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Abstract 

Imaging‑based spatial transcriptomics techniques provide valuable spatial and gene 
expression information at single‑cell resolution. However, their current capabil‑
ity is restricted to profiling a limited number of genes per sample, resulting in most 
of the transcriptome remaining unmeasured. To overcome this challenge, we develop 
ENGEP, an ensemble learning‑based tool that predicts unmeasured gene expression 
in spatial transcriptomics data by using multiple single‑cell RNA sequencing datasets 
as references. ENGEP outperforms current state‑of‑the‑art tools and brings biological 
insight by accurately predicting unmeasured genes. ENGEP has exceptional efficiency 
in terms of runtime and memory usage, making it scalable for analyzing large datasets.
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Background
Single-cell RNA sequencing (scRNA-seq) has become a popular tool for analyzing gene 
expression in individual cells. However, scRNA-seq data loses information about the 
spatial locations of cells because of the cell dissociation required for sequencing pro-
cesses. To understand cellular coordination in multicellular organisms, it is important 
to have access to both gene expression and spatial information [1]. Recently, advances in 
spatial transcriptomics have made it possible to obtain gene expression and spatial local-
ization data [2]. These methods can be broadly classified into two categories: sequenc-
ing-based and imaging-based methods. Sequencing-based methods, such as ST [3], 10X 
Visium, and Slide-seq [4], can capture the whole transcriptome but are limited by spatial 
resolution and gene detection sensitivity. On the other hand, imaging-based methods, 
such as seqFISH [5], osmFISH [6], and MERFISH [2], provide high-resolution and high-
sensitivity single-cell gene expression data but are limited to a smaller number of target 
genes.
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In this study, we focus on imaging-based methods due to their high spatial resolution 
and sensitivity, which are critical for exactly exploring gene expression patterns at the 
single cell level. Despite the advantages of imaging-based methods, they face challenges 
in obtaining comprehensive, genome-wide gene expression data [7, 8]. Therefore, users 
of these methods need to have well-defined biological hypotheses and design an appro-
priate gene panel, making it unlikely to generate incidental discoveries. To address this 
challenge, computational methods have been proposed that use scRNA-seq data as a 
reference to predict the expression of unmeasured genes in imaging-base spatial tran-
scriptomics data, by leveraging the ability of scRNA-seq to provide genome-wide gene 
expression at the single cell level [9–12].

Most previous methods consist of two steps: searching for neighboring cells in the ref-
erence dataset and predicting expression levels. In the first step, different strategies are 
used to search for neighboring cells in the reference dataset that have similar expres-
sion levels to the query cells in the spatial data. For example, Seurat [9] uses canoni-
cal correlation analysis to embed both spatial and scRNA-seq datasets into a common 
low-dimensional space and then identifies the mutual nearest neighbors in this space. 
SpaGE [10] employs a domain adaptation algorithm to align the spatial and scRNA-seq 
datasets and then searches for the k nearest neighbors based on the aligned datasets. 
StPlus [11] is based on an auto-encoder deep learning framework and searches for the k 
nearest neighbors based on the learned cell embedding. Tangram [12] uses a deep learn-
ing framework to learn a spatial alignment for scRNA-seq data. In the second step, these 
methods mainly use a weighted average of the expression levels in the identified neigh-
boring cells to predict the expression levels of query cells. The weights can be based on 
the similarity between the query cell and the neighboring cells, determined using vari-
ous similarity measures.

The prediction accuracy of previous methods depends primarily on two factors: the 
quality of the reference dataset used and the prediction methods employed. Firstly, since 
predictions are made based on the reference dataset, the accuracy of the predictions 
is significantly influenced by the quality of the reference dataset used. Poor results can 
arise when the reference dataset contains high levels of noise and batch effects. While 
there may be multiple reference datasets available for a query dataset, most existing 
methods use only a single reference dataset, making it challenging to select the optimal 
one. Secondly, since the accuracy of predictions is determined by the prediction meth-
ods used, the choice of prediction methods is critical to achieving high accuracy. Exist-
ing prediction methods are often determined by three key components: methods used 
for correcting batch effects, similarity measures used for searching for neighbors, and 
the number of selected neighbors. However, in practice, determining the optimal combi-
nation of batch effect correction methods [13], similarity measures [14], and number of 
selected neighbors remains an open problem.

In this study, we propose ENGEP, an ENsemble learning tool for spatially unmeasured 
Genes Expression Prediction. ENGEP integrates the results of different reference data-
sets and prediction methods, instead of relying on a single reference dataset or method. 
It not only avoids manual selection of the best reference dataset and prediction method 
but also results in a more consistent and accurate prediction. We evaluate ENGEP on 
three spatial transcriptomics datasets generated by different technologies (MERFISH, 
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osmFISH, and STARmap) and benchmark its performance against five cutting-edge 
methods. Our findings reveal that ENGEP surpasses alternative methods both in accu-
racy and in capturing expression patterns, as confirmed by cross-validation. In addition, 
ENGEP is capable to correct low-quality gene expression and accurately predict the 
expression patterns of spatially unmeasured genes. We also unveil novel spatial patterns 
among predicted unmeasured genes, which are distinctly different from the known pat-
terns identified in measured genes. The biological significance of these novel patterns 
is validated through a comprehensive approach, including comparisons of representa-
tive genes within each pattern with corresponding ISH images in Allen Brain Atlas [15], 
analysis of the co-localization of these patterns with specific cell types, and exploration 
of biological processes enriched with genes encompassed by each pattern. Finally, we 
demonstrate that ENGEP requires less computing resources than other methods, ren-
dering it more suitable for handling extensive datasets and broadening its applicability.

Results
Overview of ENGEP

We present ENGEP, a user-friendly tool for predicting expression levels of spatially 
unmeasured genes in a query spatial dataset based on ensemble learning. ENGEP 
achieves high accuracy and robustness by combining multiple prediction results from 
different reference datasets and prediction methods. The input to ENGEP is a spatial 
query dataset and multiple sc/snRNA-seq reference datasets collected from the same or 
similar tissues as the spatial dataset (Fig. 1a). To manage large-scale reference datasets, 
we first partition each substantial reference dataset into smaller sub-reference datasets. 
For each sub-reference and query dataset pair, ENGEP uses k-nearest-neighbor (k-NN) 
regression with ten different similarity measures and four different values of k (number 
of neighbors) to generate forty different base results (Fig. 1b). The ten similarity meas-
ures used, including Pearson correlation coefficient, Spearman correlation coefficient, 
cosine similarity, Manhattan distance, Canberra distance, Euclidean distance, ρp meas-
ure of proportionality [16], φs measure of proportionality [16], weighted rank correla-
tion, and Jaccard index, are complementary to each other and can produce different base 
results. These ten similarity measures are chosen based on a study [14], which evalu-
ates different association measures in single-cell transcriptomics. We prioritize meas-
ures that show strong performance and computational efficiency, making them suitable 
for integration into ENGEP. The use of four different values of k eliminates the need 
for manual parameter selection and increases the diversity of the base results. To gen-
erate the final prediction, ENGEP integrates these base results using a weighted aver-
age ensemble strategy, where the weights are assigned to each sub-reference dataset to 
account for their predictive power (Fig. 1c).

We evaluate performance of ENGEP in two ways (Additional file 1: Fig. S1) by apply-
ing it to three datasets generated by different spatial transcriptomics technologies (Addi-
tional file 2: Table S1). Firstly, we conduct cross-validation experiments on genes shared 
by the query and reference datasets. We use three metrics, including Pearson correlation 
coefficient (PCC), Spearman correlation coefficient (SCC), and root mean square error 
(RMSE), to evaluate performance. Additionally, we visually compare the spatial patterns 
of the predicted values with the measured values. To assess ENGEP’s ability to correct 
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for low-quality genes, we compare the predicted patterns with those measured by ISH 
images from the Allen Brain Atlas or other highly sensitive spatial transcriptomics tech-
niques. Secondly, we use ENGEP to predict the expression levels of spatially unmeasured 
genes and compare the predicted expression patterns with ISH images. We subsequently 
apply pattern analysis to ascertain the presence of novel spatial patterns that have not 
been observed within the spatially measured genes.

ENGEP accurately predicts unmeasured genes for MERFISH

Multiplexed error-robust FISH [17] (MERFISH) is a spatial transcriptomics technique 
that enables imaging of hundreds to thousands of RNA species in individual cells by 
using combinatorial FISH labeling with encoding schemes capable of detecting and cor-
recting errors. However, it faces limitations such as expensive experimental costs, long 
imaging acquisition time, and complex analysis [18]. To overcome these limitations, pre-
dicting the expression levels of genes not measured by MERFISH is valuable. We dem-
onstrate the predictive power of ENGEP on a MERFISH-generated spatial dataset [19] 
of 254 genes on a section segmented into 3700 cells (“mouse2_slice300 ”) in the mouse 
primary motor cortex (MOp). We use seven single-cell (and single-nucleus) RNA-
sequencing datasets generated by different techniques from MOp as reference datasets 
[20] (Additional file 2: Table S1).

We conduct a fivefold cross-validation experiment on the 253 common genes shared 
by the spatial query dataset and seven reference datasets to evaluate performance. We 
first compare the ensemble result with base results generated from different sub-refer-
ence datasets, different similarity measures, and different values of k to show the effec-
tiveness of our ensemble strategy. The accuracy of the base results varies significantly 
with different combinations of sub-reference datasets, similarity measures, and values 
of k. The ensemble result is more accurate than the base results (Additional file 1: Fig. 
S2). Besides, the significant correlation between the weights assigned to sub-references 
and the corresponding base results’ performance demonstrates the effectiveness of our 
weighted ensemble strategy (Additional file 1: Fig. S3, left). Then, to benchmark the per-
formance, we compare ENGEP with five state-of-the-art methods, including Seurat [9], 
SpaGE [10], stPlus [11], Tangram Cell, and Tangram Cluster [12]. Since all of the com-
pared methods are developed based on a single reference dataset, we merge the seven 
reference datasets into a single large dataset before running them. ENGEP significantly 
outperforms the five compared methods (P value < 0.05, Wilcoxon rank sum test) in all 
three evaluation metrics including PCC (Fig.  2a), SCC, and RMSE (Additional file  1: 
Fig. S4). We further extend our experiments to three additional slices (“mouse2_slice50 ,” 
“ mouse1_slice31 ,” and “ mouse1_slice313 ” slices), and the consistently superior perfor-
mance underscores the generalizability and robustness of ENGEP (Additional file 1: Figs. 
S5-7). Finally, to evaluate the performance when only one reference dataset is available, 
we run ENGEP and the five compared methods seven times, each time using only one 
reference dataset (Methods). The results show that ENGEP still outperforms the five 
compared methods, even when using only a single reference dataset (Additional file 1: 
Fig. S8).

