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Abstract 

Background: Capturing the genetic diversity of wild relatives is crucial for improving 
crops because wild species are valuable sources of agronomic traits that are essential 
to enhance the sustainability and adaptability of domesticated cultivars. Genetic diver‑
sity across a genus can be captured in super‑pangenomes, which provide a framework 
for interpreting genomic variations.

Results: Here we report the sequencing, assembly, and annotation of nine wild North 
American grape genomes, which are phased and scaffolded at chromosome scale. 
We generate a reference‑unbiased super‑pangenome using pairwise whole‑genome 
alignment methods, revealing the extent of the genomic diversity among wild grape 
species from sequence to gene level. The pangenome graph captures genomic vari‑
ation between haplotypes within a species and across the different species, and it 
accurately assesses the similarity of hybrids to their parents. The species selected 
to build the pangenome are a great representation of the genus, as illustrated by cap‑
turing known allelic variants in the sex‑determining region and for Pierce’s disease 
resistance loci. Using pangenome‑wide association analysis, we demonstrate the utility 
of the super‑pangenome by effectively mapping short reads from genus‑wide samples 
and identifying loci associated with salt tolerance in natural populations of grapes.

Conclusions: This study highlights how a reference‑unbiased super‑pangenome can 
reveal the genetic basis of adaptive traits from wild relatives and accelerate crop breed‑
ing research.
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Background
The grapevine (Vitis vinifera) is an economically important crop of global significance, 
cultivated across the world to produce grape-based commodities such as wine, raisins,  
and grape juice. Historically, its productivity has been endangered by its high suscep-
tibility to biotic and abiotic stresses, leading to the widespread practice of grafting  
V. vinifera cultivars on rootstocks derived from a handful of wild grape species [1, 2]. The  
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Vitis genus is composed of ~ 70 interfertile species [3] with the North American wild  
species holding particular significance due to their extensive genetic diversity and his-
torical contribution to the development of disease-resistant cultivars and rootstocks [2]. 
The geographical distribution of the grape species in North America contributes to their 
diverse array of stress tolerance traits (e.g., salt and drought tolerance, resistance to bac-
terial and fungal diseases). Dioecious and interfertile, natural populations of wild grapes 
have evolved and adapted to the environmental conditions of their respective habitats 
and through interspecific introgression [4]. Their tolerance to biotic and abiotic stress 
enables them to thrive in a variety of climates and ecological niches, making them valu-
able genetic resources for breeding programs.

Although several grape genomes have been sequenced (e.g., [5–7]), working sepa-
rately with distinct references impedes the comprehensive understanding of the species’ 
or genus’ genetic architecture. Numerous reports indicate that the use of a single-ref-
erence genome directly impacts the effectiveness of identifying intraspecific genetic 
variations because reference mapping often fails to capture novel or highly divergent 
sequences within a species [8, 9]. These limitations have motivated the development of 
pangenomes, which are transformative because they provide a comprehensive view of 
the genetic landscape within a species that may be otherwise overlooked [9]. The desire 
to capture an even broader spectrum of genetic diversity, encompassing wild relatives 
and diverse cultivars, further led to the generation of super-pangenomes, surpassing 
traditional pangenomes by incorporating genus-level diversity [8]. Super-pangenomes 
enable the identification of rare or unique genetic variations, population-specific 
alleles, and adaptive traits, providing a rich resource for crop improvement. Addition-
ally, genus-level pangenomes can shed light on evolutionary history, domestication 
processes, and genetic relationships within a genus, contributing to a deeper compre-
hension of their genetic potential [8]. While pangenomes can have multiple definitions, 
graph-based methods are generally acknowledged to be the most comprehensive for 
eukaryotic genomes, because they include non-coding regions, regulatory elements, 
and intergenic regions, thereby enabling a more holistic understanding of genomic 
architecture and functional elements [10]. To date, however, super-pangenomes in 
plants have been limited by reducing diploid genomes to a haploid representation, by 
a constrained input order or phylogenetic dependencies, or by cataloging genetic vari-
ants against a single reference. None of these approaches overcome reference biases, 
and they often do not provide nucleotide-level resolution. Here, we overcome these 
limitations by sequencing and assembling phased diploid genomes and building a super 
pangenome using all-vs-all whole-genome alignments. This approach is, by defini-
tion, reference-unbiased. It therefore overcomes a reliance on reference or tree-guided 
approaches, in an effort to better capture structural variations between distant species 
at the nucleotide-level resolution [11].

Here, we describe a reference-unbiased super-pangenome of North American wild 
grapes in the genus Vitis with as a main objective to identify and analyze the interspecific 
genetic variability. To build the super-pangenome, we first sequenced and assembled 
diploid, chromosome-scaled genomes from nine representative species: V. acerifolia,  
V. aestivalis, V. arizonica, V. berlandieri, V. girdiana, V. monticola, V. mustangensis,  
V. riparia, and V. rupestris. From these, we built a super-pangenome graph from all-vs-all 
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chromosome alignments. From the generated graph, we inferred properties of the genic 
pangenome and extracted inter-species sequence variations. Our work has captured an 
unprecedented view of genetic diversity among North American wild grape species and 
effectively identified significant associations with salt tolerance using pangenome-wide 
association analysis (pan-GWAS).

Results
Assembly, annotation, and phasing of nine North American Vitis genomes

To construct a comprehensive representation of the North American Vitis genus, nine 
accessions were selected to be characteristic of their respective taxonomical group as 
defined previously based on their geographical distribution and phenological differences 
[3] and for their potential in breeding programs (Fig. 1a–j, Additional File 1: Table S1).

Genomes were sequenced using single-molecule real-time sequencing (SMRT; 
Pacific Biosciences) with 114–255X depth (Additional File 1: Table S2). Optical map-
ping (Bionano) data were generated to produce consensus genome maps for seven of 
the genomes with 791–3074 depth (Additional File 1: Table  S3). The Falcon-Unzip 
contigs (N50 = 0.31–1.14  Mb; Table  1) were scaffolded using the genome maps to 
produce diploid hybrid assemblies (N50 = 1.13–9.22  Mb; Table  1). Protein-coding 
gene loci were annotated through an extensive ab  initio prediction pipeline relying 
on both Iso-Seq full-length transcripts and RNA sequencing (RNA-Seq) short reads 
(Additional File 1: Table S4). After the generation of consensus models, isoform pre-
diction, filtering, and functional annotation, 57,003–74,142 genes were annotated in 

Fig. 1 Selection of nine wild North American Vitis species. a‑i Pictures from a representative leaf (left) and 
flower (right) of V. acerifolia (a), V. aestivalis (b), V. arizonica (c), V. berlandieri (d), V. girdiana (e), V. monticola (f), 
V. mustangensis (g), V. riparia (h), and V. rupestris (i), respectively. j Principal component analysis results on SNP 
data derived from samples of natural populations (n = 90) aligned on Vitis vinifera Cabernet Sauvignon. Colors 
divide the Vitis genus into six groups. The accessions selected for assembly are represented by black‑colored 
points. k Phylogenetic relationships among the selected species. The phylogenetic tree was constructed 
based on 2338 single‑copy gene orthogroups and the branches represent divergence times in million years. 
Muscadinia rotundifolia was used as an outgroup to root the tree. Positive and negative numbers indicated 
on the branches represent expansions and contractions, respectively, among the 450 rapidly evolving 
orthogroups as determined by gene family evolution analysis
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the nine genomes (Table  1), covering on average 33% of the genome. Each species 
showed a BUSCO score exceeding 95% with over 50% duplication supporting the dip-
loid representation of the assemblies.

The tool HaploSync [12] coupled with a high-density Vitis genetic map [13] was 
used to construct nine diploid sets of nineteen chromosomes with a target of at least 
90% of anchored sequences and protein-coding gene loci (Table 1). For each genome, 
the markers and the relation primary contigs/haplotigs were used as constraints to 
simultaneously phase the sequences into two haplotypes and attribute them to a 
chromosome. The phasing correctness was evaluated at every step of the scaffold-
ing using both the allelic gene content and DNA sequencing (DNA-Seq) short-read 
coverage (Additional File 1: Table S5) to ensure the accuracy of the diploid phasing 
and prevent scaffolding issues such as haplotype switches. Gap filling was performed 
with the remaining unplaced sequences based on the pairwise relationship between 
the haplotypes. The best assembly performance reached 95.6% of sequence anchor-
age to the chromosomes for V. rupestris, representing 97.3% of its gene content. For 
all the genomes, the unplaced sequences were composed of short sequences with 
an N50 = 40,653–63,859 bp (Additional File 1: Table S6), mostly enriched in repeats 
(Table 1). To estimate the levels of heterozygosity in the nine Vitis genomes, we com-
pared the assemblies of their phased haplotypes and considered every type of variants 
and any size. As expected, each genome presented high levels of variation between 
haplotypes, ranging from 16.79 to 23.77% of the genome sequence impacted by 
variants when the two corresponding haplotypes were compared (Additional File 1: 
Table S7) falling in the range of previous conservative estimates such as in Chardon-
nay (15.3%) [14] or Pinot Noir (11.2%) [15]. SNPs and INDELs represented almost the 
entirety of the variants detected (99% on average), while translocations or inversions 
were very few. SNP was the most abundant type of variant with 1 SNP every 238–
1159 bp (Additional File 2: Figure S1) as reported previously for wild grapes species 
[16, 17]. INDELs were more spread with an average distribution six times wider than 
for the SNPs (1 INDEL every 1652–5030 bp) (Additional File 2: Figure S1).

