessibility [22–24] alone to mark functional ele-
ments, we integrate both types of epigenomic profiles to refine these elements. Third, we 
focus firmly on functional sequences in the human genome, despite the comparison of 
human and mouse sequences. This approach contrasts with many studies [21–24] that 
focus on human orthologues of functional sequences in the mouse genome, bypassing 
the issue that the orthologues may not be functional in humans [1, 6]. Last but not least, 
we assess conservation of genome sequences rather than H3K27ac signals between spe-
cies [25, 26]. This choice not only yields significantly stronger heritability enrichments, 
but also eliminates the need for cross-species H3K27ac profiling in the same tissue, 
making our method more widely applicable.

Although tested on the mouse genome only, our pairwise comparison to identify HC 
ELEs is straightforward to implement more broadly for other species, as high-quality 
genomes are becoming available for many species [7, 8]. That said, we caution that the 
pairwise approach might fall short in evolutionarily related species, such as humans and 
primates, due to the paucity of cross-species sequence variation. In such case, phylo-
genetic modeling of multiple species may be worth pursuing [3, 18]. Another limita-
tion is that sequence comparisons omit enhancers that are functionally conserved but 
nonorthologous at the sequence level [6, 78]. In such case, integrative modeling across 
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functions and species may help [24, 79]. Despite the limitations, our simple method pro-
vides a useful benchmark for sophisticated models.

Currently, HC ELEs are based on the bulk sequencing of H3K27ac and chromatin 
accessibility profiles, likely missing detailed cellular processes in which regulatory vari-
ants affect complex traits. Identifying cellularly resolved HC ELEs will be enabled by the 
emerging single-cell epigenomic data. Indeed, single-cell atlases of chromatin accessibil-
ity have been recently established for many human tissues [80], and single-cell H3K27ac 
measurements will likely be available for diverse tissues soon with the advent of new 
technologies [81]. Besides the single-cell extension, other data such as gene expression 
[39, 82], chromatin conformation [83, 84], and CRISPR screening [38, 75] may need to 
be incorporated to capture the multifaceted nature of enhancers [6]. Altogether, fine-
tuning HC ELEs alongside advances in genomic technologies and resources will mark-
edly increase resolution and accuracy.

Conclusions
Our findings, together with recent studies by others [8, 20–22, 26, 85, 86], emphasize the 
importance of combining evolutionary and biochemical evidence to understand the reg-
ulatory basis of heritable human traits. This integrative idea has been well documented 
and increasingly appreciated, but it remains under-exploited in depth and at scale. This 
work represents a comprehensive effort and a major step forward to close this gap.

Methods
Reference genomes

We used the GRCh37 (hg19, human) and GRCm38 (mm10, mouse) genome assemblies 
throughout this study. We converted data based on GRCh38 (hg38) to GRCh37 using 
liftOver [87] with the default setting and the minimum ratio of bases that must remap 
(minMatch) being 0.95.

Human epigenomes

We collected genome-wide sequencing data of 142 H3K27ac (ChIP-seq) and 171 chro-
matin accessibility (DNase-seq, ATAC-seq) profiles across 106 contexts (Additional 
file 1: Table S1). We followed the ENCODE data standards and processing pipelines [9] 
to identify H3K27ac and accessible chromatin peaks in each context.

Sequence‑conserved ELEs

To identify NC ELEs without considering sequence conservation between the human and 
mouse genomes for each of the 106 contexts, we intersected H3K27ac and accessible chro-
matin peaks in this context using BEDTools [88] (version 2.27.1). To identify LC, MC, and 
HC ELEs with low, moderate, and high levels of human-mouse sequence conservation 
for each context, we searched for segments of NC ELEs that are conserved in the mouse 
genome using liftOver with the default setting and minMatch as 0.1, 0.5, and 0.9, respec-
tively. Each ELE defines an interval on the human genome, indicated by the chromosome, 
start and end positions. Since an increased level of sequence conservation imposes a more 
stringent criterion for an ELE to be deemed as conserved, HC ELEs are a subset of MC 
ELEs, MC ELEs are a subset of LC ELEs, and LC ELEs are a subset of NC ELEs in a given 
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context. Hence, these sets of ELE are not disjoint for each context. The source code imple-
menting the methods, as well as all resulting ELEs, are freely available online [89, 90].