In addition to quantitative evaluation, we assess performance in terms of spatial 
patterns of predicted expression. We select ten genes with varying PCCs from the 
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cross-validation experiment to visually compare the measured and predicted expression 
levels. Across a broad range of PCCs, expression patterns predicted by ENGEP match 
well with the measured patterns (Fig.  2b). Moreover, ENGEP is capable of predicting 
clearer spatial patterns than the five compared methods. For instance, ENGEP faith-
fully represents the layer structure for the genes Marcksl1 and Reln and generates clearer 
spatial patterns for genes such as Enpp6 and Pcdh8, achievements that some existing 
methods struggle to replicate (Additional file 1: Fig. S9). We also observe that genes with 
low PCC values often have sparse expression patterns (Fig.  2c). Despite the low PCC 
values for genes like Calb2 and Cdca7, ENGEP still accurately predicts their sparse pat-
terns (Fig. 2b), indicating that lower PCC values do not always indicate poor predictions. 
We then validate the effectiveness of ENGEP in improving low-quality genes. Although 

Fig. 2 Prediction comparison for MERFISH. a Performance comparison between ENGEP and five 
benchmarked methods via fivefold cross‑validation. The scatter plots show the PCC values of every gene 
across ENGEP (y‑axis) and the benchmarked methods (x‑axis). The red line is the y = x line. The AR value 
greater than 1 indicates that ENGEP predicts better than others on more genes, while the P value (Wilcoxon 
rank‑sum test) shows the significant difference between correlations across two methods. b Measured (top) 
and predicted (bottom) expression patterns of test genes selected with different PCC values (bottom arrow). 
c Negative correlation between the PCC values and sparsity values of each gene. d The ability of ENGEP to 
correct for low‑quality genes. The predicted patterns (middle) differ from the measured patterns (top) but are 
in agreement with the ISH images (bottom)
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the predicted patterns for genes in Fig. 2d do not match the MERFISH measurements, 
they are consistent with the ISH images from the Allen Brain Atlas. This suggests that 
ENGEP is capable of correcting the expression levels of low-quality spatial genes.

After conducting cross-validation experiments to validate the performance of ENGEP, 
we utilize it to predict the expression of genes that are not spatially measured but are 
the union of 2000 highly variable genes in each reference dataset. The predicted expres-
sion patterns of the unmeasured genes display clear stratification structures, which 
are confirmed by the corresponding ISH images (Fig. 3a). One of the genes, Pde1a, is 
found to be highly expressed in the L5 ET and L6 CT layers, as confirmed by a previous 
study that reports low DNA methylation, open chromatin, and strong cell type-specific 
expression in these layers [20]. Another gene, Adarb2, is observed to have a scattered 
expression pattern and is recognized as a marker gene for Vip/Sncg and Lamp5 [20], 
which are major subclasses of GABAergic neurons known to have a granular distribu-
tion [12]. Additionally, Ctgf and Tle4 are also found to be marker genes for L6b and L6a, 
respectively [21]. The validated prediction of expression for these genes, in alignment 
with existing literature, underscores ENGEP’s competence in offering pivotal biological 
insights that extend beyond the scope of spatial transcriptomics techniques.

We rigorously analyze the predicted expression profiles of novel spatial patterns not 
present in the measured gene dataset using a meticulous approach (outlined in the 
“Methods” section). We employ a graph-based clustering method to group the measured 
genes, and five known spatial patterns are identified (Fig. 3b, first row, Additional file 1: 
Fig. S10a). Subsequently, we categorize the predicted unmeasured genes into three dis-
tinct groups based on likelihood scores associated with known patterns: genes strongly 
associated with known patterns, genes weakly associated with known patterns, and 
genes that significantly deviate from known patterns (Fig. 3c). For genes strongly associ-
ated with known patterns, we assign them to their closest matching pattern. It is worth 
highlighting that none of the predicted unmeasured genes have been conclusively linked 
to known pattern 5. This could be due to several factors, such as the relatively small num-
ber of genes it encompasses compared to the other four patterns, indicating potentially 
less biological significance. Additionally, there might be noise in the expression profiles 
of the three constituent genes when compared to the corresponding ISH images (Addi-
tional file 1: Fig. S10b). The expression profiles of the remaining four known patterns, 
computed by averaging unmeasured genes (Fig. 3b, second row), exhibit an impressive 
alignment with those generated using measured genes (Fig. 3b, first row). Moreover, the 
representative unmeasured genes assigned to the known patterns closely correspond to 
the respective ISH images (Fig.  3b, third row), and these patterns exhibit co-localiza-
tion with various cell types (Fig. 3b, bottom row), providing compelling evidence for the 
accuracy of ENGEP’s predictions.

We employ a method that encompasses gene filtering, gene clustering, and clus-
tering filtering to unveil novel and biologically significant spatial patterns among 
genes that deviate from the known patterns. This method successfully identifies three 
distinct novel patterns, all of which are markedly different from the five known pat-
terns (Fig.  3d, first row). To validate the identified novel spatial patterns, we select 
representative genes associated with these novel patterns and compare their expres-
sion patterns with ISH images. The well match between the expression levels and ISH 
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images of these representative genes indicates the accuracy and feasibility of our pre-
dictions (Fig. 3d, second row).

We further investigate the biological significance of these novel spatial patterns 
by examining their co-localization with specific cell types (Fig.  3d, bottom row, 

Fig. 3 Prediction of expression levels of unmeasured genes for MERFISH. a Predicted expression patterns 
(top) and corresponding ISH images (bottom) of seven spatially unmeasured genes. b Known patterns in 
MERFISH. The first row displays the expression levels averaged by measured genes, while the second row 
shows the expression levels averaged by unmeasured genes. The number of genes within each pattern 
is indicated. Representative unmeasured genes for each pattern and their corresponding ISH images are 
presented in the third row. Each pattern co‑localizes with distinct cell types (bottom). c Multimodality 
structure of likelihood scores. Unmeasured genes are categorized into three groups by two dashed lines. The 
x‑axis point marked as s (blue point) represents the likelihood score at the low peak between two high peaks. 
The two dashed lines are located at s ± 0.05. d Discovery of three novel expression patterns in MERFISH. The 
first row illustrates the expression levels of three novel patterns, along with the number of genes composing 
each pattern. The second row showcases representative genes and their corresponding ISH images. These 
novel patterns exhibit co‑localization with various non‑neuronal cell types (bottom). e Functional enrichment 
analysis. The top six biological process‑related functional enrichment results are displayed for the three novel 
patterns
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Additional file  2: Table  S2) and performing functional enrichment analysis on the 
genes they encompass (Fig. 3e, Additional file 2: Table S3). Notably, novel pattern 1 
demonstrates a co-localization with oligodendrocytes, which primarily serve the vital 
role of supporting and insulating axons within the central nervous system by form-
ing the protective myelin sheath around them [22, 23]. Our functional enrichment 
analysis highlights that the genes within novel pattern 1 are intricately associated 
with various oligodendrocyte-related biological processes, including myelination, 
ensheathment of neurons, axon ensheathment, oligodendrocyte differentiation, and 
others. Novel pattern 2 exhibits co-localization with astrocytes, a central cell type 
in the brain known for its multifaceted roles, including maintaining the blood-brain 
barrier, supporting neural development and repair, and providing metabolic support 
[24]. Within novel pattern 2, the genes are enriched in various biological processes 
that encompass angiogenesis and circulatory system functions, developmental regu-
lation, tissue remodeling and repair, and metabolic processes. This strong alignment 
between the identified cell type and the enriched biological functions underscores the 
functional relevance of the genes within this pattern. In contrast, novel pattern 3 co-
localizes with a diverse range of non-neuronal cell types, including Endo, SMC, Peri, 
PVM, and VLMC, all of which collaborate to maintain blood supply and circulation 
[25, 26]. The top enriched biological processes are also related to the development 
and maintenance of blood vessels and cell motility and tissue remodeling. It is worth 
noting that, unlike the neuronal cells that co-localize with the known patterns, the 
three novel patterns mainly co-localize with various non-neuronal cells. This might 
be partially attributed to the preponderance of measured genes serving as markers for 
neuronal cell types, while marker genes for non-neuronal cells are scarce [19]. These 
findings strengthen our confidence in the biological relevance of the novel spatial pat-
terns, underscoring their potential to unveil previously unexplored biological insights 
from measured genes.

ENGEP accurately predicts gene expression in unmeasured targets for osmFISH

OsmFISH [6] is a method for spatial transcriptomics sequencing that uses cyclic sin-
gle-molecule fluorescence in situ hybridization to detect gene expression. It has a high 
sensitivity for recovering low levels of gene expression, with a relatively low rate of zero 
counts [27]. However, it may not be able to assess as many molecular species as other 
methods [18]. To address this limitation, it is useful to predict spatially unmeasured gene 
expression for osmFISH data. The osmFISH dataset considered in this study contains 
information about the expression levels of 33 genes in 3405 cells from somatosensory 
cortex. Three single-cell RNA sequencing datasets are used as references (Additional 
file  2: Table  S1). The first reference dataset is the Zeisel [28] dataset, which is gener-
ated by the same lab and measures the same region as the osmFISH dataset. The sec-
ond reference dataset is the AllenSSp [29] dataset, which measures the same region with 
a deep sequencing depth. Finally, the AllenVISp [30] dataset is used as the third refer-
ence, which measures a different but similar region with a sequencing depth similar to 
AllenSSp.