Despite such variations at the sequence level, gene content was well conserved 
between haplotypes, with genic hemizygosity rates ranging from 2.09 to 4.95%, except 
for V. arizonica (9.35%) (Additional File 1: Table  S8). The phasing integrity was con-
firmed by the BUSCO scores at 93.2 ± 2.0% for haplotype 1 and 89.2 ± 4.7% for haplotype 
2 (Table 1). The complete diploid representation of the genome assemblies was further 
supported by their length; representing approximately twice the haploid sizes estimated 
by flow cytometry, but also by the presence of 1.90–2.27X the haploid gene content of 
PN40024 [5] (Additional File 1: Table S9). Altogether, the assembly of these nine high-
quality genomes provided the foundation to build a comprehensive super-pangenome 
using comparable assembly/scaffolding qualities.

Orthogroups were identified using the haplotype 1 as representative as it presented 
systematically the highest BUSCO score of the two haplotypes and was generally the 
longest haplotype with the most genes. Given the nine reference genomes, we aligned 
in a pairwise configuration the nine haplotype 1 proteomes, resulting in the identifica-
tion of 2338 single-copy orthogroups (SCO). We gathered the SCO alignments into a 
supermatrix and used it to produce a species-wide phylogeny that matched previous 
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inferences [18, 19] and separated species by known Vitis groups [3] (Fig. 1k). We also 
estimated divergence times at each node using molecular-clock method [20] (Fig. 1k). 
Finally, after the selection of one representative isoform per gene, we used the same pro-
teomes to evaluate gene families across the North American Vitis phylogeny, identify-
ing 450 rapidly evolving orthogroups (Fig. 1k). Interestingly, the gene families involved 
in the contraction/expansion events were significantly enriched for gene ontology (GO) 
terms such as response to stress, signaling, response to stimulus, and cell communica-
tion, suggesting that they might be involved in the adaptation of each species (Addi-
tional File 1: Table S10).

A nucleotide‑level super‑pangenome graph for the North American Vitis genus

The 18 haplotype genomes (9 genomes × 2 haplotypes) were considered as distinct 
inputs for the super-pangenome construction. After pairwise comparisons of assemblies 
between species, we inferred that 27.10 to 34.20% of the genome from each species was 
affected by genetic variants (Additional File 1: Table S11), values that greatly exceeded 
heterozygosity (16.79–23.77%). We used nucleotide variants to estimate an average rate 
of 2.4 ×  10−8 ± 6 ×  10−9 variants per nucleotide per year between Vitis genomes using 
the divergence times inferred in the clock-calibrated phylogeny (Fig. 1k). To avoid any 
bias towards a specific reference, the pipeline to construct the pangenome relied on 
all pairwise sequence alignments of the 18 genomes [21]. The workflow followed the 
PanGenome Graph Builder (PGGB) pipeline [11] which involves three main steps: (i) 
wfmash to generate all the pairwise alignments, (ii) seqwish to induce the pangenome 
graph from the alignments, and (iii) smoothxg to polish the pangenome graph. In the 
resulting graph topology, genomic sequences are represented as “nodes” that can be as 
small as one base pair. The chromosomes are stored as “paths” which are a linear repre-
sentation of their DNA as traversals through the nodes.

The generated pangenome graph had a compression ratio per chromosome of 81% 
on average (Fig. 2a) and contained 342 paths, each representing a chromosome of the 
input haplotype genomes. The graph structure was composed of ~ 200 million nodes 
(Additional File 2: Figure S2) for a total length of ~ 1.7 Gb (Fig.  2b) and represent-
ing ~ 1.5X the size of the diploid genome for a single Vitis species. Nodes were cat-
egorized into three different classes according to the number of species containing 
them: (i) core genome; nodes present in the nine species, (ii) dispensable genome; 
nodes present in more than one species but not all, and (iii) private genome; genome-
specific nodes. The nodes in the private genome covered the largest portion of the 
pangenome (1.1 Gb). However, most of the nodes (> 100 million) were in the dispen-
sable genome while both the core and the private genomes were composed of about 
50 million nodes each (Additional File 2: Figure S2). At the haplotype level, the core 
genome represented about half the genome size (48% on average), while the dispensa-
ble and the private genomes contained on average 36 and 16% of the genome, respec-
tively (Fig. 2c).

One interesting feature of these analyses was that the private genome was composed 
of a significantly higher proportion of repeats compared to the other classes (Kruskal– 
Wallis, P value < 0.05). The private genome was ~ 40% more repetitive than the core 
genome (Fig. 2d). Class I transposable elements (TEs) represented the majority (80.3%) 
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of the TEs in the pangenome (Additional File 2: Figure S3). Remarkably, 56% of the pri-
vate TEs were long terminal repeats (LTR) Gypsy retrotransposons, which represented 
only 24% of the core TEs (Fig.  2e). The over-representation of Gypsy elements in the 
private genome suggests they are strongly associated with genome divergence between 
species and may play a pivotal role in grape genome evolution.

Intra‑ and inter‑specific relatedness is captured in the pangenome

To evaluate the sensitivity of our pangenome, we added the previously published dip-
loid genomes [7] of three hybrids to the pangenome, all derived from the cross of North 
American species included in our pangenome: 101–14 Millardet et de Grasset (101–14 
Mgt: V. riparia x V. rupestris), Richter 110 (110R: V. berlandieri x V. rupestris), and 
Kober 5BB (V. berlandieri x V. riparia). As expected, the addition of the three hybrids 
with the nine previous genomes led to a decrease in the relative private and core genome 

Fig. 2 Properties of the nucleotide‑level super‑pangenome graph. a Compression ratio of the pangenome. 
For each step of the pangenome construction, raw (seqwish) and post‑polishing (smoothxg), the 
mean ± sd (n = 19 chromosomes) of the total length of the unique nodes representing each chromosome 
is represented. The compression is expressed as a ratio of the total size of a chromosome in the graph 
compared with the sum of the lengths of the same chromosome in the 18 haplotypes used as input. b 
Graph‑based pangenome modeling. For every combination of 1–9 genomes, the total length of the unique 
nodes is represented per class. The line represents smoothed conditional means with a 0.95 confidence 
interval. c Pangenome class composition per haplotype for each genome. d Repeat density observed in the 
different node classes of the pangenome. Significant groups were determined using a multiple comparison 
test after Kruskal–Wallis with a P value < 0.05. The middle bars represent the median while the bottom and 
top of each box represent the 25th and 75th percentiles, respectively. The whiskers extend to 1.5 times the 
interquartile range and data beyond the end of the whiskers are plotted individually as outlying points. 
Panels b, c, and d share the same color legend. e Transposable element composition in the different 
pangenome classes. Categories with unspecified repeats or representing < 2% of the repeat content were 
classified as “Other”
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sizes in favor of a larger dispensable genome, both in terms of length and node num-
ber (Additional File 2: Figure S4). We incorporated these hybrid genomes to evaluate 
whether we could accurately assess their origins and to characterize their structural 
effects on the pangenome graph topology. We established different types of comparisons 
to assess whether the pangenome graph was able to reflect correctly different degrees of 
similarity between close or distant species.

To evaluate genome relatedness, we focused on the three hybrids and the three 
parental species from which the hybrids were derived. We quantified the degree of 
relationship between the different genomes using the total length of the nodes they 
shared as a metric (Fig.  3). Three levels of comparisons were investigated: intra-
genome by the comparison of the two haplotypes within each genome (Fig.  3a–c), 
inter-haplotype by the comparison of the hybrids’ haplotypes to their parents 
(Fig. 3d–f ), and inter-genome comparing haplotypes of different species (Fig. 3g–i). 

Fig. 3 Graph sensitivity assessment using phased hybrids and their parental species. On the top row, the 
base diagram represents the relation between the parents and their progeny. The grey triangle contains 
the three parental species used to give the three hybrids indicated after each arrow. The black lines connect 
the haplotypes that were compared. Three different types of comparison are represented: on the left (a–c), 
haplotypes are compared within species; in the middle (d–f), haplotypes are compared between the hybrids 
and their parents; on the right (g–i), the haplotypes are compared in an interspecific manner. The middle row 
represents the individual share node space for each comparison, the percentage values being indicated as 
a color gradient. The bottom row contains a summarized version of the chord diagrams represented either 
as a barplot for single values (c n = 1) and boxplot when multiple values are involved (f n = 4 and i n = 15). 
The middle bars represent the median while the bottom and top of each box represent the 25th and 75th 
percentiles, respectively. The whiskers extend to 1.5 times the interquartile range and data beyond the end of 
the whiskers are plotted individually as outlying points
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First, intra-genomic comparisons were performed between the two haplotypes of 
each genome; on average, 60.2% was shared between the two haplotype sequences 
of each species (Fig.  3b, c). Notably, the parents presented a higher percentage of 
shared node space between their haplotypes (65.9% on average) compared with the 
hybrids (54.4% on average). The hybrids having V. berlandieri as a parental species 
showed the lowest percentage (Richter 110R 51.7%; Kobber 5BB 50.9%), probably 
because this species is genetically distant from the two other parents V. riparia and 
V. rupestris (Fig. 1k). Secondly, we evaluated if the pangenome could detect the relat-
edness of the hybrids with their parental species. Each hybrid haplotype was derived 
from a different species, as determined during their assembly [7]. When we com-
pared each hybrid haplotype (e.g., 110R haplotype berlandieri annotated 110R be on 
Fig. 3d) with the haplotypes of its parental genome (i.e., V. berlandieri haplotype 1 or 
2 annotated be hap1 or hap2 on Fig. 3d), we found on average 58.2% of their nodes 
being shared. V. rupestris showed the most conserved node space with its corre-
sponding hybrids 110R and 101–14 Mgt (Fig. 3e, f ). Lastly, the smallest percentages 
of shared node space were detected when the genomes were compared in an inter-
specific configuration (Fig. 3g–i). As expected, V. riparia and V. rupestris haplotypes 
showed the highest shared node space since they are closer to each other than V. ber-
landieri. Despite those similarities, the overall shared node content between differ-
ent species remained lower than the percentages observed when hybrid haplotypes 
were compared with their parental species. Altogether, these results illustrate the 
importance of haplotype-resolved genomes, demonstrate that the super-pangenome 
graph captures both intra- and inter-specific variants, and accurately represent the 
relationship between parental species and hybrids, thus reinforcing the high sensi-
tivity of the super-pangenome.