Because the counts of ELEs derived from an induced pluripotent stem cell line (iPS DF 
6.9) are significantly lower than those of other contexts (NC: 547; LC: 387; MC: 360; HC: 
182; Fig. 1b), we only used this cell line to create the omnibus ELEs and excluded it from all 
other analyses.

To benchmark our primary approach (Fig.  1a), we developed an alternative method 
(Additional file 2: Fig. S4a) to identify conserved ELEs in the human genome that (1) dis-
played H3K27ac signals in both humans and mice for the same context [25] and (2) reached 
the same level of human-mouse sequence conservation as our primary approach. We 
termed this alternative “H3K27ac-conserved ELEs.” For each context, we first mapped 
H3K27ac peaks from the mouse to human genome using liftOver with the default set-
ting and minMatch being 0.9, and then we intersected the coordinate-converted mouse 
H3K27ac peaks with human H3K27ac and accessible chromatin peaks in the same context 
to create H3K27ac-conserved ELEs. We compared the two approaches in 14 contexts that 
each had profiles of human chromatin accessibility, human and mouse H3K27ac available 
(Additional file 1: Table S10).

ENCODE cCRE classifications

To assess their biochemical relevance, we compared ELEs with the human cCREs (version 
3) cataloged in phase 3 of the ENCODE Project [9]. The ENCODE cCREs were classified 
into the following five groups (Fig. 1e). Distal enhancer-like signature (dELS) elements are 
cCREs with high DNase and H3K27ac signals that are located more than 2 kb from the 
nearest TSS. Proximal enhancer-like signature (pELS) elements are cCREs with high DNase 
and H3K27ac but low H3K4me3 signals that are located within 2 kb of a TSS. Promoter-
like signature (PLS) elements are cCREs with high DNase and H3K4me3 signals that are 
located within 200 bp of a TSS. Other high-DNase and high-H3K4me3 (DNH3) elements 
are cCREs with high DNase and H3K4me3 signals but low H3K27ac signals that do not 
reside within 200 bp of a TSS. CTCF-only elements are cCREs that possess high DNase and 
CTCF signals but low signals for H3K4me3 and H3K27ac.

SNP annotation

We stored each set of ELEs (omnibus or context-specific; NC, LC, MC or HC) as a BED file, 
consisting of one line per genomic interval (henceforth “element”). For each set of elements, 
we created the corresponding binary SNP annotation as:

where j belongs to 5,961,159 EUR or 5,469,053 EAS common SNPs. Because omnibus 
ELEs aggregate all context-specific ELEs (Additional file 2: Fig. S1a), we can show:

(1)a(j) = 1
{

SNP j falls inside at least one element of the set
}

,

(2)

a(j; Omni) = 1 SNP j falls inside at least one omnibus element

= 1 SNP j falls inside at least one element in one context

= max
k

a(j; Context k).
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Equation (2) provides an alternative way to create the SNP annotation for omnibus 
ELEs directly from SNP annotations of context-specific ELEs, without identifying omni-
bus ELEs first and then applying Eq. (1).

To assess the correlation of two binary SNP annotations (Fig. 1h, i), we computed Cra-
mér’s V using the function “cramerV” from R package rcompanion [91] (version 2.4.16). 
To assess the correlation between a binary and a quantitative annotation (Fig.  1i), we 
computed Pearson’s R using the R built-in function “cor.test” [92] (version 4.2.1).

GWAS

We collected GWAS summary statistics from 312 UK Biobank, 108 EUR, and 48 EAS 
studies (Additional file 1: Table S5). The sample size of 468 datasets ranged from 14,267 
to 1,320,016, with a median of 452,264. All datasets had observed-scale heritability 
Z-scores ≥ 6 as estimated by S-LDSC (see below). All datasets were processed as previ-
ously described [13, 26].

Heritability enrichment

To assess the heritability enrichment of a SNP annotation in a GWAS, we used S-LDSC 
[13] (version 1.0.1) with 1000 Genomes [34] phase 3 as the linkage disequilibrium (LD) 
reference panel (9,997,231 EUR and 8,768,561 EAS reference SNPs) and 96 annota-
tions from the baselineLD model [26] (version 2.2) as covariates, which capture diverse 
genomic functions such as translation, regulation, and selection (Additional file  1: 
Table S4).