We test the ability of ENGEP on the 33 spatially measured genes using a leave-one-out 
cross-validation experiment. We find that the ensemble result generated by ENGEP is 
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more accurate than the base results (Additional file 1: Fig. S11). Additionally, the weights 
assigned to base results are positively correlated with their accuracy (Additional file 1: 
Fig. S3, middle). These findings provide clear evidence of the effectiveness of our ensem-
ble method. Furthermore, we compare ENGEP with the five other methods, for which 
we merge the three reference datasets into a single large dataset. Based on the compari-
son of PCC, as shown in Fig. 4a, ENGEP significantly outperforms the other methods, 
except for SpaGE (P value < 0.05, Wilcoxon rank-sum test). Although the statistical sig-
nificance may be influenced by the limited number of genes measured, ENGEP produces 
better predictions on more genes than SpaGE, as the AR value is higher than 1. The 
results based on SCC and RMSE also demonstrate the superiority of ENGEP (Additional 
file 1: Fig. S12). When we apply these methods using a single reference dataset, ENGEP 
still performs better than the other methods that use the same reference (Additional 
file 1: Fig. S13).

The qualitative evaluation based on expression patterns of the spatially measured 
genes is also conducted. We visually compare the measured patterns with the predicted 
patterns and observe that they exhibit highly agreement (Fig. 4b, Additional file 1: Fig. 
S14a). For instance, the predicted expression patterns of marker genes of excitatory neu-
rons (Lamp5 and Rorb) display cortical layer patterns, as expected, since excitatory neu-
rons follow a spatial position in the layered structure of the cortex [6]. Additionally, Gfap 
is a marker of type 1 astrocytes derived from layer I, which locates on top of this region 
[28]. The predicted pattern of Gfap also predominantly expresses at the top of the region. 
In comparison to alternative methods, ENGEP generates expression patterns that are 
notably clearer and demonstrate a higher degree of similarity to the observed patterns. 
For example, ENGEP generates clearer spatial patterns for genes such as Syt6 and Cnr1 
and faithfully represents expression patterns for genes Ctps and Hexb. In contrast, some 

Fig. 4 Prediction comparison for osmFISH. a Performance comparison via leave‑one‑out cross‑validation. 
The scatter plots show PCC values of ENGEP (y‑axis) and benchmarked methods (x‑axis). In the lower right 
corner are the AR value and P value (Wilcoxon rank‑sum test). b The expression patterns of the measured 
genes (top) and the predicted expression patterns (bottom). These genes are marker genes of different cell 
types
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existing methods encounter challenges in replicating these patterns (Additional file  1: 
Fig. S14b).

We utilize ENGEP to predict the expression levels of spatially unmeasured genes based 
on the 33 spatially measured genes. To validate the effectiveness of ENGEP in predicting 
expression of unmeasured genes, we visually compare the predicted expression patterns 
with the matching ISH images. Specifically, we choose six marker genes of pyramidal 
neurons in the mouse somatosensory cortex based on the previously published scRNA-
seq data [28]. We discover that the predicted expression patterns of these genes, which 
are consistent with their ISH pictures (Fig.  5a), clearly show the cortical structures. 
For instance, Cux2 is identified as the restricted molecular marker of upper layer (II-
IV) neurons [31] and Foxp2 is recognized as the marker of a subpopulation of neurons 
in layer 6 [32]. The predicted expression patterns of these two genes also show high 
expression levels in the corresponding layers. By accurately predicting these spatially 

Fig. 5 Prediction of expression levels of unmeasured genes for osmFISH. a The predicted expression patterns 
(top) of six spatially unmeasured genes and the corresponding ISH images (bottom). b Known patterns 
in osmFISH. Known patterns, averaged by measured genes, are shown in the first row. Expression levels 
averaged by unmeasured genes with similar profiles are presented in the second row. The number of genes 
within each pattern is listed. Representative unmeasured genes for each pattern and their corresponding 
ISH images are displayed in the third row. Each pattern co‑localizes with distinct cell types (bottom). c 
Multimodality structure of unmeasured genes’ likelihood scores. The unmeasured genes are divided into 
three groups using dashed lines at s ± 0.05, where s (blue point) denotes the likelihood score at the low peak 
between two high peaks. d Discovery of novel patterns in osmFISH. Two novel expression patterns detected 
in osmFISH are shown in the first row, along with the number of genes constituting each pattern. The 
second row presents representative genes and their corresponding ISH images. These novel patterns exhibit 
co‑localization with different cell types (bottom). e Functional enrichment analysis. The top six biological 
process‑related enrichment results for the two novel patterns are presented
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unmeasured marker genes, ENGEP provides insights into the molecular characteristics 
and functional roles of these types within the tissue.

We continue our analysis by employing pattern analysis to detect novel spatial patterns 
within the predicted unmeasured genes. Initially, we utilize a graph-based clustering 
algorithm to partition the measured genes, successfully identifying six known patterns 
(Fig.  5b, first row, Additional file  1: Fig. S15). Notably, three of these patterns consist 
of only one gene, as detailed in Additional file 1: Fig. S15. We then categorize the pre-
dicted unmeasured genes into three groups based on their likelihood scores, indicating 
their association with known patterns (Fig. 5c). For genes closely associated with known 
patterns, we assign them to the patterns that provide the closest match. In cases where 
known patterns consist of multiple genes, we observe various predicted genes strongly 
related to them. However, for the three known patterns that include only one gene, there 
are no genes exhibiting a strong association with them. This may be attributed to the 
limitation of having only one gene in these patterns, making it challenging to capture 
biologically significant spatial patterns (Additional file 1: Fig. S15). Next, we derive the 
predicted expression profiles for the known patterns by averaging the unmeasured genes 
(Fig. 5b, second row). These patterns exhibit remarkable consistency with those obtained 
by averaging the measured genes (Fig.  5b, first row). Additionally, we select repre-
sentative genes for each known pattern among the unmeasured genes. The predicted 
expression levels of these genes are validated through ISH images (Fig. 5b, third row). 
Moreover, these patterns show co-localization with various cell types (Fig. 5b, bottom 
row).

Moving beyond the known patterns, we identify two novel spatial patterns that dis-
tinctly deviate from the established ones (Fig. 5d, first row). Importantly, our predicted 
expression levels of representative genes consistently match the corresponding ISH 
images (Fig.  5d, second row). These novel patterns also exhibit co-localization with 
specific cell types (Fig. 5d, bottom row, Additional file 2: Table S4), and their member 
genes are significantly enriched in critical biological processes (Fig. 5e, Additional file 2: 
Table S5). For instance, novel pattern 1 co-localizes with astrocyte gfap and oligoden-
drocyte mature cell clusters as defined by the authors [6]. Our functional enrichment 
analysis reveals that its member genes intricately participate in biological processes 
related to cell migration and metabolic processes [33]. On the other hand, novel pat-
tern 2 co-localizes with various inhibitory neurons (e.g., inhibitory CP, inhibitory Crhbp, 
inhibitory Kcnip2, and inhibitory IC), which play a fundamental role in maintaining the 
stability and functionality of the nervous system [34]. Its member genes exhibit enrich-
ment across a range of biological processes, particularly those linked to cell interactions, 
neural development, and neurotransmission. Notably, the primary enriched processes, 
shown in Fig. 5e, largely revolve around cell adhesion molecules and acetylcholine. Cell 
adhesion molecules are instrumental in neural interactions, being expressed by inhibi-
tory neurons to establish and maintain crucial connections necessary for proper neural 
function and regulation [35]. The influence of acetylcholine in modulating the activity 
of inhibitory neurons, especially during cerebral cortex functions like motor learning, is 
underscored by the significant enrichment observed in acetylcholine-related processes 
[36]. These findings underscore the importance of these novel patterns in untangling 
complex spatial gene expression and biological processes in the nervous system.
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ENGEP accurately predicts unmeasured gene expression and corrects measured genes 

for STARmap

Spatially resolved transcript amplicon readout mapping (STARmap) is a cutting-edge 
technology for 3D intact-tissue RNA sequencing [37]. While this technology is scalable 
to larger 3D tissue blocks, the current best throughput is only at around 1000 genes, and 
there is a challenge to sequence all genes simultaneously [27]. Additionally, STARmap 
has relatively lower gene detection sensitivity, leading to high gene sparsity [10]. To dem-
onstrate the effectiveness of ENGEP on datasets generated by this technology, we utilize 
a STARmap dataset [37] comprising 1020 genes and 973 cells from a mouse brain slice 
from the visual area (VISp). The same three references as those for the osmFISH dataset 
are used.

A fivefold cross-validation is conducted to quantitatively evaluate the performance 
of different methods. Considering the substantial gene sparsity inherent in STARmap 
data, which has the potential to result in inaccurate measurements and influence perfor-
mance evaluation, we choose to focus on 342 measured genes characterized by a gene 
sparsity below 0.7 for the purpose of the cross-validation experiment. ENGEP outper-
forms all other base predictions based on the mean PCC values (Additional file 1: Fig. 
S16). Our ensemble strategy’s effectiveness is also demonstrated by the positive corre-
lation between the weights assigned to base predictions and their performance (Addi-
tional file 1: Fig. S3, right). In addition, the five compared methods are evaluated using 
a large dataset merged from the three reference datasets. As shown in Fig. 6a, ENGEP 
significantly outperforms the compared methods, except for Tangram-cluster, in terms 
of PCC (P value < 0.05, Wilcoxon rank-sum test). Although the difference is not signifi-
cant, ENGEP still performs better than Tangram-cluster on more genes since the AR 
value is higher than 1. Moreover, based on the SCC and RMSE measurements, ENGEP 
exhibits better performance than the compared methods (Additional file  1: Fig. S17). 
Finally, ENGEP and the five benchmarked methods are evaluated using a same single 
reference dataset. ENGEP still exhibits superior performance compared to the bench-
marked methods (Additional file 1: Fig. S18).