Gene‑based pangenome inferred from the pangenome graph

We used the super-pangenome to study the distribution and characteristics of genes 
among the nine Vitis species. Genes were categorized into three different genome 
classes according to their node composition: (i) core genes, when the gene sequence was 
composed of > 80% of core nodes, (ii) dispensable genes, when the sequence was com-
posed of > 80% dispensable nodes, and (iii) private genes when the sequence was com-
posed of > 80% private nodes. The genes not falling in any of the above categories were 
classified as ambiguous; these represented on average only 2.6% of the gene content and 
were excluded from subsequent analyses (Additional File 1: Table S12). We examined the 
core, dispensable, and private categories as a function of species sampling: as genomes 
were added to the pangenome, the number of private genes continuously increased, 
inflating the overall gene pangenome size (Fig. 4a). In contrast, the number of core genes 
tended to slowly stabilize around 40,000 genes (Fig. 4a, Additional File 1: Table S13), rep-
resenting more than 67% of gene content per species on average (Fig. 4b, Additional File 
1: Table S13). Although the number of private genes continually increased with the addi-
tion of species, private genes represented were less numerous than core genes ranging 
from 2580 to 9145 genes per species.

These results were supported by a classic orthology analysis based on colinearity. On 
average, 72.6 ± 2.3% of the genes were consistently categorized as core, dispensable, or 
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private genes between the graph-inferred and the orthology-based gene pangenomes 
(Fig. 4c, Additional File 1: Table S14). The core genome was the most conserved class, 
with 85.8 ± 1.76% consistency. The three classes of genes also exhibited remarkable 
structural differences. Dispensable and private genes were significantly shorter than the 
core genes, with correspondingly smaller transcript and CDS lengths and fewer exons 

Fig. 4 Characterization of genes in the super‑pangenome. a Gene‑based pangenome modeling. For each 
combination of 1–9 genomes, the number of genes is represented per class. The lines represent smoothed 
conditional means with a 0.95 confidence interval. b Gene class composition for each genome. c Percentage 
of genes attributed to the same class in both the graph‑derived and orthology‑based pangenomes. The 
number of consistent genes between both approaches is represented on the left of the bar while the 
different are on the right. d Transcript length (kb); e CDS length (kb); f Number of exons; g Percentage of 
annotated domains; h Transcript abundance (TPM; transcripts per million); i TE‑affected genes; j dN/dS ratios, 
and k Expanded/Contracted gene families per class of genomes. P values were determined using ANOVA 
and significant groups were assigned following Tukey’s “Honest Significant Difference” method. The middle 
bars represent the median while the bottom and top of each box represent the 25th and 75th percentiles, 
respectively. The whiskers extend to 1.5 times the interquartile range and data beyond the end of the 
whiskers are plotted individually as outlying points. For the dN/dS ratios (j), P values were determined using 
two‑tailed Student’s t test. To prevent the compaction of the y‑axis by extreme outlying points, the upper 
limit was capped. Panels a–k share the same color legend. Enriched gene ontology terms for the core genes 
(l) and the variable (dispensable + private) genes (m) are represented as circles with their size depending on 
the number of genes involved and their color based on the number of genomes having the term detected 
as significant. For each GO term, the number of significant genes relative to the total number of annotated 
genes for the term is represented as a gene ratio on the x‑axis
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(Fig.  4d–f). The longer core genes had more annotated domains (Fig.  4g). A striking 
association was also observed between gene expression and gene conservation within 
the genus. Transcript abundance was significantly higher for core genes, suggesting 
functional conservation relative to dispensable and private gene sets (Fig. 4h). The vari-
able (i.e., non-core) genes had higher TE density around them (Fig. 4i), which may sug-
gest that TEs contribute to their lower expression.

We also investigated the evolutionary properties of genes. For example, we calcu-
lated non-synonymous/synonymous substitution (dN/dS) ratios (Fig. 4j) for each gene 
class. On average, dispensable genes had higher average dN/dS values, reflecting higher 
sequence conservation among core genes. Among the genes belonging to the rap-
idly evolving families identified during the phylogeny analysis, the proportion classi-
fied as variable genes (dispensable/private) was twice as high (Fig. 4k) as the core genes 
(Kruskal–Wallis, P value < 0.05). This high proportion further suggests the possibility 
that dispensable genes contribute to the local adaptation of each species (Additional File 
1: Table S15). Gene ontology (GO) enrichments supported this conjecture. For example, 
core genes were mainly associated with essential developmental functions such as the 
shoot system, flower development, and responses to stimulus. In contrast, variable genes 
were enriched in metabolic processes, cellular processes, and signaling (Fig. 4l, m). The 
enrichment of basic functions for the variable genes such as embryo development does 
not rule out the evolution of important functions for specific species. We focused par-
ticularly on nucleotide-binding site leucine-rich repeat (NLR) genes because they have 
been heavily studied in grapes for their association with disease resistance. Interestingly, 
NLRs possessing a toll/interleukin-1 receptor-like (TIR) domain, the TIR subclasses 
such as TIR-NBS-LRR genes, tended to be more abundant in the dispensable genome 
(Additional File 2: Figure S5). Our results consistently supported the strong, conserv-
ative selection of core genes, presumably due to their essential functions. The pool of 
private and dispensable genes does not seem to be conserved, at least under certain 
environmental conditions, suggesting that they might provide benefits for local adap-
tation to specific abiotic and/or biotic stresses and could be responsible for significant 
phenotypic variation among species.

Structural variants derived from the pangenome graph topology

By definition, the pangenome graph embeds polymorphisms and structural variants 
for all the pairs of genomes used as input. To extract this level of information from the 
graph, we employed the module “deconstruct” from the tool vg v.1.48.0 [22], selecting 
iteratively each genome in the graph as a reference. A variant analysis performed inde-
pendently between genomes using NUCmer [23] provided similar results; the pange-
nome and NUCmer-based inferences were consistent presenting 90 and 76% of SNPs 
and INDELs, respectively (Additional File 1: Table S16). SNPs were the most abundant 
variant type within individual genomes (Fig. 5a). By classifying the variants in different 
groups of sizes, we observed that more than 96% of the total were short-length variants 
with 1-bp variants (most SNPs) as the most abundant size and the remaining set being 
shorter than 10 bp (Fig. 5b). For each species, 1 heterozygous SNP was detected every 
239–888 bp between haplotypes representing 0.11–0.42% of their assembly (Additional 
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File 1: Table S17) which is consistent with our independent pairwise comparison using 
NUCmer and reports from literature [16, 17].

We annotated the variants using snpEff v.5.1 [24] to estimate their impact on the 
protein sequence. They were classified in four categories of impact: low, mostly harm-
less to the protein; moderate, can affect protein effectiveness; high, disruptive impact 
in the protein; and modifier, usually non-coding variants. Generally, low-impact vari-
ants tended to be similarly distributed between the core and the dispensable genomes 

Fig. 5 Genetic variants from the graph topology. a Number of variant sites in each haplotype per genome. 
SNP = single‑nucleotide polymorphisms, INS = insertions, DEL = deletions, M = millions. b Distribution of 
variants by size. c Variant sites distribution per variant type and impact for each pangenome class (n = 18 
haplotypes). d Number of variant sites per gene locus in hemizygous genes (x‑axis) and all the genes 
impacted by variants (y‑axis) (n = 9 genomes). e Enrichment analysis results for the variant effects identified 
in the hemizygous genes when compared with all the genes impacted by variants. Boxes are colored with 
the average enrichment values (n = 9 genomes). For the boxplot representations in c and e, the middle 
bars represent the median while the bottom and top of each box represent the 25th and 75th percentiles, 
respectively. The whiskers extend to 1.5 times the interquartile range and data beyond the end of the 
whiskers are plotted individually as outlying points. f Pangenome features at the sex‑determining region.  
V. arizonica B40‑14 was used as representative for the region. For each allele (female and male), the density of 
allele‑specific nodes, the repeats distribution, and the gene loci with the conserved variants are represented. 
The region is a sub‑selection of the SDR spanning genes encoding VviYABBY3 to the WRKY transcription factor
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(Fig. 5c). When the impact on the protein sequence was moderate or high, most of the 
variants were found in the dispensable genome rather than in the core genome (Fig. 5c). 
The most striking evidence was illustrated by the SNPs. While they were similarly abun-
dant in both the core and the dispensable genomes at low impact, variants with mod-
erate impact were more abundant in the dispensable genome. The difference was even 
larger for the number of high-impact variants with ~ 2 × more variants in the dispen-
sable genome (Fig. 5c). The private genome was particularly less impacted by variants 
when compared with the core or dispensable genomes confirming that the sequence of a 
private gene is mostly genome-specific and do not share many nodes (considered here as 
potential variant sites), if any, with the other genomes. Regarding the modifier sites (usu-
ally variants in non-coding regions), they were the most abundant type of impact and 
tend to display a similar distribution than the moderate variants (Additional File 2: Fig-
ure S6). Within the genes impacted by the variants, we decided to focus on the hemizy-
gous gene sets we previously identified. We observed an overall higher abundance of 
variants in these gene loci (Fig. 5d) with more than 2 × more sites on average for SNPs 
with moderate impact. Among the effects with high impact, transcript ablation and exon 
loss variant were the most enriched in the hemizygous gene loci compared with the total 
content of genes impacted by variants (Fig. 5e).

