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Background
The life cycle of protein-coding RNA transcripts involves their transcription from DNA, 
5′ capping, splicing, 3′ polyadenylation, nuclear export, cellular localization, transla-
tion, and degradation [1–3]. RNA-binding proteins (RBPs) coordinately regulate these 
processes through interaction with RNA cis-regulatory elements, often in the 5′ and 3′ 
untranslated regions (UTRs) whose sequences are not constrained by a functional cod-
ing sequence [4]. Mammalian genomes encode hundreds of RBPs [5] and mutations in 
individual RBPs or even individual binding sites can induce strong developmental, auto-
immune, and neurological defects in human patients and mouse models [6–9].

Post-transcriptional regulation plays an important role in T cell biology [10]. As much 
as half of the extensive gene expression changes that occur during T cell activation occur 
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post-transcriptionally [11]. Over 1000 distinct RBPs have been identified in T cells [12] 
and several are known to be critical determinants of immune function and homeosta-
sis [7]. A large proportion of probable causal genetic variants associated with immune-
mediated diseases map to noncoding regions with potential regulatory functions in 
immune cells [13, 14], but the mechanistic role of the large majority of these variants in 
immune cells is unknown. A map of RBP occupancy in T cells can be a powerful tool for 
interrogating post-transcriptional gene regulation in the immune system and, in combi-
nation with genetic analysis, dissecting the genetic basis of immune-mediated diseases.

Systematic analyses of protein-RNA interactions have expanded our understanding of 
post-transcriptional regulatory circuits [5, 12, 15–22]. Large-scale enhanced crosslink-
ing immunoprecipitation (eCLIP) studies provided invaluable information about RNA 
elements bound by > 150 specific RBPs in an accessible public database, the Encyclope-
dia of DNA elements (ENCODE) RNA-binding protein resource [19]. However, a much 
larger number of RBPs remain to be analyzed, and protein-specific assays are an inef-
ficient means to interrogate global RBP occupancy across cell types and conditions. 
Methods utilizing organic phase separation to separate ribonucleoprotein complexes 
expanded the repertoire of known RBPs [5, 12, 15–17]. These and other RNA interac-
tome capture studies [18, 20–22] have mostly focused on the trans factors involved in 
RNA regulation, but also provide information about ribonucleoprotein-associated RNA 
regions [19–22].

Here, we created global RBP occupancy maps for primary mouse T cells and the 
human Jurkat T cell line using Global Cross-Linking Protein Purification (GCLiPP). 
The GCLiPP method shares many technical features with eCLIP and produces the 
same high-resolution transcriptome-wide protein occupancy data without RBP-specific 
immunoprecipitation. We validated GCLiPP, benchmarked its performance, and dem-
onstrated its utility for discovering and interrogating post-transcriptional cis-regulatory 
elements that impact gene expression and the incidence of human immune-mediated 
diseases. We present GCLiPP and the RBP occupancy maps it generates as resources for 
functional analysis of post-transcriptional regulation.

Results
Transcriptome‑wide analysis of RBP occupancy in T cells

To achieve transcriptome-wide RBP binding site profiling in T cells, we adapted bio-
chemical methods for crosslinking purification of all mRNA-RBP complexes. Our Global 
CrossLinking Protein Purification method, abbreviated as GCLiPP, features crosslink-
ing of endogenous ribonucleoprotein complexes using high-energy UV light (no photo-
crosslinkable ribonucleotide analogs); oligo-dT pulldown prior to biotinylation to enrich 
for mRNA species; chemical biotinylation of primary amines using a water-soluble rea-
gent with a long, flexible linker; brief RNase digestion with RNase T1; and on-bead linker 
ligation with radiolabeled 3′ linker to facilitate downstream detection of ligated products 
(Fig. 1A). We used the guanine-specific ribonuclease T1 to favor larger average fragment 
sizes than would be produced with an RNA endonuclease with less stringent nucleo-
tide specificity, such as RNase A. We first applied GCLiPP to interrogate RBP-occupied 
regions of RNA in human Jurkat T cells. Linker-ligated RBP-protected fragments were 
separated by PAGE and detected by radiography (Fig.  1B, lanes 1–3). Single-stranded 
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RNA oligonucleotides of 19 and 24 nt, the same length as the 5′ and 3′ linkers, were 
ligated to the radiolabeled 3′-linker and served as size markers (Fig. 1B, lane 4). Mate-
rial greater than 24 nt + 3′-linker in length were predicted to contain RBP-bound RNA 
fragments, and these were extracted and processed for small RNA library preparation 
and sequencing. Excluding the protein biotinylation or UV crosslinking steps greatly 