ENGEP can accurately capture expression patterns of spatially measured genes 
(Fig. 6b). Notably, ENGEP’s predicted expression patterns agree better with the meas-
ured patterns than the compared methods. For example, ENGEP generates clearer spa-
tial patterns of Mbp, a representative marker for oligodendrocytes cells [37]. ENGEP also 
accurately predicts the expression patterns of genes Snurf and Plp1. In contrast, some 
existing methods fail to capture the correct patterns of these genes, with a few even pro-
ducing entirely contradictory patterns compared to the measured ones (Additional file 1: 
Fig. S19). Moreover, ENGEP can also correct expression patterns for low-quality genes. 
For instance, although the predicted patterns of the genes shown in Fig. 6c are incon-
sistent with the measured patterns, they are consistent with the ISH images, confirming 
ENGEP’s ability to correct expression. Additionally, ENGEP can correct expression pat-
terns for high sparsity genes (gene sparsity higher than 0.7) that are filtered out in the 
cross-validation experiment. Although the predicted expression of Rorb, Syt6, and Tbr1 
are not consistent with the measured patterns, they are in agreement with the patterns 
measured by osmFISH [6], a high detection sensitivity technique that profiles the similar 
region as STARmap (Fig. 6d).
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Based on the selected 342 low sparsity genes, we use ENGEP to predict the expression 
levels of spatially unmeasured genes. We visually evaluate the accuracy of these predic-
tions by comparing them to corresponding ISH images (Fig. 7a). The predicted expres-
sion patterns show cortical structures and match well with the ISH images. For example, 
the marker gene for subclasses of L2/3 IT from the VISp region [30], Agmat, is accurately 
predicted by ENGEP. Similarly, Opalin, a marker gene of oligodendrocyte subtypes [38], 
is also predicted to have high expression levels in the area of oligodendrocytes. Besides, 
Kcnh5, a marker gene of L4 neurons [39], is also well predicted by ENGEP. By accurately 
predicting these marker genes, ENGEP helps to understanding the cellular heterogeneity 
present in the tissue.

To confirm the presence of novel spatial patterns among the predicted unmeasured 
genes, we initiate the process by clustering the spatially measured genes, which leads to 
the identification of five known patterns (Fig. 7b, first row, Additional file 1: Fig. S20a). 
Subsequently, we calculate likelihood scores associated with the known patterns for the 

Fig. 6 Prediction comparison for STARmap. a Performance comparison via fivefold cross‑validation. ENGEP 
(y‑axis) predicts expression of measured genes (with low sparsity) and shows its superiority to benchmarked 
methods (x‑axis) by comparing PCC values. The AR values and P values are also reported. b The predicted 
expression patterns of measured genes (top) and the measured patterns of them (bottom). c Correction of 
low‑quality genes (with low sparsity). Although the predicted patterns (middle) of these genes differ from 
the measured ones (top), they agree well with the ISH images (bottom). d Correction of low‑quality genes 
(with high sparsity). The predicted patterns (middle) of these high sparsity genes are mismatched with the 
measured patterns of them (top) but are in agreement with patterns measured by osmFISH (bottom), a 
spatial transcriptomics technology with high sensitivity
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unmeasured genes (Fig. 7c), resulting in the categorization of genes into three distinct 
groups. Genes closely associated with the known patterns are then assigned to their 
corresponding counterparts. It is worth noting that no predicted unmeasured genes 
are conclusively linked to known pattern 5 (Additional file 1: Fig. S20a). This could be 
due to several factors. Firstly, when analyzing the measured expression levels of the four 

Fig. 7 Prediction of expression levels of unmeasured genes for STARmap. a Predicted expression patterns 
of five unmeasured genes (top) and their ISH images (bottom). b Known patterns in STARmap. The first row 
shows the expression levels of known patterns, averaged by measured genes. The second row presents 
expression levels averaged by unmeasured genes. The number of genes within each pattern is listed. The 
third row showcases representative unmeasured genes and their corresponding ISH images. These patterns 
co‑localize with distinct cell types (bottom). c Multimodality structure of likelihood scores of unmeasured 
genes. These genes can be divided into three categories using dashed lines at s ± 0.05, where s (blue point) 
represents the likelihood score at the low peak between two high peaks. d Discovery of three novel patterns 
in STARmap. The first row illustrates the expression levels of three novel patterns, along with the number of 
genes constituting each pattern. The second row displays representative genes and their corresponding ISH 
images. These novel patterns demonstrate co‑localization with different cell types (bottom). e Functional 
enrichment analysis. Functional enrichment results are provided (top six) for the three novel patterns



Page 16 of 28Yang and Zhang  Genome Biology          (2023) 24:293 

constituent genes within known pattern 5, we observe that they lack clear layer struc-
tures, unlike the other four known patterns, and do not closely match the ISH images. 
Additionally, known pattern 5 consists of significantly fewer genes compared to the 
other four known patterns, indicating its potentially lower biological significance (Addi-
tional file 1: Fig. S20b). When we average the predicted expression of the unmeasured 
genes designated to known patterns, we observe a harmonious consistency compared 
to the expression averaged from the measured genes (Fig. 7b, second row). Within each 
pattern, we identify representative genes from the pool of unmeasured genes, and their 
predicted expression levels align with ISH images (Fig. 7b, third row). Furthermore, the 
regions of elevated expression for these known patterns exhibit co-localization with var-
ious cell types (Fig. 7b, bottom row).

We proceed to cluster genes that exhibit distinct patterns differing from the known 
ones, and three novel patterns are identified (Fig. 7d, first row). Subsequently, we select 
representative genes for each novel pattern and confirm their expression patterns 
through ISH images (Fig. 7d, second row). These novel patterns are also notable for their 
widespread expression across various cell types (Fig. 7d, bottom row, Additional file 2: 
Table S6) and their involvement in critical biological processes (Fig. 7e, Additional file 2: 
Table S7). Novel pattern 1 closely associates with microglia, the central nervous system’s 
primary immune cells [40]. Examination of the genes within this pattern reveals sig-
nificant enrichment in immune-related functions, including immune response regula-
tion, antigen processing and presentation, and cell-mediated immune responses. Novel 
pattern 2 co-localizes within both astrocytes and endothelial cells, highlighting their 
collaborative role in the central nervous system. Genes in this pattern are intricately 
involved in signaling pathways, cell fate determination, proliferation, angiogenesis, and 
blood-brain barrier integrity [41, 42]. In addition to the two cell types associated with 
novel pattern 2, novel pattern 3 also co-locates with smooth muscle cells and oligoden-
drocytes. Smooth muscle cells and endothelial cells often collaborate within blood vessel 
tissues to regulate vascular tone and diameter [43]. On the other hand, oligodendro-
cytes and astrocytes, both present in the central nervous system, work together to sup-
port neuronal functions and provide protection [33]. Astrocytes can also interact with 
endothelial cells, influencing blood vessel function and the regulation of the blood-brain 
barrier [41, 42]. Genes within this pattern are enriched with various biological processes, 
including those related to angiogenesis and vascular development, immune responses, 
cell adhesion and migration, viral processes, cytokine signaling, and cellular prolifera-
tion and morphogenesis. These patterns shed light on novel aspects of cellular interac-
tions and functions within the central nervous system.

ENGEP exhibits computational efficiency in terms of both time and peak memory usage

To facilitate a comprehensive comparison of computational resources, we conduct 
benchmarking tests to evaluate the execution time and peak memory utilization of dif-
ferent methods. We utilize references from the Brain Image Library (used in the MER-
FISH experiment) to predict the expression of 5000 unmeasured genes within the 
MERFISH dataset. We sample cells and generate reference datasets comprising 30,000 
genes with varying numbers of cells, specifically 10,000, 50,000, 100,000, 200,000, and 
500,000 cells, to assess the impact of cell numbers on reference datasets. We employ 
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a research server equipped with an Intel(R) Xeon(R) Silver 4214 CPU (48 cores and 
128GB of memory) and a Tesla V100-PCIE-16GB GPU (CUDA Version 11.4) to execute 
all methods. Notably, Tangram supports GPU processing, so we run both Tangram-cell 
and Tangram-cluster on our GPU platform. ENGEP supports multi-core parallel opera-
tion, utilizing six cores when run on the CPU platform. Other methods are executed 
using a single core on the CPU platform. Figure 8 shows that only Seurat and ENGEP 
can predict with large references containing 500,000 cells and 30,000 genes. It is note-
worthy that ENGEP is the most computationally efficient method, as its execution time 
and peak memory usage increase gradually with the rise in the number of cells.

Discussion
Recent advances in imaging-based spatial transcriptomics have enabled the mapping of 
gene expression and spatial localization at single-cell resolution, allowing the study of 
spatially organized patterns of gene expression in tissues. However, a major limitation of 
these techniques is the number of genes that can be measured. To address this issue, we 
have developed a new computational tool, ENGEP, that predicts the expression levels of 
spatially unmeasured genes. We have conducted extensive experiments to evaluate the 
performance of ENGEP, and the results demonstrate that it is a highly accurate, scalable, 
fast, and memory-efficient tool. ENGEP’s superior performance positions it as an ideal 
choice for uncovering previously untapped biological insights within spatial transcrip-
tomics data. Moreover, by applying ENGEP to predict the expression levels of spatially 
unmeasured genes, we uncover unique spatial expression patterns that differ from those 
captured by spatially measured genes, offering profound biological significance.

In contrast to their predecessors, such as Seurat, SpaGE, stPlus, Tangram Cell, and 
Tangram Cluster, ENGEP addresses the limitations of limited robustness and vari-
able performance across datasets by embracing an ensemble learning approach. Previ-
ous tools rely on singular reference datasets and prediction methods, which result in 

Fig. 8 Comparison of running time and peak memory. Running time (a) and peak memory (b) of different 
methods. We use different methods to predict 5000 unmeasured genes in spatial dataset containing 
3700 cells and 254 genes with reference datasets comprising 30,000 genes and varying numbers of 
cells, specifically, 10,000, 50,000, 100,000, 200,000, and 500,000 cells. We run both Tangram‑cell and 
Tangram‑cluster on our GPU platform, except for when we run Tangram‑cell with a reference containing 
200,000 cells. In that case, we encounter a memory error while using GPU, so we switch to using CPU instead
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disparities in their effectiveness. For example, SpaGE excels in MERFISH and osmFISH 
datasets but struggles with STARmap, while Tangram Cell and Tangram Cluster dis-
play competitive performance on STARmap but falter on the other datasets. In contrast, 
ENGEP integrates a diverse array of reference datasets and prediction methods through 
ensemble learning, including k-NN regression employing various similarity metrics and 
k values. This multifaceted strategy obviates the need for selecting an optimal combina-
tion of reference datasets, similarity measures, and k values, resulting in predictions that 
are not only more robust but also notably accurate. Furthermore, ENGEP is designed to 
be user-friendly, which means it does not require meticulous parameter tuning.