To validate the variants derived from the pangenome graph topology, we investigated 
its structure at the grape sex-determining region (SDR) (Fig. 5f ). For both alleles (female 
and male), we observed a striking allele-specific accumulation between the TREHA-
LOSE-6-PHOSPHATE-PHOSPHATASE (TPP) and INAPERTURE POLLEN 1 (VviINP1) 
genes which correspond to the peak of linkage disequilibrium previously observed in 
this region [6]. In the females, allele-specific nodes were also accumulated around the 
Flavin-containing monooxygenase (FMO) loci which might be involved in the conserva-
tion of their function as they are not all protein-coding in the males [6]. The density of 
allele-specific nodes was also noticeably overlapping the repeats distribution suggesting 
an important role of repetitive elements in the larger size of the male allele. Few SNPs 
and INDELs were found to be conserved in an allele-specific manner. We focused on 
the variants impacting VviINP1, known to be involved in pollen aperture formation 
[6]. In the female allele, the sequence of this gene contains an 8-bp deletion which has 
been suggested to be responsible to the non-functionality of the corresponding protein 
[6]. Remarkably, the super-pangenome graph captured the known variants distinguish-
ing the VviINP1 male and the female alleles (Fig. 5f ), including an allele-specific SNP at 
60 bp from the VviINP1 transcriptional start site (TSS) and the 8-bp INDEL starting at 
74 bp from the TSS (Additional File 2: Figure S7). Moreover, the flower sexes of all the 
accessions used to build the pangenome were predicted correctly by their alleles in the 
pangenome and confirmed with phenotyping data from the field (Fig. 1a–i).

To further explore the variants embedded in the pangenome graph and gather infor-
mation over multiple chromosomes, we also investigated polymorphisms associated 
with Pierce’s disease resistance. Eight peaks of association were previously detected in V. 
arizonica [25] (one of the input genomes integrated into the pangenome) using genome-
wide association studies (GWAS). As the other genomes included in the pangenome 
were not selected for Pierce’s disease resistance, we expect to detect the polymorphisms. 
The nodes of the pangenome graph corresponding to those regions were extracted 
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(Additional File 2: Figure S8). For 7 of the 8 association peaks, SNPs were detected in 
nodes that were either considered as variants from the graph topology or in the vari-
able genome (private or dispensable). In other words, almost the entirety of the regions 
previously detected de novo by variant calling was represented in the pangenome graph 
structure. As a result, mapping the reads from the previous GWAS on the pangenome 
should in theory only require genotyping the embedded variants to detect the associated 
polymorphisms, thereby bypassing any variant calling.

Pan‑GWAS revealed loci associated with salt tolerance

In a previous study, 325 accessions from natural populations of 14 Vitis species were 
collected and evaluated for chloride exclusion, a process that confers salt tolerance in 
grapes [26]. Among the accessions used to build the pangenome, five were included in 
this earlier work and presented pronounced differences regarding salt accumulation in 
the roots and the leaves. In particular, V. girdiana accession SC2 was a high salt excluder. 
We sequenced the DNA of 153 samples from 12 species of the collection panel to per-
form a pangenome-wide association analysis (pan-GWAS). The variants extracted from 
the graph were used to construct a simplified version of the pangenome using haplotype 
1 from V. girdiana as a reference (Fig. 6a). In this version of the graph, the representa-
tion of the sequence variations among the wild species was relative to V. girdiana. The 
reduction of the number of paths in the graph from 342 to 19 allowed us to prepare the 
pangenome for read mapping by significantly reducing the computational requirements. 
We indexed this reduced pangenome and mapped reads against it using vg. For each 
sample, > 95% of the paired-end reads mapped onto the pangenome (Additional File 1: 
Table  S18). After computing the snarls and the pack files from the graph, vg call was 
used to genotype the variants present in the graph (Fig. 6a).

After filtering, we examined the distribution of SNPs in the 19 paths. The SNPs exhib-
ited rapid decay of linkage disequilibrium (LD), reaching half the maximum average  r2 at 
2.12 kb (Fig. 6b), consistent with previous reports in grapes [18, 27]. We also performed 
pan-GWAS separately using 8,091,983 SNPs and 1,261,953 SVs, which should provide 
sufficient statistical power [28]. For both SNPs and SVs, a significant peak of association 
was detected on chromosome 8, and a single 1-bp deletion was found on chromosome 
3 (Fig. 6c). Those genotyping results were supported by variant calling from a standard 
GWAS approach based on the V. girdiana reference (Additional File 2: Figure S9a).

The significant SNP detected in both pan- and standard GWAS was located in an 
intergenic region at chr08:13598495 (Fig. 6d) and was tightly associated with chloride 
concentration across samples (Fig. 6e). The SNPs in strong linkage disequilibrium with 
the significantly salt exclusion-associated SNP were located downstream, overlapping 
a gene locus spanning chr08:13601610–13605816 (Fig. 6d). Based on a snpEff analysis, 
these SNPs appeared to be mostly missense variants, causing codons that produce dif-
ferent amino acids. Interestingly, the predicted protein from this region (VITVgdSC2_
v1.0.hap1.chr08.ver1.0.g144890.p01) is a homolog of the Arabidopsis thaliana cation/
H+ exchanger AtCHX20 (AT3G53720). The putative function of this gene was further 
supported by the presence of two notable InterPro domains: the Cation/H + exchanger 
(IPR006153) and the Sodium/solute symporter superfamily (IPR038770). The gene 
upstream of the significant SNP was also found to be homolog to AtCHX20 (Fig. 6d). 
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Altogether, these results show that our super-pangenome allows the detection of base-
level associations. We note, however, that when we investigated another related trait, 
root-chloride concentration, no significant association was detected with pan-GWAS 
(or, for that matter, with standard GWAS) (Additional File 2: Figure S9b, c).

Fig. 6 Pan‑GWAS revealed significant associations with chloride concentration in the leaves. a Workflow 
to generate the variant file required for the pan‑GWAS. The name of the vg module used for each step 
is indicated in purple, the output type is in black, and the file extension is orange. The PGGB graph is 
deconstructed to a variant file using V. girdiana haplotype 1 as a reference (1). Vg construct is used to 
construct a pangenome from the VCF and the reference fasta (2). After merging the IDs (3), xg (4) and 
post‑pruning (6) gcsa (7) indices are created to proceed with the alignments with vg map (8). The snarls are 
computed from the xg index (5) and the read support (pack) is extracted from the gam files (9) to finally 
proceed with the variant genotyping (10). b Linkage disequilibrium decay in the SNP dataset used for the 
pan‑GWAS. Half‑decay is represented in yellow, while minimum decay with a threshold set to LD < 0.1 is 
colored in orange. The number of points was randomly down‑sampled to 50 k for visual representation. c 
Manhattan plot representing significant association with the chloride concentration in the leaves. Significant 
associations are detected using a Bonferroni threshold set to ‑log10(0.05/n) and colored in orange. The 
SNPs are represented as light grey points, and the SVs as dark grey triangles. d Manhattan plot focused on 
the significant region in chromosome 8 outlined by the orange box in c for the association with the leaf 
chloride concentration. The filling color is based on the pairwise linkage disequilibrium with the SNP located 
at chr08:13598495. The gene structural annotation of this region is represented at the bottom. e Chloride 
concentrations (M) in the roots (x‑axis) and in the leaves (y‑axis) from the different samples used for the 
GWAS. Samples corresponding to the accessions assembled and used in the pangenome are filled in black. 
The colors represent the genotype at the significant SNP, homozygous reference (0/0) in green, heterozygous 
(0/1) in grey, and homozygous alternative (1/1) in orange
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Discussion
Wild Vitis species represent a valuable genetic pool for grape cultivars and rootstock 
improvement. Despite an increasing number of Vitis genomes being published, no inte-
grative analysis has been performed yet, limiting the exploration of such a diverse rep-
ertoire. Here, we assembled the genomes of nine North American wild Vitis species to 
represent the diversity of the genus (Fig. 1), scaffolded them at chromosome level, and 
then phased haplotype (Table  1) to comprehensively assess the structural variations 
present in complex and repetitive regions in diploid genomes [29]. These accessions 
included species that contain characteristic agronomic traits, such as disease resistance 
and drought tolerance. The accessions also include V. berlandieri, V. riparia, and V. rup-
estris, the wild species trio responsible for the production of most of the grape root-
stocks [30].