To analyze all (omnibus or context-specific) ELEs without considering human-mouse 
sequence conservation (NC) in a GWAS, we modeled the variance of effect size for SNP 
j as

where τ0 is the background per-SNP contribution to heritability, aBd(j) is the value of 
SNP j for one of the 96 baseline annotations, aN (j) = 1 if SNP j falls inside any ELE and 
0 otherwise, and {τBd , τ

N } are per-SNP contributions of one unit of the corresponding 
annotations to heritability. Equation (3) allows us to assess the contribution of ELEs to 
heritability conditional on 96 known annotations, which helps reduce bias due to model 
mis-specification [13, 26].

To analyze conserved (omnibus or context-specific) ELEs at each level of human-
mouse sequence conservation (LC, MC, HC) in a GWAS, we extended Eq. (3) as

where aC(j) = 1 if SNP j falls inside any conserved ELE and 0 otherwise, and τC is the 
per-SNP contribution of one unit of the conserved ELE annotation to heritability. Like 
Eq. (3), this model captures the unique contribution of conserved ELEs to heritability 
conditional on 96 known annotations and ELEs without sequence conservation in the 
same context.

(3)Var(βj) = τ0 +

96
∑

d=1

τBd · aBd(j)+ τN · aN (j),

(4)Var(βj) = τ0 +

96
∑

d=1

τBd · aBd(j)+ τN · aN (j)+ τC · aC(j),
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We used two quantities [13, 26] to summarize the S-LDSC results. First, we computed 
the heritability enrichment of an annotation a in a GWAS as

where |a| is the number of common SNPs with annotation a, p is the total number of 
common SNPs ( p = 5, 961, 159 for EUR and 5,469,053 for EAS), and h2a and h2 are herit-
abilities due to |a| common SNPs with annotation a and p common SNPs respectively. 
Second, we computed the standardized effect size ( τ ⋆ ) of an annotation a in a GWAS as

where SDa is the standard deviation of annotation a across p common SNPs and τa is 
the original effect size for annotation a in Eqs. (3) and (4). Both quantities can be com-
pared across GWAS and annotations. Unlike the enrichment in Eq. (5), τ ⋆ in Eq. (6) can 
capture the unique effect of annotation a conditional on all other annotations in Eqs. 
(3) and (4).

To meta-analyze the S-LDSC results across traits and contexts, we used the function 
“meta.summaries” from R package rmeta [93] (version 3.0) as previously described [13, 
26]. For both heritability enrichment and τ ⋆ , we performed random-effects meta-analy-
sis of individual estimates and SEs to obtain meta-analyzed estimates and SEs (Fig. 2a, b, 
Fig. 3a, b; Additional file 2: Figs. S2-S4). To find the P-value for meta-analyzed heritabil-
ity enrichment, we first meta-analyzed (h2a/|a|)− [(h2 − h2a)/(p− |a|)] and then com-
puted a one-sided Z-score to test if this difference is greater than 0. To find the P-value 
for meta-analyzed τ ⋆ , we computed a one-sided Z-score to test if the meta-analyzed esti-
mate is greater than 0.

To assess the concordance of S-LDSC results between EUR and EAS GWAS of the 
same trait, we use the function “deming” from R package deming [94] (version 1.4) as 
previously described [35]. For each annotation, we fitted a generalized Deming regres-
sion of EUR estimates on EAS estimates across 34 traits, while accounting for SEs.

Fine mapping

The fine-mapping results [38] of 94 traits in UK Biobank (version 1.1) were produced by 
FINEMAP [95] and SUSIE [96]. Here, we excluded variants without any 95% credible set 
assigned, variants in LD ( R2 > 0.6 ) with a variant failing the Hardy-Weinberg equilib-
rium test ( P < 1× 10−12 ), and variants in LD ( R2 > 0.8 ) with a common EUR structural 
variant. We further intersected the variants with 9,997,231 EUR SNPs in 1000 Genomes 
[34], yielding a final set of 515,848 unique SNPs for this study.

Trait‑associated HC ELEs

We previously developed RSS-NET [39] that integrates GWAS summary statistics 
with genomic annotations to identify genetic enrichments and associations simulta-
neously. Here, we expanded this Bayesian framework to prioritize trait-associated HC 