Throughout our preceding experiments, we underscore the efficacy of our ensemble 
approach, consistently observing superior performance from ensemble results com-
pared to base results. We further delve into the impact of the number of references on 
outcomes through a series of experiments (Additional file  1: Section S3.1). Our find-
ings reveal that datasets with fewer references (e.g., osmFISH and STARmap) invariably 
benefit from an increasing number of references. Conversely, datasets with a substan-
tial number of references (e.g., MERFISH) exhibit an initial performance ascent followed 
by saturation (Additional file 1: Fig. S21). Furthermore, we conduct analyses on the ten 
measures employed in this study to ascertain their consistent performance [44] in both 
accuracy and runtime (Additional file  1: Section S3.2). We find no singular similarity 
measure that universally outperforms others across all datasets. This underscores the 
fundamental necessity of amalgamating results emanating from diverse reference and 
prediction methods, reinforcing the paramount value of our ensemble approach.

Batch effect correction is widely used in previous tools for searching for neighbors in 
the reference for query cells. However, in this study, we do not consider batch effect cor-
rection for several reasons. Firstly, it is unclear which batch effect correction method is 
most suitable for this task. Secondly, using an inappropriate batch correction method 
can lead to over-correction and produce misleading results. Thirdly, some batch correc-
tion methods are time-consuming and require a large amount of memory, which would 
increase the time and memory cost of ENGEP. What is more important, our experi-
ment results have demonstrated that even without using batch effect correction, ENGEP 
outperforms the five methods that carefully design batch effect corrections. Therefore, 
we focus on developing a robust and accurate method that avoids the complexity and 
potential errors associated with batch effect correction.

The current version of ENGEP is focused on predicting gene expression levels of 
unmeasured genes using shared genes between query and reference datasets, without 
accounting for the spatial arrangement of cells within the query data. Recent research 
has illuminated a structural correspondence between cell distances in expression space 
and their physical locations, underscoring the importance of incorporating spatial data 
for accurate gene expression prediction [1, 45]. We plans to enhance ENGEP by inte-
grating cell spatial information. Furthermore, innovative studies like CSOmap [45] have 
unveiled that cellular spatial organization is orchestrated through ligand-receptor inter-
actions, which can be leveraged to reconstruct cell spatial organization from scRNA-seq 
data. Novel methodologies can be devised to incorporate this spatial information into 
ENGEP’s framework. Moving forward, after generating predictions for spatially unmeas-
ured genes, an array of downstream analyses can be undertaken. These include exploring 
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spatial gene expression patterns, conducting spatial trajectory inference, investigating 
cell-cell communication patterns, and constructing spatially resolved gene regulatory 
networks, among others. While our current study has primarily centered on exploring 
spatial gene expression patterns, our future research endeavors aim to expand ENGEP’s 
capabilities to encompass a diverse array of additional downstream analyses guided by 
the predictions generated by our ensemble methods.

Conclusions
In conclusion, our study introduces ENGEP, an accurate and scalable tool for predict-
ing gene expression levels of spatially unmeasured genes. By leveraging an ensemble 
learning strategy that integrates multiple reference datasets and prediction methods, 
ENGEP outperforms existing state-of-the-art tools. ENGEP also enables the detection 
of novel patterns that are unknown in the measured genes. This highlights the impor-
tance of predicting spatially unmeasured genes. Our results demonstrate the efficiency 
of ENGEP for gene expression prediction and its potential for advancing the field of spa-
tial transcriptomics.

Methods
ENGEP algorithm

ENGEP is designed to predict the expression of genes that are not present in the spatial 
(query) dataset but are present in multiple scRNA-seq (reference) datasets. To achieve 
this, ENGEP takes as input a set of gene expression matrices from the reference datasets, 
as well as a gene expression matrix from the query dataset. The method consists of two 
main steps: (i) generating multiple base results using k-nearest-neighbor (k-NN) regres-
sion; different reference datasets, similarity measures, and numbers of neighbors (k) are 
used for this step; and (ii) combining these base results into a consensus result using a 
weighted average ensemble strategy. In this step, weights are assigned to different refer-
ence datasets to take into account their predictive power.

Step 1: Generating base results

ENGEP generates multiple base results using k-NN regression from three perspectives: 
(i) different reference datasets, (ii) different similarity measures, and (iii) different values 
of k.

Different sequencing technologies have their own strengths and weaknesses [46, 47]. 
To account for data quality variations, ENGEP utilizes multiple reference datasets for 
predicting gene expression levels of unmeasured genes. Specifically, ENGEP assumes 
that several scRNA-seq datasets profiling the same or similar region and sharing com-
mon genes with the spatial dataset are available. To adapt ENGEP to handle large refer-
ence datasets, each scRNA-seq dataset is randomly partitioned into ⌈n/n0⌉ equal-sized 
sub-reference datasets, where n is the number of cells in the scRNA-seq dataset and ⌈·⌉ 
is the ceiling function. By default, n0 is set to 8000. The set of sub-reference datasets is 
represented as X (r) R

r=1
 , where X (r) is an nr × p gene expression matrix of the r-th sub-

reference with rows representing cells and columns representing genes, R is the number 
of sub-reference datasets, nr is the number of cells in the r-th sub-reference, and p is 
the number of genes shared by all references. The gene expression matrix of the query 
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dataset, Y, has m cells and q genes. ENGEP generates multiple base predictions for the 
p− g unmeasured genes in the spatial dataset by using different sub-reference datasets, 
where g = p

⋂

q represents the set of genes shared by the reference and query datasets.
For k-NN regression, it is important to use a similarity metric to find the closest 

neighboring cells in the reference data for the query cells. However, the optimal simi-
larity measure for these two types of datasets has not been clearly established [14]. To 
address this, ten different similarity measures are employed: Pearson correlation coeffi-
cient, Spearman correlation coefficient, cosine similarity, Manhattan distance, Canberra 
distance, Euclidean distance, ρp proportionality measure, φs proportionality measure, 
weighted rank correlation, and Jaccard index. For consistency, distance measures (such 
as Manhattan distance, Canberra distance, Euclidean distance, and φs proportional-
ity measure) are transformed into similarity scores using s = 1/(1+ d) , where a higher 
value indicates a greater similarity across all similarity measures. We denote the set of 
similarity measures used as T.

The prediction results can vary with the chosen value of k. Determining the opti-
mal value of k is still a challenge. To address this issue, we use multiple values of k 
(i.e., K = 20, 30, 40, 50 ) to generate multiple base predictions, making the method more 
flexible and providing a variety of base results. For correlation measures that can have 
negative values (e.g., Pearson correlation coefficient, Spearman correlation coefficient, 
cosine similarity, and weighted rank correlation), if the similarity score of the k nearest 
neighbors is negative, it is set to 0.

Mathematically, each sub-reference X (r) is split into two matrices: X (r,1) , an nr × g 
matrix representing the expression levels of g genes shared by the reference and query, 
and X (r,2) , an nr ×

(

p− g
)

 matrix representing the expression levels of p− g genes 
unique to the sub-reference. Additionally, Y (1) is denoted as the m× g submatrix of Y 
that corresponds to the expression levels of g genes shared by the sub-reference and 
query. Given a sub-reference r ( r = 1, 2, . . . ,R ), a similarity measure t ( t ∈ T ), and a value 
of k ( k ∈ K ), the expression levels of gene ℓ ∈

(

p− g
)

 in query cell i are predicted as fol-
lows. First, based on X (r,1) and Y (1) , the k nearest neighbors (denoted as Nrtk(i) ) from the 
nr cells in sub-reference r are identified, using similarity measure t. Then, the similarity 
between spatial cell i and its nearest neighbors j ∈ Nrtk(i) is calculated, denoted as w(rtk)

ij  . 
The predicted expression of gene ℓ in query cell i (denoted as Ŷ (2,rtk)

iℓ  ) is then calculated 
as a weighted average of the nearest neighbor cells in sub-reference r, 

In doing so, R|T||K| base results for each cell i and gene ℓ are obtained using different 
combinations of r, t and k, where | · | is the cardinality of a set.

Step 2: Combining base results

After obtaining the base prediction results, we develop a weighted average ensemble 
method to produce a consensus prediction. To account for differences in the quality of 
the references and batch effects between the reference and query datasets, we propose 
a metric to quantify the predictive power of each sub-reference. The base predictions 

(1)Ŷ
(2,rtk)
iℓ =

∑

j∈Nrtk (i)
w
(rtk)
ij X

(r,2)
jℓ

∑

j∈Nrtk (i)
w
(rtk)
ij

.
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are then integrated by taking into account the estimated predictive power of each 
sub-reference.

Intuitively, a sub-reference that can better predict the common genes shared between 
the reference and the query has a stronger predictive power for genes that have not been 
spatially measured. Similar to Eq. (1), we first use k-NN regression to make predictions 
for common genes ℓ′ ∈ g:

Then, the results from the base predictions are combined across different similarity 
measures and values of k to obtain a consensus prediction for each sub-reference:

The square of the Pearson correlation coefficient between the prediction expression 
matrix Ŷ (1,r) and the observed expression matrix Y (1) is used to estimate the predictive 
power of each sub-reference r: sr = cor2

(

Ŷ (1,r),Y (1)
)

 . Finally, we use a linear map to 

convert the predictive power sr to a weight ωr , with a range of values between 0.1 and 
0.9.