In recent years, pangenomes have been generated for numerous crop species. How-
ever, the concept of super-pangenomes is still in its early stages of development, although 
notable examples can be found in tomato [31], rice [32], sorghum [33], and potato [34]. 
Our super-pangenome differs from these previous efforts by using a reference-unbi-
ased, graph-based approach. Its construction relied on all-vs-all sequence alignments 
of chromosome-level diploid assemblies thereby providing access with a nucleotide 
resolution to intra- and inter-specific genetic variants, beyond the limited gene space 
and overcoming reference bias (Fig. 2). Our efforts provide an exemplar for future plant 
super-pangenomes and describe a pipeline that can be used in other species from the de 
novo assembly of diploid genomes to their pangenome construction. Our work paves the 
way for future research in Vitis. For example, this super-pangenome will be useful for 
additional comparative pangenomics analyses, and it will provide a backbone for includ-
ing the wine-producing cultivars of V. vinifera, helping to identify and study variants of 
potential agronomic utility. More accessions could also be added for the species already 
present in this super-pangenome to develop species-level pangenomes. We selected one 
accession per species to build the super-pangenome since intra-species variation was 
beyond the scope of this work.

Our super-pangenome has provided insights into repetitive and genic content 
throughout the genus. For example, our characterization of the repetitive elements has 
shown that LTR Gypsy retrotransposons are enriched within private genomes (Fig. 2e). 
They are thus a predominant driving force behind the variable portion of the pangenome. 
TEs are known to impact the gene space in multiple ways. By their insertion near genes, 
they can regulate gene expression (Fig. 4h) and participate in epigenetic gene regulation 
[35]. TEs can also influence the gene content itself (Fig. 4i) by numerous mechanisms 
such as gene mutation, gene movement, but also duplication via unequal crossing over 
[35, 36], which could all significantly contribute to the control of the variable genome 
size of a genus. Interestingly, the accurate representation of the sex-determining region 
in the pangenome graph evidenced an allele-specific pattern for the repeat distribution 
as previously reported in grapes [37]. The allele-specific nodes confirmed an accumu-
lation of repetitive elements in the male allele, a mechanism involved in the evolution 
of heteromorphic sex chromosomes [38]. Our results confirmed the significant contri-
bution of repetitive elements notably TEs in the evolution of grape genomes and open 
the doors to further characterizations of the genus repetitive content. With respect to 
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genes, we have found (unsurprisingly) that most genes are in the core genome. These 
genes are enriched for essential functions. In contrast to the core genome, the variable 
genome was significantly more impacted by TEs (Fig. 4) and SVs (Fig. 5) and contained 
a higher proportion of expanded/contracted gene families, potentially comprising the 
adaptative gene repertoire from the wild species. Including genomes from domesticated 
cultivars is likely to further expand the size of the dispensable genome, for two reasons. 
First, the dispensable genome increases with the addition of more samples (Figs. 2a and 
3a), and this trend is likely to continue based on the slopes predicted from our mod-
eling until reaching a plateau for the gene content and most likely further increasing for 
the sequences as suggested for eukaryotic genomes [39]. Second, domesticated cultivars, 
which are clonally propagated, have much higher rates of genic hemizygosity (typically 
10 to 15%) [14, 40] compared to the < 5% found in the outcrossing species in this study 
(except for V. arizonica). Thus, cultivars may have a larger proportion of their genes cap-
tured in the dispensable genome.

We have demonstrated the utility and accuracy of the super-pangenome in three ways. 
First, by investigating hybrid genomes, we have shown that the super-pangenome accu-
rately identified their parental origins and accurately characterized origin at the haplo-
type level. These results further support the broad potential and the flexibility of our 
pangenomics pipeline applicable in other species such as fruits crops (apples, pears, cit-
rus, stone fruits trees, etc.) by providing means to study the genetic variations between 
wild perennial accessions and the commercial hybrids derived from them. Second, we 
have recapitulated valuable genetic variants at the nucleotide level, specifically variants 
in the sex-determining region (Fig. 5f, Additional File 2: Figure S7) and that are associ-
ated with Pierce’s disease (PD) (Additional File 2: Figure S8). The first led to the predic-
tion of the flower sex phenotype of each accession by the presence/absence of nodes 
from the graph in the VviINP1 gene, bypassing the need to perform manual gene annota-
tion. For the latter, an interesting feature of the PD-associated variants is that they were 
more numerous in the variable (dispensable or private) genome compared to the core 
genome. This observation supports the notion that the variable genome contributes to 
species-specific adaptations, particularly those associated with biotic and abiotic stress, 
and it is also consistent with the previous conjecture that the genetic basis for resistance 
may vary among Vitis species [25]. In the future, a pan-GWAS of PD-resistance across 
the genus may help reveal additional variants that contribute to this important trait.

Finally, we have demonstrated the utility of the super-pangenome by perform-
ing a pan-GWAS on chloride exclusion, leading to the identification of variants near 
gene loci homologs of AtCHX20 on chromosome 8 (Fig. 6c, d). Interestingly, the SNPs 
were predicted to affect the amino acid composition of VITVgdSC2_v1.0.hap1.chr08.
ver1.0.g144890.p01 which could potentially have a significant impact on gene expression 
and protein activity [41]. In V. vinifera PN40024, the closest homolog is Vitvi08g01174, 
which is known to be induced by salt treatment [42]. In soybean (Glycine max), the 
closest homolog of VITVgdSC2_v1.0.hap1.chr08.ver1.0.g144890.p01 is GmNcl1 
(Glyma.03g171500), which is also known to be induced by salinity [43]. Interestingly, the 
closest soybean homolog to AtCHX20 is GmSALT3 (Glyma.03g32900), the major salt 
tolerance gene in G. max [44]. Altogether, these results highlight the potential involve-
ment of the AtCHX20 homologs for salt tolerance in grape but would require further 
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characterization to validate their functions. Thus, the pangenome has provided insights 
into a trait, salt tolerance, that is not only agronomically important but that is growing 
importance in the context of climate change and current agricultural uses. The current 
graph can be further augmented to embed the novel variants included within resequenc-
ing data, and it can be used as a reference for pan-GWAS based on germplasms that 
encompass multiple interfertile species. We, therefore, anticipate that the pangenome 
will be the backbone for many future applications, and particularly for unraveling the 
genetic basis of critical agronomic traits across Vitis.

Conclusions
In summary, we constructed a super-pangenome to represent and analyze North Ameri-
can wild species of the Vitis genus. The assembly of phased diploid genomes for the nine 
selected species was a fundamental starting point to ensure an accurate representation 
of genetic variations that occur within and between genomes. We were able to navigate 
through different layers of information integrated within the pangenome graph from 
large structural variations to single-nucleotide polymorphisms. We investigated and 
interpreted the genomic diversity within the genus and provide novel insights regard-
ing the core and the variable genome in grapes. We expect that many more insights 
on Vitis evolution as the pangenome for this genus grows and integrates more species, 
notably from distinct geographical regions such as Europe and Asia, which should help  
to further elucidate grapevine domestication for example. The integration of the  
V. vinifera species will provide direct insights into the genetic bases of the organolep-
tic properties of the wine-producing berries [45]. The concept of pangenomics provides 
many opportunities to finally move from a single-reference to a reference-free approach 
that incorporates broad genetic diversity when comparing different genomes. Significant 
improvements in accuracy are expected for approaches sensitive to single-nucleotide 
changes such as transcriptomics and genetic association studies of populations with  
frequent inter-species introgressions.

Methods
Plant material and tissue collection

Several plant tissues (see corresponding sections below) were collected for sequencing 
of DNA, RNA, and full-length transcripts, Bionano next-generation mapping, and flow 
cytometry. All plant material intended for nucleic acid extraction was immediately fro-
zen upon collection and ground in liquid nitrogen. Most of the samples were collected 
from accessions maintained in the vineyards by the Foundation Plant Services at the 
University of California, Davis (Additional File 1: Table S1). The selection of the different 
accessions was based on plant material availability and agronomical interests evidenced 
previously.

Library preparation and sequencing

High-molecular-weight genomic DNA (gDNA) was isolated from young leaves using 
the method described in Chin et al. [46]. DNA purity was evaluated with a Nanodrop 
2000 spectrophotometer (Thermo Scientific, IL, USA), DNA quantity with the DNA 
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High Sensitivity kit on a Qubit 2.0 Fluorometer (Life Technologies, CA, USA), and DNA 
integrity by pulsed-field gel electrophoresis. gDNA was cleaned with 0.45x AMPure PB 
beads (Pacific Biosciences, CA, USA) before library preparation. SMRTbell template was 
prepared with 15 µg of sheared DNA using SMRTbell Express Template Prep Kit (Pacific 
Biosciences, CA, USA) following the manufacturer’s instructions. SMRTbell template 
was size selected using the Blue Pippin instrument (Sage Science, MA, USA) using a 
cutoff size of 25–80 kb. The size-selected library was cleaned with 1x AMPure PB beads. 
The SMRTbell library was sequenced on a PacBio Sequel II platform using V2.0 chem-
istry (DNA Technology Core Facility, University of California, Davis, CA, USA) (Addi-
tional File 1: Table S2).

Ultra-high molecular weight DNA (> 500  kb) was also extracted from young fresh 
leaves using Amplicon Express (Pullman, WA, USA). After labeling with a DLE-1 non-
nicking enzyme (CTT AAG ) and staining following the instructions of the Bionano 
PrepTM Direct Label and Stain Kit (Bionano Genomics, CA, USA), DNA was loaded 
onto a SaphyrChip nanochannel array for imaging with the Saphyr system (Bionano 
Genomics, CA, USA) (Additional File 1: Table S3).