Fig. 1 GCLiPP sequencing reveals RNA transcript protein occupancy. A GCLiPP method of global RBP 
profiling. T cell RNAs are crosslinked to RBPs and lysates are biotinylated on primary amines. mRNAs are 
enriched with oligo-dT beads, and RBP-protected sites are digested, captured, sequenced, and aligned to the 
genome. B Film image of RBP-bound RNAs captured from Jurkats that underwent either UV crosslinking (UV 
254 nm), protein biotinylation, or both. Lane marked “M” contains 19 and 24 nucleotide (nt) ssRNA ligated to 
radiolabeled 3′linker. RNA greater than 24nt + 3′linker size were extracted and processed for sequencing. C 
Normalized GCLiPP read depth (fraction of reads in called peak relative to all GCLiPP reads in annotated 3′ 
UTR) in two replicates of Jurkat cells. ρ represents Pearson correlation. D Proportion of mapped GCLiPP reads 
derived from genomic features. E Relative coverage of genomic features in GCLiPP sequencing reads relative 
to total length of genomic features of indicated class. F GCLiPP track of NR4A1 3′UTR. Red bars indicate 
presence of ARE motif (AUUUA). G GCLiPP track of IER3 gene along with predicted ROQUIN binding loop in 
the 3′UTR 
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diminished the yield of ligated RNA fragments (Fig. 1B, lanes 5–8), indicating that the 
GCLiPP procedure preferentially captures RNA sequences interacting with RBPs in liv-
ing cells.

We called local peaks of GCLiPP sequence read density and measured the distribution 
of GCLiPP reads within those peaks to assess the reproducibility of the technique. Local 
read density within individual transcripts was similar between experiments, as GCLiPP 
fragments yielded highly reproducible patterns in technical replicates (Fig. 1C). The dis-
tribution of read coverage from Jurkat GCLiPP libraries was strongly enriched within 
mature mRNAs and long noncoding RNAs (Fig. 1D, E) compared to other transcriptome 
features.

RBPs bind to linear and structural motifs to regulate the stability and/or translation 
of the mRNAs that they bind [23]. We observed GCLiPP read coverage correspond-
ing to known RBP recognition motifs. Nuclear Receptor subfamily 4 group A member 
1 (NR4A1), which encodes the NUR77 protein that is an activation-induced negative 
regulator of T cell responses, is an example of RBP-mRNA interaction through linear 
sequence recognition. A local maximum of GCLiPP read density in the NR4A1 3′UTR 
corresponded with a region that contains multiple AU-rich elements (AREs) that desta-
bilize mRNA (Fig. 1F) [24]. Similarly, the 3′UTR of IER3, an immediate early response 
gene that protects cells from Fas- or TNFα-induced apoptosis, contains a local maxi-
mum of GCLiPP read coverage at the previously characterized structurally determined 
stem-loop binding motif regulated by the RBP Roquin (Fig.  1G) [25]. These examples 
provide snapshots of different motifs represented in GCLiPP protein occupancy maps. 
Further examination of individual 3′UTRs of interest can be accessed through our visu-
alization tool, Thagomizer (http:// thago mizer. ucsf. edu). Thagomizer utilizes a database 
of GCLiPP and Argonaute 2 (Ago2) HITS-CLIP experiments [26, 27] along with miRNA 
binding site predictions from the TargetScan database [28] to map RBP-mRNA and 
miRNA-mRNA interactions in 3′ UTRs.