To take into account the predictive power of each sub-reference, we use the following 
weighted average ensemble method to obtain the consensus prediction result based on 
the R|T||K| base prediction results:

Note that here we treat each similarity measure and number of neighbors equally 
based on the assumption that predictions produced using different similarity measures 
and number of neighbors are comparable. Therefore, the weight assigned to each base 
prediction is only related to the sub-reference, not to the similarity measure or the value 
of k.

Datasets

We conduct experiments using three spatial transcriptomics datasets generated by dif-
ferent technologies: MERFISH, osmFISH, and STARmap. To analyze each spatial data-
set, we collect multiple scRNA-seq reference datasets that profile the same or similar 
tissue as the spatial dataset (see Additional file 2: Table S1).

The MERFISH dataset is obtained from the Brain Image Library [19] and is measured 
from MOp (mouse brain primary motor cortex). We use scRNA-seq reference datasets 
provided by the BRAIN Initiative Cell Census Network [20] (BICCN) which profile the 
same region as the MERFISH dataset, including seven single-cell or single-nucleus tran-
scriptomics datasets (scRNA-seq and snRNA-seq using 10x v2, v3 and SMART-Seq v4).

The osmFISH dataset [6] is measured from SMSc (mouse brain somatosensory cor-
tex), and we use the following three scRNA-seq datasets as references. The Zeisel [28] 

(2)Ŷ
(1,rtk)
iℓ′ =

∑

j∈Nrtk (i)
w
(rtk)
ij X

(r,1)
jℓ′

∑

j∈Nrtk (i)
w
(rtk)
ij

.

(3)Ŷ
(1,r)
iℓ′ =

∑

t∈T

∑

k∈K Ŷ
(1,rtk)
iℓ′

|T||K|
.

(4)Ŷ
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∑R
r=1

∑

t∈T

∑

k∈K ωr Ŷ
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dataset is measured by the same lab as the osmFISH dataset. The AllenSSp [29] dataset 
is more deeply sequenced than the Zeisel dataset and is measured from the same region 
as the osmFISH dataset. The AllenVISp [30] dataset is measured from a different region, 
VISc (mouse brain visual cortex), which is similar as SMSc.

The STARmap dataset [37] is measured from VISc. Its reference datasets are the same 
as those for the osmFISH dataset, as they are all measured from the same or similar 
mouse brain region.

Data preprocessing

For the spatial transcriptomics datasets, we obtain the MERFISH datasets by select-
ing slices such as “ mouse2_slice300 ,” “ mouse2_slice50 ,” “ mouse1_slice31 ,” and 
“ mouse1_slice313 .” Considering that there are four of the 258 genes measured by MER-
FISH showing poor staining [19], we use the rest 254 genes in this study. For the osm-
FISH dataset, we only use cells from cortical regions, and no genes are filtered from the 
osmFISH dataset. We use the smaller 1020-gene replicate (containing 973 cells) as the 
STARmap dataset, as it has lower gene sparsity compared to the larger one (containing 
1549 cells). We filter out genes with sparsity higher than 0.7 and use the remaining 342 
genes to train the algorithm. No cells are filtered from the STARmap dataset.

For scRNA-seq datasets, cells in the seven BICCN references datasets are filtered 
based on the quality-control files provided. For the Zeisel dataset, we use cells from the 
somatosensory cortex. For the AllenSSp and AllenVISp datasets, we filter out low quality 
cells according to metadata information. No filtration is applied on genes.

We use the Seurat R package to preprocess both the scRNA-seq and spatial datasets. 
We begin by selecting the genes that are common to both datasets. Then, we apply the 
NormalizeData function in the Seurat R package to normalize both the scRNA-seq and 
spatial datasets on these common genes.

Cross‑validation on spatially measured genes

We evaluate the performance of different methods on spatially measured genes through 
cross-validation. We randomly divide a set of g genes, shared by both the spatial and 
scRNA-seq datasets, into N equal-sized subsets. In each iteration, we leave out one of 
these subsets for evaluation and use the remaining N − 1 subsets as common genes 
to predict the expression of the left-out set of genes. This process is repeated N times, 
each time with a different set of genes left out, so that we obtain predictions for all g 
genes. For the MERFISH and STARmap datasets, which have more shared genes, we 
set N = 5 and perform a fivefold cross-validation. For the osmFISH dataset, which has 
fewer shared genes, we set N as the number of shared genes and conduct a leave-one-out 
cross-validation experiment.

We assess the performance by computing three metrics: Pearson correlation coef-
ficient (PCC), Spearman correlation coefficient (SCC), and root mean square error 
(RMSE) between the measured and predicted expression for each gene. Better perfor-
mance is indicated by higher PCC and SCC values as well as a lower RMSE value. Fur-
thermore, we calculate an accuracy ratio (AR) to facilitate a clearer comparison between 
ENGEP and a compared method. The AR is determined as the ratio of the number of 
genes for which ENGEP provides better predictions to the number of genes for which 
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ENGEP performs worse than the compared method. An AR value greater than 1 indi-
cates that ENGEP performs better than the compared method. In addition to the quan-
titative metrics, we also conduct a visual comparison of the measured and predicted 
expression patterns. Due to technical noise, the measured expression levels of some 
genes may not be reliable. Therefore, a mismatch between the measured and predicted 
gene expression patterns does not necessarily indicate poor performance. Thus, we also 
compare the predicted patterns with those obtained from in  situ hybridization (ISH) 
images in the Allen Brain Atlas or with patterns obtained using other high-sensitivity 
spatial transcriptomics technologies.

Prediction of gene expression in unmeasured genes

We train the model using all genes shared by the reference and query datasets and pre-
dict the expression levels of the genes that are exclusive to the reference datasets. To 
improve the sensitivity of the analysis, we focus on the union of 2000 highly variable 
genes in each reference dataset and predict their expression levels. For the MERFISH, 
osmFISH, and STARmap datasets, we predict expression levels for 5234, 3433, and 2810 
unmeasured genes, respectively.

Identification of known spatial patterns from measured gene expression

We identify known spatial patterns through a graph-based clustering of spatially meas-
ured genes. Initially, we select spatially variable genes by employing Moran’s I with a 
stringent threshold, requiring an adjusted P-value of less than 0.05. To ensure robust 
results, we also exclude genes expressed in fewer than 5% of the cells. Subsequently, we 
calculate a Spatial Cross-Correlation Index (SCI) [48] for all remaining gene pairs. It is 
worth noting that our approach differs from the original MERINGUE approach [48], 
which does not consider self-loops when constructing the cell adjacency relationship 
network. In our implementation, we adapt the cell adjacency relationship matrix by nor-
malizing it so that the total weight shared among neighboring cells in each row or col-
umn sums up to 0.5, while the diagonal element is set to 0.5. This adjustment allows 
us to assign higher SCI scores to pairs of genes exhibiting similar expression patterns 
across the same cells. We then construct a weighted gene network using the computed 
SCI scores among genes. We retain elements in the similarity matrix that surpass a cer-
tain threshold (at the 10th percentile) and replace the rest with zeros. Finally, we employ 
Louvain clustering on the constructed gene network, with the default resolution param-
eter set to 1. This partitions the genes into distinct expression patterns, and the average 
expression of genes within each pattern serves as the representative expression profile of 
a known pattern. Note that in the MERFISH and STARmap datasets, which encompass 
a broader set of measured genes, we employ a filter to remove identified patterns com-
posed of just a single gene.

Identification of novel spatial patterns from predicted gene expression

For spatially unmeasured genes predicted by our method, we also employ Moran’s I to 
filter out genes that do not exhibit spatial patterns and exclude genes expressed in fewer 
than 5% of the cells. Among the remaining genes, we identify the closest known spatial 
pattern by calculating the SCI scores between their predicted gene expressions and the 



Page 24 of 28Yang and Zhang  Genome Biology          (2023) 24:293 

expression profiles of all known patterns. The highest SCI score is regarded as the likeli-
hood score, which indicates the degree of similarity between an unmeasured gene and a 
known pattern. Subsequently, we utilize Hartigan’s dip test to analyze the distribution of 
likelihood scores across all unmeasured genes to detect any potential novel patterns. The 
presence of a multimodality structure in the distribution of likelihood scores indicates 
the existence of novel patterns, while the absence of such a structure suggests that no 
novel patterns are present.

If novel patterns are present, we classify unmeasured genes into three distinct groups: 
those that exhibit a strong association with known patterns, those that show a weak 
association with known patterns, and those that are entirely different from the known 
patterns. Genes showing a strong association with known patterns are categorized 
within those established patterns. Conversely, genes that are distinctly different from 
the known patterns are considered part of novel patterns not previously observed in 
measured genes. Initially, we employ a kernel density estimation method to estimate the 
density function of the probability distribution for likelihood scores. This is achieved 
by using the density R function with default parameters. Subsequently, we identify the 
two high peaks within this estimated density function and and determine the likelihood 
score at the low peak between the two high peaks, denoted as s. Genes with likelihood 
scores greater than s + 0.05 are classified as members of known patterns. Conversely, 
genes with likelihood scores lower than s − 0.05 are designated as belonging to novel 
patterns. The remaining genes are considered weakly associated with known patterns. It 
is crucial to emphasize that our classification method does not rely on a mere threshold 
to assign unmeasured genes to either known or unknown pattern categories. Instead, 
it categorizes them into three distinct groups, enabling a clear differentiation between 
genes associated with novel patterns and those linked to known patterns, leading to the 
discovery of valuable insights into entirely new realms of biology.