For V. acerifolia, V. arizonica, V. monticola, and V. riparia, DNA-Seq libraries were 
prepared from 1  µg of DNA extracted from young leaves using the Kapa LTP library 
prep kit (Kapa Biosystems, MA, USA). After quantity and quality evaluation with the 
High Sensitivity chip of a Bioanalyzer 2100 (Agilent Technologies, CA, USA), librar-
ies were sequenced in 150-bp-long paired-end reads on an Illumina HiSeq 4000 (DNA 
Technology Core Facility, University of California, Davis, CA, USA) (Additional File 1: 
Table  S5). For V. rupestris, the reads were produced using a HiSeq X Ten instrument 
(IDSeq, CA, USA). For the four other genotypes, the sequencing data were retrieved 
from the BioProject PRJNA731597 [4].

Total RNA was extracted from young leaves as described in Cochetel et al. [47] using 
the cetyltrimethylammonium bromide (CTAB)-based protocol from Blanco-Ulate et al. 
[48]. RNA purity was evaluated using a Nanodrop 2000 spectrophotometer (Thermo 
Scientific, IL, USA). DNA quantity was verified using a Qubit 2.0 Fluorometer and a 
broad-range RNA kit (Life Technologies, CA, USA). Finally, the RNA integrity was 
evaluated through electrophoresis and with an Agilent 2100 Bioanalyzer (Agilent Tech-
nologies, CA, USA). Two types of cDNA libraries were produced. For short reads, the 
Illumina TruSeq RNA sample preparation kit v.2 (Illumina, CA, USA) was used for 
library preparation following the low-throughput protocol. Library quantity and qual-
ity were evaluated with the High Sensitivity chip in an Agilent Bioanalyzer 2100 (Agi-
lent Technologies, CA, USA). The sequencing was performed using an Illumina HiSeq 
4000 (DNA Technology Core Facility, University of California, Davis, CA, USA) to pro-
duce 100-bp-long paired-end reads. For full-length cDNA sequencing, cDNA SMRT-
bell libraries were prepared. The first-strand synthesis and cDNA amplification were 
performed with the NEB Next Single Cell/Low Input cDNA Synthesis & Amplification 
Module (New England, MA, USA). The cDNA was then purified with ProNex magnetic 
beads (Promega, WI, USA) according to the Iso-Seq Express Template Preparation for 
Sequel and Sequel II Systems protocol (Pacific Biosciences, CA, USA) (Additional File 
1: Table S4). Long cDNA (> 2 kb) fragments were selected with ProNex magnetic beads 
(Promega, WI, USA), and at least 80 ng was used to prepare the cDNA SMRTbell library. 
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DNA damage repair and SMRTbell ligation were performed using the SMRTbell Express 
Template Prep kit 2.0 (Pacific Biosciences, CA, USA). One SMRT cell per genome was 
sequenced on the Sequel I platform (DNA Technology Core Facility, University of Cali-
fornia, Davis, CA, USA) (Additional File 1: Table S4).

Genome assembly, phasing, and chromosome‑scaling

For each genome, SMRT sequences (Pacific Biosciences, CA, USA) were assembled 
into haplotype-resolved contigs using the diploid-aware assembler Falcon-Unzip [46], 
as described in Massonnet et  al. [6] (Additional File 1: Table  S2), and polished using 
Arrow from ConsensusCore2 v.3.0.0 (https:// github. com/ Pacifi cBio scien ces/ ccs). Long 
imaged molecules (> 150  kb) from the next-generation mapping (Bionano Genomics, 
CA, USA) were assembled using Bionano Solve v.3.3 [49] with the parameters described 
in Cochetel et al. [47]. Using HybridScaffold v.04122018 [49] with the conflict resolution 
parameters “-B2 -N1,” hybrid assemblies were generated through the scaffolding of the 
Arrow-polished contigs with the consensus genome maps. Despite four next-generation 
mappings for V. monticola, we were not able to generate a consensus genome map for 
this genome. For V. riparia, no optical maps were available at the time of the assembly 
(Additional File 1: Table S3). Scaffolds were simultaneously phased and separated into 
chromosomes using the tool suite HaploSync [12] and the ~ 2000 rhAmpSeq Vitis mark-
ers [13] (Additional File 1: Table S19). The genome of V. arizonica was already released to 
support another study [25]. Illumina DNA-Seq reads were used during the chromosome 
reconstruction for coverage analysis (Additional File 1: Table S5). Gene space complete-
ness was evaluated using BUSCO v.3.0.2 scores [50]. In addition, CDS from PN40024 
[5] were mapped on each genome using pblat v.36x2 [51] with the parameters “-max-
Intron = 35,000 -minIdentity = 0”. Before the alignments, the set of PN40024 CDS was 
filtered to keep only the sequences uniquely mapping on PN40024 itself with a threshold 
fixed at 80% for identity and coverage. After the alignments on the nine species, hits 
were filtered with 50% identity and coverage, but also a minimum overlap of 80% on the 
reference gene loci (Additional File 1: Table  S9). To evaluate heterozygosity, NUCmer 
from the tool MUMmer v.4.0.0beta5 [23] was used with the parameter “--mum” to align 
the haplotypes of each genome against each other. All the resulting variant types and 
lengths were concatenated together to estimate the proportion of the genome covered 
by variants (Additional File 1: Table S7). For representation per variant type (Additional 
File 2: Figure S1), translocations, inversions, and any variants not classified as SNP or 
INDEL were merged into “other” category. Inter-species variations were also computed 
aligning the haplotypes of the different species against each other and using the same 
metrics as for the heterozygosity estimation (Additional File 1: Table S11).

Structural and functional annotation

The structural annotation of the protein-coding gene loci was performed using an exten-
sive ab  initio prediction pipeline described in Cochetel et  al. [47], available at https:// 
github. com/ andre aminio/ Annot ation Pipel ine- EVM_ based- DClab. Repeats were anno-
tated using RepeatMasker v.open-4.0.6 [52]. For each assembly, the proportion of bases 
covered by repetitive elements were represented as repeat percentages. RNA-Seq reads 

https://github.com/PacificBiosciences/ccs
https://github.com/andreaminio/AnnotationPipeline-EVM_based-DClab
https://github.com/andreaminio/AnnotationPipeline-EVM_based-DClab
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were filtered based on quality and adapters were trimmed using Trimmomatic v.0.36 
[53]. Quality controls pre- and post-trimming were performed with fastQC [54]. Filtered 
reads were used to produce transcriptome assemblies through Stringtie v.1.3.4d [55] 
and Trinity v.2.6.5 [56]. For the Iso-Seq reads, IsoSeq v.3 (https:// github. com/ Pacifi cBio 
scien ces/ IsoSeq) was used for the extraction, and LSC v.2.0 [57] for the polishing of the 
low-quality isoforms. For V. rupestris, Iso-Seq reads were not available at the time of the 
annotation, RNA-Seq was used as transcriptomic evidence (Additional File 1: Table S4). 
High-quality gene models were then generated using PASA v.2.3.3 [58] from the tran-
script evidence and external databases. The same input was used to produce genome 
alignments with Exonerate v.2.2.0 [59], PASA, and MagicBLAST v.1.4.0 [60]. Ab  initio 
predictions were also generated using Augustus v.3.0.3 [61], BUSCO v.3.0.2 [50], Gen-
eMark v.3.47 [62], and SNAP v.2006–07-28 [63]. Based on all the above evidence, Evi-
denceModeler v.1.1.1 [64] was used to generate consensus gene models. The functional 
annotation was produced with Blast2GO v.4.1.9 [65] combining blastp v.2.2.28 [66] or 
diamond v.2.0.8 [67] hits against the Refseq plant protein database (https:// ftp. ncbi. 
nlm. nih. gov/ refseq/, retrieved January 17th, 2019) and InterProScan v.5.28–67.0 [68] 
results. Hemizygosity was estimated through the alignments of the CDS of each haplo-
type per genome against each other using GMAP v.2019.09.12 [69]. Results were filtered 
with a threshold of 80% for identity and coverage. To prevent assembly bias, CDS were 
also aligned on the unplaced sequences (Additional File 1: Table S8). Hmmsearch from 
HMMER v.3.3 (http:// hmmer. org/) was used to scan the proteomes using NLR-specific 
Pfam domains [70]; PF00931, PF01582, PF00560, PF07723, PF07725, and PF12799. For 
proteins containing coiled-coil (CC) domains, annotations were extracted from the 
InterProScan results. NLR-annotator [71] was used as an additional source of evidence 
to identify NLR genes. After identifying NBS-LRR genes missing the NB-ARC domain 
(Pfam PF00931) as TIR-X or CC-X, eight classes were defined with CC-NBS-LRR, CC-
NBS, TIR-NBS-LRR, TIR-NBS, NBS-LRR, and NBS. For gene ontology enrichment 
analysis, the R package topGO v.2.48.0 [72] was used with an FDR-adjusted P value 
threshold set to 0.01.