(5)Enrichmenta =
h2a / h

2

|a| / p
, h2a =

∑

j∈a

Var(βj), h2 =

p
∑

j=1

Var(βj),

(6)τ ⋆a =
p · SDa

h2
· τa,
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ELEs (Additional file  2: Note S1). Specifically, we combined the RSS likelihood [97] 
with a new prior distribution as follows:

where βj denotes the effect of SNP j on a given trait, πj denotes the probability that SNP 
j is associated with the trait ( βj  = 0 ), N (0, σ 2

j ) denotes a normal distribution with mean 
0 and variance σ 2

j  specifying the effect size of a trait-associated SNP j, δ0 denotes point 
mass at zero ( βj = 0 ), and aj = 1 if SNP j falls inside HC ELEs and 0 otherwise. In Eq. 
(8), the baseline parameter θ0 < 0 captures the genome-wide background fraction of 
trait-associated SNPs, and the enrichment parameter θ > 0 reflects the increase in prob-
ability that a SNP inside HC ELEs is trait-associated [39, 82, 98]. In Eq. (9), the baseline 
parameter σ 2

0  captures the genome-wide background effect size of trait-associated SNPs, 
and the enrichment parameter σ 2 reflects the increase in effect size of trait-associated 
SNPs inside HC ELEs [13, 39, 98]. We specified hyper-priors on the unknown parame-
ters 

{

θ0, θ , σ
2
0 , σ

2
}

 (Additional file 2: Note S3) and used variational inference to compute 
posterior distributions as previously described [39, 82]. The implementation of this RSS-
NET extension is freely available online [99, 100].

To assess whether HC ELEs are enriched for genetic associations with a target trait 
(Figs. 5a and 6a), we computed a Bayes factor (BF):

where f (·) denotes the marginal likelihood for the extended RSS-NET model and D is 
a shorthand for the input data including GWAS summary statistics, LD estimates, and 
SNP annotations of HC ELEs ( aj ). A larger BF indicates stronger evidence for enrich-
ment of genetic associations.

To identify if a HC ELE is associated with a trait, we used P1 , the posterior probabil-
ity that at least one SNP in the HC ELE is trait-associated:

 A larger P1 indicates stronger evidence for association between a HC ELE and a 
trait. For each HC ELE, PH

1  , PN
1  , and PB

1  are P1 values evaluated with different defini-
tions of aj (Figs. 5b and 6b). For PH

1  , aj = 1 if SNP j falls inside HC ELEs and 0 other-
wise, which corresponds to the enrichment model for HC ELEs. For PN

1  , aj = 1 if SNP 
j falls inside NC ELEs and 0 otherwise, which corresponds to the enrichment model 
for NC ELEs. For PB

1  , aj = 0 for any SNP j, which corresponds to the baseline model 
without any enrichment and is equivalent to setting θ = σ 2 = 0 in Eqs. (8) and (9).

(7)βj ∼ πj · N
(

0, σ 2
j

)

+ (1− πj) · δ0,

(8)πj =

(

1+ 10−(θ0+aj ·θ)
)−1

,

(9)σ 2
j = σ 2

0 + aj · σ
2,

(10)BF =
f (D | θ > 0 or σ 2 > 0)

f (D | θ = 0 and σ 2 = 0)
,

(11)P1 = 1− Pr(βj = 0 for any SNP j inside this HC ELE | D).
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We evaluated the RSS-NET extension through a large array of simulations (Addi-
tional file 2: Note S2). To reduce the computation, we performed simulations on 348,965 
genome-wide common SNPs [101], with 19,335 SNPs annotated by HC omnibus ELEs 
( aj = 1 ). To mimic the genetic architectures of various complex traits, we specified 8 
simulation scenarios with varying proportions of (1) trait-associated SNPs and (2) phe-
notypic variation explained by all SNPs. For each scenario, we simulated 200 “positive” 
datasets where SNP effects ( βj ) were simulated from priors (8)-(9) with the presence 
of enrichment parameters ( θ > 0 or σ 2 > 0 ) as well as 200 “negative” datasets where 
SNP effects ( βj ) were simulated from priors (8)-(9) without any enrichment ( θ = 0 and 
σ 2 = 0 ). To ensure a fair comparison in each scenario, we matched the positive and neg-
ative datasets by the proportions of (1) trait-associated SNPs and (2) phenotypic varia-
tion explained by all SNPs. We combined the simulated SNP effects with the genotypes 
of 348,965 genome-wide SNPs from 1458 individuals [101] to simulate phenotypes using 
an additive multiple-SNP model with Gaussian noise as previously described [39]. We 
performed the standard single-SNP analysis of simulated individual-level datasets to 
generate GWAS summary statistics, on which we compared RSS-NET results with the 
ground truth of each simulation scenario. The simulation results show that the RSS-NET 
extension produces accurate posterior estimation for model parameters (Additional 
file 2: Fig. S5), as well as valid inference of both enrichments (Additional file 2: Fig. S6) 
and associations (Additional file 2: Figs. S7-S8).