For genes associated with known patterns, we straightforwardly assign them to the 
most closely matching established patterns. However, when dealing with genes linked 
to novel patterns, we follow a meticulous three-step process to unveil these novel spa-
tial patterns. First, we apply a filter to exclude genes with lower biological variability. 
Specifically, we eliminate the lowest 10% of genes based on their mean expression levels. 
Subsequently, we further refine this set by removing the lowest 10% of genes with the 
least variability, employing the Seurat R package (FindVariableFeatures function). Next, 
akin to the procedure for identifying known spatial patterns from the measured genes, 
we utilize a graph-based clustering method to categorize the remaining genes into dif-
ferent clusters. Notably, we opt for a lower resolution parameter of 0.6 to prevent the 
formation of numerous small clusters, given the larger number of unmeasured genes in 
comparison to the measured ones. Finally, to ensure the biological relevance of our find-
ings, we employ a stringent filtering process. Initially, we filter out clusters based on a 
three-times standard deviation rule. We calculate the mean similarity score (SCI) within 
each gene cluster and denote it as Z. Clusters are retained only if Z surpasses the mean 
by three times the standard deviation of SCI scores. Subsequently, we refine the retained 
clusters by iteratively eliminating genes with fewer than ten connections within their 
respective sub-gene networks. These refined clusters, characterized by their average 
gene expression, are considered as novel patterns.
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Following the identification of novel spatial patterns, we conduct a multifaceted analy-
sis to explore their biological significance. We begin by selecting representative genes 
from each pattern and assess their expression by comparing them to the corresponding 
ISH images in the Allen Brain Atlas. Next, we delve deeper into the predicted expression 
of these novel spatial patterns, investigating their potential associations with specific cell 
types within the tissue, as outlined in Additional file 1: Section S3.3. This analysis aims to 
establish links with distinct cell types or states, shedding light on the patterns’ biological 
relevance. Finally, we employ Gene Ontology enrichment analysis using the clusterPro-
filer R package to unveil the biological processes associated with these novel spatial pat-
terns. Notably, for this analysis, the background gene list comprises the union of genes 
included in the reference datasets.

ENGEP for single reference datasets

Despite being designed for multiple reference datasets, ENGEP can still be applied in sit-
uations where only a single reference dataset is available. In these cases, ENGEP gener-
ates base predictions by utilizing different similarity measures and different values of k. 
The final ensemble result is obtained by taking the average of these base predictions.

Parameter settings for ENGEP

ENGEP does not require meticulously selected parameters, making it robust and 
user-friendly. However, there are still some parameters to consider: those related to 
pre-processing steps, the maximum number n0 of cells in each sub-reference dataset 
when partitioning extensive reference datasets, and the array of k values used in KNN 
regression.

Our method does not require the use of specialized data pre-processing techniques. 
After filtering out cells and genes based on data quality control, we normalize the data 
using the Seurat R package. Within the function, we utilize the “LogNormalize” method 
as the “normalization.method” parameter, while keeping other parameters at their 
default values. The parameter n0 determines the maximum number of cells in each sub-
reference dataset, which can affect computational time and memory usage. We default 
to setting n0 to 8000.

The selection of k values used in KNN regression may significantly influences per-
formance and involves a trade-off between bias and variance. Lower k values result in 
reduced bias but increased variance, whereas higher k values yield lower variance but 
elevated bias. To strike an optimal balance between bias and variance, we adopt an 
ensemble learning approach that utilizes multiple k values, rather than a single value. We 
execute ENGEP with a range of k values (specifically, K = {20, 30, 40, 50} ) as the default. 
For users with reference datasets containing a modest number of cells, utilizing smaller 
k values is recommended. Conversely, for those with more extensive reference datasets, 
increasing the k values is advisable.

Benchmarked methods

We evaluate the performance of ENGEP in comparison to five state-of-the-art methods: 
Seurat [9], SpaGE [10], stPlus [11], Tangram Cell, and Tangram Cluster [12]. Tangram-
cluster is a variation of Tangram that runs its mapping process at the cell cluster level. 
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All of the methods are applied using their default parameters or the settings specified in 
their accompanying documentation. We follow the data processing procedures, such as 
normalization and scaling, as outlined in the source code of each method. In addition, 
considering that some benchmarked methods report memory errors when comparing 
performance on MERFISH with large reference integrated by seven references, we use 
the union of high variable genes of every reference instead of all genes as the input fea-
tures to run the benchmarked methods.

Supplementary Information
The online version contains supplementary material available at https:// doi. org/ 10. 1186/ s13059‑ 023‑ 03139‑w.

Additional file 1. Supplementary Figures S1‑S22 and Supplementary texts.

Additional file 2. Supplementary Tables S1‑S7.

Additional file 3. Review history.

Acknowledgements
Not applicable.

Review history
The review history is available as Additional file 3.

Peer review information
Veronique van den Berghe and Anahita Bishop were the primary editors of this article and managed its editorial process 
and peer review in collaboration with the rest of the editorial team.

Authors’ contributions
X.F.Z. conceives the study. S.T.Y. develops and performs data analyses. S.T.Y. and X.F.Z. write the manuscript. X.F.Z. super‑
vises the whole project. All authors read and approved the final manuscript.

Funding
This work was supported by the National Natural Science Foundation of China [12271198 and 11871026].

Availability of data and materials
The datasets analyzed during the current study are all publicly available. Spatial transcriptomics datasets are as follows: 
MERFISH (https:// doi. org/ 10. 35077/g. 21) [49], osmFISH (http:// linna rsson lab. org/ osmFI SH/) [50], and STARmap (https:// 
kanga roo‑ goby. squar espace. com/ data) [51]. ScRNA‑seq (snRNA‑seq) datasets are as follows: seven datasets from BRAIN 
Initiative Cell Census Network (https:// assets. nemoa rchive. org/ dat‑ ch1nq b7) [52], Zeisel (http:// linna rsson lab. org/ 
cortex/) [53], AllenSSp, and AllenVISp (https:// portal. brain‑ map. org/ atlas es‑ and‑ data/ rnaseq) [54]. Images from Allen 
Brain Atlas are available at http:// mouse. brain‑ map. org/ [55]. ENGEP is available as the open‑source R package ENGEP, 
with source code freely available at https:// github. com/ Zhang xf‑ ccnu/ ENGEP [56] and corresponding documentation 
at https:// github. com/ Zhang xf‑ ccnu/ ENGEP‑ examp les [57]. Additionally, the source code used in the manuscript is also 
deposited in Zenodo with a DOI assignment (DOI: https:// doi. org/ 10. 5281/ zenodo. 83655 72) [58]. ALL repositories are 
released under MIT license.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 25 April 2023   Accepted: 4 December 2023

References
 1. Nitzan M, Karaiskos N, Friedman N, Rajewsky N. Gene expression cartography. Nature. 2019;576:132–7.
 2. Moffitt JR, Bambah‑Mukku D, Eichhorn SW, Vaughn E, Shekhar K, Perez JD, et al. Molecular, spatial, and functional 

single‑cell profiling of the hypothalamic preoptic region. Science. 2018;362:eaau5324.

https://doi.org/10.1186/s13059-023-03139-w
https://doi.org/10.35077/g.21
http://linnarssonlab.org/osmFISH/
https://kangaroo-goby.squarespace.com/data
https://kangaroo-goby.squarespace.com/data
https://assets.nemoarchive.org/dat-ch1nqb7
http://linnarssonlab.org/cortex/
http://linnarssonlab.org/cortex/
https://portal.brain-map.org/atlases-and-data/rnaseq
http://mouse.brain-map.org/
https://github.com/Zhangxf-ccnu/ENGEP
https://github.com/Zhangxf-ccnu/ENGEP-examples
https://doi.org/10.5281/zenodo.8365572


Page 27 of 28Yang and Zhang  Genome Biology          (2023) 24:293  

 3. Ståhl PL, Salmén F, Vickovic S, Lundmark A, Navarro JF, Magnusson J, et al. Visualization and analysis of gene expres‑
sion in tissue sections by spatial transcriptomics. Science. 2016;353:78–82.

 4. Stickels RR, Murray E, Kumar P, Li J, Marshall JL, Di Bella DJ, et al. Highly sensitive spatial transcriptomics at near‑
cellular resolution with Slide‑seqV2. Nat Biotechnol. 2021;39:313–9.

 5. Eng C‑HL, Lawson M, Zhu Q, Dries R, Koulena N, Takei Y, et al. Transcriptome‑scale super‑resolved imaging in tissues 
by RNA seqFISH+. Nature. 2019;568:235–9.

 6. Codeluppi S, Borm LE, Zeisel A, La Manno G, van Lunteren JA, Svensson CI, et al. Spatial organization of the soma‑
tosensory cortex revealed by osmFISH. Nat Methods. 2018;15:932–5.

 7. Zhuang X. Spatially resolved single‑cell genomics and transcriptomics by imaging. Nat Methods. 2021;18:18–22.
 8. Moses L, Pachter L. Museum of spatial transcriptomics. Nat Methods. 2022;19:534–46.
 9. Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, Mauck WM, et al. Comprehensive integration of single‑cell 

data. Cell. 2019;177:1888‑902.e21.
 10. Abdelaal T, Mourragui S, Mahfouz A, Reinders MJT. SpaGE: Spatial gene enhancement using scRNA‑seq. Nucleic 

Acids Res. 2020;48:e107–e.
 11. Chen S, Zhang B, Chen X, Zhang X, Jiang R. stPlus: a reference‑based method for the accurate enhancement of 

spatial transcriptomics. Bioinformatics. 2021;37:i299–307.
 12. Biancalani T, Scalia G, Buffoni L, Avasthi R, Lu Z, Sanger A, et al. Deep learning and alignment of spatially resolved 

single‑cell transcriptomes with Tangram. Nat Methods. 2021;18:1352–62.
 13. Tran HTN, Ang KS, Chevrier M, Zhang X, Lee NYS, Goh M, et al. A benchmark of batch‑effect correction methods for 

single‑cell RNA sequencing data. Genome Biol. 2020;21:12.
 14. Skinnider MA, Squair JW, Foster LJ. Evaluating measures of association for single‑cell transcriptomics. Nat Methods. 