Flow cytometry

DNA content was estimated using flow cytometry as described in Cochetel et al. [47]. 
The nuclei extraction was performed using the Cystain PI absolute P kit (Sysmex Amer-
ica Inc., IL, USA). For the internal reference standard, Lycopersicon esculentum cv. Stu-
pické polní tyčkové rané was selected, with a known genome size of 2 C = 1.96  pg; 1 
C = 958 Mb [73]. Young leaves (~ 5 mg) from grape and tomato were finely cut with a 
razor blade in a Petri dish containing 500 mL of extraction buffer and filtered through 
a 50-mm filter (CellTrics, Sysmex America Inc., IL, USA). Propidium iodide staining 
solution (2 mL) was then added to the nuclei suspension [74, 75]. Measurements were 
acquired with a Becton Dickinson FACScan (Franklin Lakes, New Jersey) equipped with 
a 488-nm laser. Raw data were imported and analyzed with the R package flowPloidy 
v.1.22.0 [76] (Additional File 1: Table S9). For V. berlandieri, V. riparia, and V. rupestris, 
estimates from the same species were retrieved from literature [77].

https://github.com/PacificBiosciences/IsoSeq
https://github.com/PacificBiosciences/IsoSeq
https://ftp.ncbi.nlm.nih.gov/refseq/
https://ftp.ncbi.nlm.nih.gov/refseq/
http://hmmer.org/
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Pangenome graph construction

A nucleotide-level super-pangenome graph was built using the tools from the PGGB 
pipeline (https:// github. com/ pange nome/ pggb) [11, 21]. To test different configura-
tions of the aligner (wfmash) and the graph builder (seqwish), chromosome 1 of the first 
haplotype from V. acerifolia and V. berlandieri were selected arbitrarily (Additional File 
1: Figure S10). For wfmash, the segment length (1, 5, 10, 20, 50, 100 kb) and the iden-
tity (70, 75, 80, 85, 90, 95%) were evaluated and alignments were converted to a graph 
using a fixed kmer size = 19 bp for seqwish. After the final selection of wfmash param-
eters “-s 10,000 -p 85”, the kmer size was tested from 15 to 405 bp and the default 49 bp 
was selected. The homologous chromosome sequences of each haplotype were aligned 
against each other between (e.g., chromosome 1 of species A haplotypes aligned against 
chromosome 1 of species B haplotypes) and within (e.g., chromosome 1 of species A 
haplotype 1 aligned against chromosome 1 of species A haplotype 2) species using 
wfmash (https:// github. com/ wavey gang/ wfmash) with the parameters “-p 85 -s 10,000 
-n 1”. The unanchored sequences from each genome were not included. The alignments 
were merged per chromosome and processed with seqwish v.0.7.3 [21] to produce the 
pangenome graphs with “-k 49”. Finally, two passes of smoothxg (https:// github. com/ 
pange nome/ smoot hxg) were performed to polish the pangenome. The parameters for 
the first pass were the following: “-w 68017 -K -X 100 -I 0.85 -R 0 -j 0 -e 0 -l 4001 -P 
"1,4,6,2,26,1" -O 0.03 -Y 1700 -d 0 -D 0 -V” and the parameters for the second were: “-w 
76619 -K -X 100 -I 0.85 -R 0 -j 0 -e 0 -l 4507 -P "1,4,6,2,26,1" -O 0.03 -Y 1700 -d 0 -D 
0 -V”. These options were derived from the all-in-one PGGB command (https:// github. 
com/ pange nome/ pggb) using target poa lengths (-l) of 4001 and 4507 for the first and 
second smoothxg pass, respectively. The chromosome-level graphs were joined using 
the module “ids” from vg v.1.48.0 [22] to produce a non-overlapping node id space. In 
the resulting pangenome, each chromosome from the 18 genomes was represented as a 
path. For each path, node ids and sequences were extracted and categorized in the core, 
dispensable, or private genomes based on their presence among species. The source 
code used to build and analyze the pangenome was released on GitHub [78] and refer-
enced on Zenodo [79]. A second pangenome was built adding to the later the genomes 
of three hybrid species; 101–14 Millardet et de Grasset (101–14 Mgt: V. riparia x V. rup-
estris), Richter 110 (110R: V. berlandieri x V. rupestris), and Kober 5BB (V. berlandieri 
x V. riparia) [7]. Wfmash and seqwish parameters were the same. For smoothxg, the 
parameters were modified to take into account the higher number of genomes; for the 
first pass “-w 92023 -K -X 100 -I 0.85 -R 0 -j 0 -e 0 -l 4001 -P "1,4,6,2,26,1" -O 0.03 -Y 
2300 -d 0 -D 0 -V” and the second pass “-w 103661 -K -X 100 -I 0.85 -R 0 -j 0 -e 0 -l 4507 
-P "1,4,6,2,26,1" -O 0.03 -Y 2300 -d 0 -D 0 -V”.

Orthology analysis

Transcripts from the nine species were aligned on the genome of each other using pblat 
v.36x2  [51] with the parameters “-maxIntron = 35,000 -minIdentity = 0”. After filtering 
with a threshold of 80% for identity and coverage, hits were summarized at the gene 
level. To evaluate colinearity between genomes, the above pblat hits were further filtered 

https://github.com/pangenome/pggb
https://github.com/waveygang/wfmash
https://github.com/pangenome/smoothxg
https://github.com/pangenome/smoothxg
https://github.com/pangenome/pggb
https://github.com/pangenome/pggb
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to cover at least 80% of the reference gene loci. Colinear blocks were then detected using 
McScanX_h from McScanX v.11.Nov.2013 [80] with default parameters.

Transcript abundance quantification

Salmon v.1.10.1 [81] was used for transcript-level quantification. To get high-accuracy 
alignments, decoys were generated using the genome sequences in addition to the 
CDS (https:// combi ne- lab. github. io/ alevin- tutor ial/ 2019/ selec tive- align ment/). Decoy 
regions from the genome are used during the scoring of the alignments to reduce false 
mapping of sequenced fragments that originate from unannotated genomic loci [82]. 
The indexes were created using a kmer size of 31 bp. Transcript levels were then quan-
tified with the parameters “--seqBias --gcBias --validateMappings” with the paired-end 
RNA-Seq data used for the gene annotation. Quantification results were imported and 
TPM values were extracted using the R package tximport v.1.24.0 [83].

Population structure

DNA-Seq samples were sequenced as described previously [4]. Raw sequencing reads 
were deposited on NCBI under the BioProject PRJNA984685 [84]  and previously 
sequenced reads [4, 25] were retrieved from the BioProjects PRJNA731597 [85] and 
PRJNA842753 [86]. DNA-Seq reads were quality-based trimmed using trimmomatic 
and mapped against the haplotype 1 of an equidistant reference genome from the Vitis 
vinifera clade, Cabernet Sauvignon [6], using bwa v.0.7.17-r1188 [87] and the parameter 
“mem”. Variant calling per sample was performed using the bcftools v.1.17 [88] com-
mands mpileup and call with the parameters “--keep-alts --gvcf 0 --multiallelic-caller”. 
The VCF files were merged using bcftools merge “--gvcf”. Variant sites and samples were 
filtered using bcftools filter “-e ’F_MISSING > 0.25 || MAF <= 0.01’” discarding 19 sam-
ples (153 remaining). Samples were further filtered to be representative of their groups 
and avoid any over-representation of a species/group overall. The maximum number 
of representative species per group was set to 10 with a selection based on coverage. 
The inclusion was ensured for the samples of the assembled genomes, a filter on cover-
age ≥ 10x was used, and this led to the final selection of 90 samples. Bedtools v.2.30.0 
[89] intersect was used to discard variant sites in repetitive regions, further filtered with 
bcftools filter “-e ’AC == 0 || AC == AN’ --SnpGap 10”, bcftools view “-m2 -M2 -v snps”, 
bcftools filter “-i ’QUAL >= 30’”, bcftools view “-e ’QUAL < 30 || MQBZ < -3 || RPBZ < -3 
|| RPBZ > 3 || SCBZ > 3 || INFO/DP < 5 || INFO/DP > 2000’” and pruned with plink 
v.1.90b6.21 [90] “--indep-pairwise 50 5 0.2”. The population stratification was finally 
evaluated by dimension reduction using plink “--pca”.

Phylogenetic analysis

Proteomes from the representative haplotype 1 of each genome were compared to each 
other using OrthoFinder v.2.5.4 [91]. Data for Muscadinia rotundifolia cv. Trayshed [47] 
were retrieved from http:// www. grape genom ics. com/. The sequences of each single-
copy gene orthogroups were aligned using MUSCLE v.5.1 [92]. Alignments were con-
catenated and parsed with Gblocks v.0.91b [93] including positions with gap allowed 