We applied the RSS-NET extension to the GWAS meta-analysis summary statistics of 
BMI [40] and schizophrenia [41] as previously described [39, 82, 97]. Since both GWAS 
datasets were derived from cohorts of EUR ancestry, we supplied the RSS-NET exten-
sion with reference LD estimates based on the haplotypes of unrelated individuals with 
EUR ancestry from Phase 3 of the 1000 Genomes Project [34]. Prior to the analysis of 
each GWAS with the RSS-NET extension, we executed a series of quality control pro-
cedures to ensure consistency between the GWAS summary statistics and the reference 
LD estimates (Additional file  2: Note S4 and Fig. S16). For each GWAS, we analyzed 
both NC and HC omnibus ELEs using the same hyper-priors (Additional file 2: Note S3). 
We did not analyze HC context-specific ELEs with RSS-NET because they contain less 
than 0.45% of common SNPs (Fig. 1g), leading to sparse SNP annotations (i.e., aj = 0 for 
most SNPs). Reliable estimation of the RSS-NET enrichment parameters (θ , σ 2) in priors 
(8)-(9) requires sufficient SNPs with aj = 1.

Motif enrichment

We used the HOMER [102] command “findMotifsGenome.pl” (version 4.11) to identify 
genomic regions specifically enriched in a target set of sequences against a background 
set. We used the exact regions provided (“-size given”) and searched for known motifs 
(“-mknown”) in the curated list of 1465 unique motifs [83, 103]. Beyond the 1465 known 
motifs, we also identified de novo motifs and matched them to known motifs based on 
similarity of motif matrices (Figs. 5c–d and 6c–d). For each motif, we computed a fold 
change of fractions of target against background sequences containing the motif and a 
binomial P-value to quantify enrichment. We identified a significant enrichment of a 
motif when the fold change ≥ 2 and P ≤ 1× 10−12.
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Target genes of HC ELEs

To link trait-associated HC ELEs to putative target genes, we used cCRE-gene linkages 
derived from recent studies of the adult mouse cerebrum [23], fetal [104], and adult 
[105] human brain. We used BEDTools to overlap HC ELEs with cCREs in these datasets 
and then used the cCRE-gene linkages to identify putative target genes for HC ELEs.

The adult mouse study [23] integrated snATAC-seq with scRNA-seq data to identify 
gene-cCRE connections on the basis of both co-accessibility between cCREs and posi-
tive association with gene expression, resulting in 813,638 linkages that connect 261,204 
cCREs to 12,722 putative target genes for 160 brain cell types. For each cell type, the 
BEDPE file of gene-cCRE connections is freely available online [106]. When using 
these linkages, we first converted HC ELEs (GRCh37) to regions in the mouse genome 
(GRCm38), overlapped them with the mouse cCREs to find the linked mouse genes, and 
then converted the mouse gene symbols (MGI) to human gene symbols (HGNC).

The fetal human study [104] used Hi-C data to produce 63,653 linkages of 33,862 
enhancers and 10,892 genes for the cortical plate as well as 63,740 linkages of 34,044 
enhancers and 11,146 genes for the germinal zone. These linkages are freely available 
online [107]; see also “Table S5: enhancer-gene predictions” of the original publica-
tion [104].

The adult human study [105] first combined Hi-C linkages, quantitative trait loci, 
and transcription factor (TF) binding sites to build a reference network of gene regu-
lation in brain and then refined enhancer-gene connections by relating the activity 
of TFs to expression of target genes via elastic net regression. The network construc-
tion used both the repeat-masked TF binding site map (GRN1) and the complete map 
(GRN2). GRN1 has 577,529 linkages of 71,097 enhancers and 13,308 genes. GRN2 
has 531,322 linkages of 70,532 enhancers and 13,330 genes. These linkages are freely 
available online [108] as INT-11 (GRN1) and INT-14 (GRN2).

External databases

To interpret our findings, we used the following external databases: UCSC Genome 
Browser [87] for phastCons 100-vertebrate scores [18], Metascape [109] for biological 
pathways (version 3.5), MGI [110] for knockout mouse genes (version 6.18), OMIM 
[111] for human Mendelian genes, TTD [112] for drug target genes (version 8.1.01), 
and GWAS Catalog [74] for GWAS-implicated genes (version 1.0.2).
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