2019;16:381–6.
 15. Lein ES, Hawrylycz MJ, Ao N, Ayres M, Bensinger A, Bernard A, et al. Genome‑wide atlas of gene expression in the 

adult mouse brain. Nature. 2007;445:168–76.
 16. Quinn TP, Richardson MF, Lovell D, Crowley TM. propr: An R‑package for identifying proportionally abundant features 

using compositional data analysis. Sci Rep. 2017;7:16252.
 17. Chen KH, Boettiger AN, Moffitt JR, Wang S, Zhuang X. Spatially resolved, highly multiplexed RNA profiling in single 

cells. Science. 2015;348:aaa6090.
 18. Lewis SM, Asselin‑Labat M‑L, Nguyen Q, Berthelet J, Tan X, Wimmer VC, et al. Spatial omics and multiplexed imaging 

to explore cancer biology. Nat Methods. 2021;18:997–1012.
 19. Zhang M, Eichhorn SW, Zingg B, Yao Z, Cotter K, Zeng H, et al. Spatially resolved cell atlas of the mouse primary 

motor cortex by MERFISH. Nature. 2021;598:137–43.
 20. Yao Z, Liu H, Xie F, Fischer S, Adkins RS, Aldridge AI, et al. A transcriptomic and epigenomic cell atlas of the mouse 

primary motor cortex. Nature. 2021;598:103–10.
 21. Muñoz‑Castañeda R, Zingg B, Matho KS, Chen X, Wang Q, Foster NN, et al. Cellular anatomy of the mouse primary 

motor cortex. Nature. 2021;598:159–66.
 22. Sherman DL, Brophy PJ. Mechanisms of axon ensheathment and myelin growth. Nat Rev Neurosci. 2005;6:683–90.
 23. Tomassy GS, Dershowitz LB, Arlotta P. Diversity matters: a revised guide to myelination. Trends Cell Biol. 

2016;26:135–47.
 24. Molofsky AV, Krenick R, Ullian E, Tsai H‑H, Deneen B, Richardson WD, et al. Astrocytes and disease: a neurodevelop‑

mental perspective. Genes Dev. 2021;26:891–907.
 25. Dudley AC, Griffioen AW. Pathological angiogenesis: mechanisms and therapeutic strategies. Angiogenesis. 

2023;26:313–47.
 26. Bergers G, Song S. The role of pericytes in blood‑vessel formation and maintenance. Neuro Oncol. 2005;7:452–64.
 27. Waylen LN, Nim HT, Martelotto LG, Ramialison M. From whole‑mount to single‑cell spatial assessment of gene 

expression in 3D. Commun Biol. 2020;3:602.
 28. Zeisel A, Muñoz‑Manchado AB, Codeluppi S, Lönnerberg P, La Manno G, Juréus A, et al. Cell types in the mouse 

cortex and hippocampus revealed by single‑cell RNA‑seq. Science. 2015;347:1138–42.
 29. Chatterjee S, Sullivan HA, MacLennan BJ, Xu R, Hou Y, Lavin TK, et al. Nontoxic, double‑deletion‑mutant rabies viral 

vectors for retrograde targeting of projection neurons. Nat Neurosci. 2018;21:638–46.
 30. Tasic B, Yao Z, Graybuck LT, Smith KA, Nguyen TN, Bertagnolli D, et al. Shared and distinct transcriptomic cell types 

across neocortical areas. Nature. 2018;563:72–8.
 31. Ferrere A, Vitalis T, Gingras H, Gaspar P, Cases O. Expression of Cux‑1 and Cux‑2 in the developing somatosensory 

cortex of normal and barrel‑defective mice. Anat Rec A Discov Mol Cell Evol Biol. 2006;288A:158–65.
 32. Ferland RJ, Cherry TJ, Preware PO, Morrisey EE, Walsh CA. Characterization of Foxp2 and Foxp1 mRNA and protein in 

the developing and mature brain. J Comp Neurol. 2003;460:266–79.
 33. John DC, Ben E, Amit K, Lynette CF, Jennifer LZ, Karen SC, et al. A transcriptome database for astrocytes, neurons, 

and oligodendrocytes: a new resource for understanding brain development and function. J Neurosci. 2008;28:264.
 34. McBain CJ, Fisahn A. Interneurons unbound. Nat Rev Neurosci. 2001;2:11–23.
 35. Dalva MB, McClelland AC, Kayser MS. Cell adhesion molecules: signalling functions at the synapse. Nat Rev Neurosci. 

2007;8:206–20.
 36. Ren C, Peng K, Yang R, Liu W, Liu C, Komiyama T. Global and subtype‑specific modulation of cortical inhibitory 

neurons regulated by acetylcholine during motor learning. Nat Rev Neurosci. 2022;110:2334‑50.e8.
 37. Wang X, Allen WE, Wright MA, Sylwestrak EL, Samusik N, Vesuna S, et al. Three‑dimensional intact‑tissue sequencing 

of single‑cell transcriptional states. Science. 2018;361:eaat5691.
 38. Kippert A, Trajkovic K, Fitzner D, Opitz L, Simons M. Identification of Tmem10/Opalin as a novel marker for oligoden‑

drocytes using gene expression profiling. BMC Neurosci. 2008;9:40.
 39. Oishi K, Nakagawa N, Tachikawa K, Sasaki S, Aramaki M, Hirano S, et al. Identity of neocortical layer 4 neurons is 

specified through correct positioning into the cortex. eLife. 2016;5:e10907.
 40. Hanisch U‑K, Kettenmann H. Microglia: active sensor and versatile effector cells in the normal and pathologic brain. 

Nat Neurosci. 2007;10:1387–94.



Page 28 of 28Yang and Zhang  Genome Biology          (2023) 24:293 

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

 41. Abbott NJ, Rönnbäck L, Hansson E. Astrocyte‑endothelial interactions at the blood‑brain barrier. Nat Rev Neurosci. 
2006;7:41–53.

 42. Munji RN, Soung AL, Weiner GA, Sohet F, Semple BD, Trivedi A, et al. Profiling the mouse brain endothelial tran‑
scriptome in health and disease models reveals a core blood‑brain barrier dysfunction module. Nat Neurosci. 
2019;22:1892–902.

 43. Lilly B. We have contact: endothelial cell‑smooth muscle cell interactions. Physiology. 2014;29:234–41.
 44. Li B, Zhang W, Guo C, Xu H, Li L, Fang M, et al. Benchmarking spatial and single‑cell transcriptomics integration 

methods for transcript distribution prediction and cell type deconvolution. Nat Methods. 2022;19:662–70.
 45. Cang Z, Nie Q. Inferring spatial and signaling relationships between cells from single cell transcriptomic data. Nat 

Commun. 2020;11:2084.
 46. Olsen TK, Baryawno N. Introduction to single‑cell RNA sequencing. Curr Protoc Mol Biol. 2018;122:e57.
 47. Ziegenhain C, Vieth B, Parekh S, Reinius B, Guillaumet‑Adkins A, Smets M, et al. Comparative analysis of single‑Cell 

RNA Sequencing methods. Mol Cell. 2017;65:631‑43.e4.
 48. Miller BF, Bambah‑Mukku D, Dulac C, Zhuang X, Fan J. Characterizing spatial gene expression heterogeneity in 

spatially resolved single‑cell transcriptomic data with nonuniform cellular densities. Genome Res. 2021;31:1843–55.
 49. Zhuang X, Zhang M. Brain Image Library. https:// doi. org/ 10. 35077/g. 21. Accessed 4 Dec 2021.
 50. Codeluppi S, Borm LE, Zeisel A, La Manno G, van Lunteren JA, Svensson CI, et al. osmFISH Dataset. http:// linna rsson 

lab. org/ osmFI SH/. Accessed 21 Nov 2021.
 51. STARmap Resources. https:// kanga roo‑ goby. squar espace. com/ data. Accessed 16 Oct 2021.
 52. Yao Z, Liu H, Xie F, Fischer S, Booeshaghi AS, Adkins RS, et al. The Neuroscience Multi‑omic Data Archive. https:// 

assets. nemoa rchive. org/ dat‑ ch1nq b7. Accessed 23 Dec 2021.
 53. Zeisel A, Muñoz‑Manchado AB, Codeluppi S, Lönnerberg P, La Manno G, Juréus A, et al. Zeisel dataset. http:// linna 

rsson lab. org/ cortex/. Accessed 26 Nov 2021.
 54. Allen Brain Map Knowledge Base. Cell types database: RNA‑Seq data. http:// linna rsson lab. org/ cortex/. Accessed 28 

Oct 2021.
 55. Allen Mouse Brain Atlas. http:// mouse. brain‑ map. org/. Accessed 10 May 2022.
 56. Yang ST, Zhang XF. R package ENGEP. Github. https:// github. com/ Zhang xf‑ ccnu/ ENGEP. Accessed 18 Apr 2023.
 57. Yang ST, Zhang XF. A tutorial of R package ENGEP. Github. https:// github. com/ Zhang xf‑ ccnu/ ENGEP‑ examp les. 

Accessed 18 Apr 2023.
 58. Yang ST, Zhang XF. R package ENGEP. Zenodo. https:// doi. org/ 10. 5281/ zenodo. 83655 72. Accessed 21 Sep 2023.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.35077/g.21
http://linnarssonlab.org/osmFISH/
http://linnarssonlab.org/osmFISH/
https://kangaroo-goby.squarespace.com/data
https://assets.nemoarchive.org/dat-ch1nqb7
https://assets.nemoarchive.org/dat-ch1nqb7
http://linnarssonlab.org/cortex/
http://linnarssonlab.org/cortex/
http://linnarssonlab.org/cortex/
http://mouse.brain-map.org/
https://github.com/Zhangxf-ccnu/ENGEP
https://github.com/Zhangxf-ccnu/ENGEP-examples
https://doi.org/10.5281/zenodo.8365572

	ENGEP: advancing spatial transcriptomics with accurate unmeasured gene expression prediction
	Abstract 
	Background
	Results
	Overview of ENGEP
	ENGEP accurately predicts unmeasured genes for MERFISH
	ENGEP accurately predicts gene expression in unmeasured targets for osmFISH
	ENGEP accurately predicts unmeasured gene expression and corrects measured genes for STARmap
	ENGEP exhibits computational efficiency in terms of both time and peak memory usage

	Discussion
	Conclusions
	Methods
	ENGEP algorithm
	Step 1: Generating base results
	Step 2: Combining base results

	Datasets
	Data preprocessing
	Cross-validation on spatially measured genes
	Prediction of gene expression in unmeasured genes
	Identification of known spatial patterns from measured gene expression
	Identification of novel spatial patterns from predicted gene expression
	ENGEP for single reference datasets
	Parameter settings for ENGEP
	Benchmarked methods

	Anchor 25
	Acknowledgements
	References