https://combine-lab.github.io/alevin-tutorial/2019/selective-alignment/
http://www.grapegenomics.com/
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in < 50% of the sequences. The evolutionary model was selected using the results from 
ModelTest-NG v.0.1.7 [94]. The phylogenetic tree was generated using RAxML-NG v.1.1 
[95]. The Maximum Likelihood (ML) method was selected with the optimized evolu-
tionary model JTT + I + G4 + F, using ten parsimony starting trees, and a bootstrapping 
of 1000 replicates. For clock calibration, the single-copy orthologs were used as input 
for BEAUti v.1.10.4 [96] to generate the preliminary XML file for BEAST v1.10.4 [96] 
analysis. A monophyletic partition was set for the North American species in the sub-
genus Vitis. A calibration point was established at the crown age of this subgenus which 
was estimated to be 17.8 million years ago [97], with a normal distribution and standard 
deviation of 1. Ten independent Markov chain Monte Carlo (MCMC) chains, each con-
sisting of 1,000,000 generations, were run using BEAST. The JTT substitution model, 
with four Gamma categories, a strict clock, and the Birth–Death Model with a random 
starting tree were used. Sampling was performed every 1000 generations. The resulting 
log and trees files were combined using LogCombiner v.1.10.4 [96], and the maximum 
clade credibility tree was generated using TreeAnnotator v.1.10.4 [96] with a burn-in of 
10,000 generations (Fig. 1k). For the dN/dS estimations, proteins from each haplotype 
used to construct the pangenome were separated into core and dispensable proteins 
selecting the longest isoform as representative. The orthogroup identification and their 
sequence alignments were performed as described above for the whole proteomes and 
converted to CDS using PAL2NAL v.13 [98]. For the core proteins, the tree computed 
earlier with the representative haplotype 1 was used. For the dispensable proteins, a tree 
was computed for each orthogroup using RAxML-NG with the same parameters as for 
the proteomes. Using the CDS alignments and the phylogenetic trees, the dN/dS ratio 
was estimated for every core and dispensable orthogroups using codeml from PAML 
v.4.10.0 [99] following the best practice guidelines [100]. For every gene of haplotype 1, 
a representative protein isoform was selected based on pfam domain coverage to study 
gene family evolution. They were aligned between genomes using all-vs-all diamond 
blastp with parameters “--sensitive --evalue 0.000001”. The gene family clusters were 
defined using Markov clustering (mcl) [101] with an inflation value set to 3 resulting in 
the identification of 9220 gene families. Using the previously clock-calibrated phyloge-
netic tree, a computational analysis of gene family evolution was performed using CAFE 
v.5.0 [102] using default settings and a P value threshold of 0.01. The lambda parameter 
specific to this dataset was 0.0103. After filtering for significant expansion or contraction, 
450 gene families were retained.

Structural variant analysis

Single-nucleotide polymorphisms and structural variants were extracted from the 
pangenome graph using vg deconstruct and filtered to only consider top-level variants 
(LV = 0). Multiallelic sites present in the VCFs were normalized to bi-allelic sites using 
“norm” from bcftools with the parameter “-m-any.” Files were divided into SNPs and 
INDELs using bcftools view and the parameter “--types”. While the variant types MNP 
(multiple-nucleotide polymorphism) and other were also detected in the vcf file, they 
were not considered further as they correspond to complex variation scenarios from 
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the decomposition of the graph into variants. For the comparison of haplotypes in each 
genome, the vcf were filtered to only retain variants present in the alternative haplotype 
for each haplotype considered as reference. Insertions and deletions were extracted from 
the INDELs files using bcftools filter with “--include ’strlen(REF) < strlen(ALT)’” and 
“--include ’strlen(REF) > strlen(ALT)’”, respectively. SnpEff v.5.1 [24] was used to anno-
tate the functional impact of the different types of variants. The unfiltered VCFs were 
compared with the inter-genomic pairwise comparisons made with NUCmer. For every 
reference genome, the insertion sites and deletions were concatenated into INDELs. The 
SNPs and INDELs detected from the different query genomes were combined per ref-
erence genome into a non-overlapping bed file using bcftools merge summarizing the 
entire proportion of the reference genome impacted by variants. The variant sites identi-
fied from vg deconstruct were compared with these SNPs and INDELs reference data-
sets using bedtools intersect. An enrichment analysis was performed on the different 
variant effects by comparing the proportion of variants with effect between the genes 
considered hemizygous and the total set of genes impacted by variants. A two-sided 
Fisher test was performed followed by a Bonferroni correction of the P values. Effects 
presenting an enrichment > 1 and a P-adjusted value < 0.05 were considered.

Sex‑determining region analysis

The sex-determining region (SDR) was localized in all the genomes using GMAP. Using 
V. arizonica as a reference, as its SDR was manually curated for a previous study [6], we 
discarded haplotypes that would require manual curation of their assembly and kept 11 
female and 4 male haplotypes. We selected a sub-region from the gene encoding Vvi-
YABBY3 to the WRKY transcription factor to focus between boundaries that contain 
most of the female/male allele differences [6]. For each haplotype, variant sites generated 
from the graph decomposition (vg deconstruct) were selected if they are present in all 
the haplotypes of the alternative allele considered. Allele-specific nodes were defined as 
nodes present in all the haplotype of an allele and absent in the haplotypes of the alter-
native. Repeats overlapping any allele-specific nodes were considered. For the gene rep-
resentation, the annotation of V. arizonica was used.

Pan‑ and classic GWAS

The unfiltered VCFs from vg deconstruct were used with the reference genome fasta 
of the haplotype 1 of V. girdiana SC2 as inputs to the command “construct” from vg. 
One graph was constructed per chromosome and the id space of the 19 graphs was 
merged using vg ids. The gcsa index and the xg index were computed with vg index to 
proceed with the alignments using vg map. The read support was then extracted from 
the alignment files using vg pack. Finally, the variant genotyping was performed using 
the following command structure per sample: “vg call --threads number_of_cores -k 
sample.on.graph.pack -r graph.snarls -s sample -a graph.xg > sample.on.graph.vcf ”. 
The flag -a is essential to merge all the samples’ VCFs as described in https:// github. 
com/ vgteam/ vg# calli ng- varia nts- using- read- suppo rt. The 153 samples were merged 
into a single VCF using the command “merge –merge all” from bcftools. An initial 

https://github.com/vgteam/vg#calling-variants-using-read-support
https://github.com/vgteam/vg#calling-variants-using-read-support
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filter was applied to discard variant sites from the VCF if they were presenting more 
than 25% of missing genotypes or a minor allele frequency lower than or equal to 1% 
using bcftools filter. SNP sites were extracted using bcftools view and the parameter 
“-v snps” while the SVs were obtained using bcftools view “--exclude-types snps.” The 
different chromosome-level VCF files were concatenated together using bcftools con-
cat. After quality assessment, VCF files were further filtered with bcftools filter “-e 
‘MAF < = 0.05 || QUAL < 30 || DP < 153 || DP > 5000’”. Each variant site was renamed 
with bcftools annotate using the parameter “--set-id + ’%CHROM\_%POS’”. For link-
age disequilibrium (LD) analysis, the following command was used to prune the 
dataset towards a subset of markers in approximate linkage equilibrium using plink: 
“plink --vcf name.vcf --double-id --allow-extra-chr -r2 gz --maf 0.1 --geno 0 --mind 
0.1 --ld-window 10 --ld-window-kb 300 --ld-window-r2 0 --out name --thin-count 
500000”. LD decay was evaluated using the model from Hill and Weir [103] as previ-
ously described in grapes [104]. For GWAS, plink was used to prune the files using 
“--indep-pairwise 50 5 0.2” required to generate the standardized relatedness matrix 
to account for population structure with gemma v.0.98.3 [105]. The GWAS was per-
formed using the matrix and the unpruned variant datasets with linear mixed models 
(LMMs) to test for association using gemma.

A classic GWAS was also performed using the haplotype 1 of V. girdiana SC2 as 
a reference. The DNA-Seq reads were mapped using bwa and the parameter “mem”. 
The alignments were prepared for GATK using several commands from the Picard 
toolkit (https:// github. com/ broad insti tute/ picard) starting with the validation of 
the files using “ValidateSamFile”. A sequence dictionary for the reference genome 
was obtained using “CreateSequenceDictionary”. The commands “MarkDuplicates”, 
“AddOrReplaceReadGroups”, and “BuildBamIndex” were used to complete the file 
preparation. The variant calling was performed using GATK v.4.0.12.0 [106] with the 
following command: HaplotypeCaller -I aln.bam --base-quality-score-threshold 20 
--sample-ploidy 2 --native-pair-hmm-threads 4 -R ref.fasta -ERC GVCF --disable-
read-filter GoodCigarReadFilter --output aln.g.vcf -L chr_name”. The single-sample 
gVCFs were imported into a GenomicsDB before the joint genotyping using “Genom-
icsDBImport” and the final VCF was generated using “GenotypeGVCFs”. The VCF 
was filtered following GATK’s guidelines using “bcftools filter -e ‘QD < 2 || FS > 60 || 
SOR > 3 || MQ < 40 || MQRankSum < -12.5 || ReadPosRankSum < -8’” (https:// gatk. 
broad insti tute. org/ hc/ en- us/ artic les/ 36003 58904 71- Hard- filte ring- germl ine- short- 
varia nts). The separation into SNPs and SVs, the last filterings, and the GWAS fol-
lowed the same steps as for the pan-GWAS.

Data visualization and statistical analysis

Rstudio v.2023.03.1.446 [107] running R v.4.2.1 [108] was used to run the R packages 
cited above and all the figures were generated mostly using the package tidyverse v.2.0.0 
[109]. Genomics data were parsed using GenomicFeatures v.1.48.4 [110], phylogenetic 
trees were drawn using ggtree v.3.4.4 [111] after importing the data with treeio v.1.20.2 
[112], the upset plot was generated using UpSetR v.1.4.0 [113], the gene representations 
were obtained using gggenes v.0.5.0 [114], and the chord diagrams were generated using 
circlize v.0.4.15 [115].

https://github.com/broadinstitute/picard
https://gatk.broadinstitute.org/hc/en-us/articles/360035890471-Hard-filtering-germline-short-variants
https://gatk.broadinstitute.org/hc/en-us/articles/360035890471-Hard-filtering-germline-short-variants
https://gatk.broadinstitute.org/hc/en-us/articles/360035890471-Hard-filtering-germline-short-variants
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