Systematic analysis determined that single-stranded RNA (ssRNA) was the dominant 
structural characteristic of protein-occupied RNA regions detected by GCLiPP. We used 
CLIPper [29] to call peaks in our data and calculated the base-pairing probability for 
every nucleotide pair in each 200-bp sequence peak using RNAfold in the ViennaRNA 
package [30]. Matrices for all peaks were averaged to generate an average base-pairing 
probability. This analysis revealed a decreased probability of base-pairing at the center 
of GCLiPP peaks compared to surrounding regions, indicating an enrichment for single-
stranded RNA (ssRNA) at the center of GCLiPP peaks in Jurkat cell 3′UTRs (Fig. 2A). A 
similar pattern of decreased probability of base-pairing was observed in eCLIP peaks for 
a characteristic member of this family, Polypyrimidine Tract Binding Protein 1 (PTBP1), 
an RBP that binds to C/U-rich ssRNA through 4 RRM domains (Additional file 1: Fig. 
S1A) [31]. UV crosslinking bias may drive ssRNA capture; however, this enrichment in 
GCLiPP peaks was consistent with high expression of RBPs with ssRNA-binding RNA 
recognition motif (RRM) domains in Jurkat cells (Fig. 2B). Proteomics data from sim-
ilar RNA interactome capture (RNA-IC) method in primary human CD4 T cells [12] 
also captured RBPs that predominantly contained the RRM motif compared to other 
domains (Fig. 2C). Together, these data indicate that RBP-occupied regions detected by 
GCLiPP in T cells are predominantly composed of the structural motif, ssRNA.

http://thagomizer.ucsf.edu
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GCLiPP read density represents cytosolic RBP occupancy

We assessed the performance of GCLiPP by comparison with eCLIP and phase sep-
aration-based methods. Specifically, we compared CLIPper-called peaks in Jurkat 
GCLiPP data with compiled peaks from eCLIP datasets [32], and with peaks detected 
in the original exemplary XRNAX [15] and OOPs [16]. CLIPper returned peaks of dif-
fering size distributions for each method (Fig. 2D; p <  10−300 for all pairwise compari-
sons). Phase separation methods, especially OOPS, generated broader peaks, possibly 
indicating lower-resolution mapping of RBP-occupied regions. To better assess assay 
resolution, we determined the phylogenetic conservation of RBP-occupied regions 
detected by each technique, reasoning that functional RBP-RNA interaction sites are 
better conserved than neutral 3′ UTR sequences. PhyloP scores for 200 nt regions 
centered on each CLIPper-called peak were averaged for all binding sites and then 
normalized around a mean of 0 for each method (Fig. 2E). GCLiPP and eCLIP peaks 
displayed high sequence conservation at peak centers, although GCLiPP showed a 
slightly broader local maximum of conservation. XRNAX and OOPS produced even 
broader patterns of phylogenetic conservation, indicating lower-resolution mapping 
of RBP binding sites, consistent with the broader distribution of sequence reads gen-
erated by these methods. Normalized PhyloP scores at each nucleotide distance from 
peak center correlated better between eCLIP and GCLiPP (Fig.  2F, top panel) than 
between eCLIP and phase separation methods (Fig.  2F, middle and bottom panel). 
We conclude that GCLiPP globally and selectively detects RBP binding sites through-
out the transcriptome at a high resolution that closely resembles gold-standard eCLIP 
data.

(See figure on next page.)
Fig. 2 GCLiPP detects cytosolic RBP binding sites with characteristic sequence conservation and structural 
properties. A Base-pairing probability was calculated for each pair of nucleotides within 200 bp peak called 
by CLIPper2.0 in Jurkat cells. The average base-pairing matrices for all peaks in the 3′UTR is shown here as 
a heatmap. B Jurkat RNAseq reads mapped to known RBPs were categorized into different RBDs. Top 10 
occurring domains were determined by total reads that can be ascribed to specific domain motif. C Number 
of RBPs identified through RNA-IC in activated primary human T cells that contain a certain domain. Only 
top 10 occurring motifs are shown. RBPDB databased was used as a reference for categorizing RBPs in 
B and C. D Size distribution of n CLIPper-called peaks from datasets of RBP binding detected by GCLiPP, 
phase-separation methods XRNAX and OOPS, and an amalgamation of 87 RBP eCLIP datasets from ENCORE. 
µ = mean ± standard deviation. E Sequence conservation of called peaks from D expressed as normalized 
PhyloP score relative to the peak center. Histograms at bottom show the global average for all peaks for 
each method. F Normalized PhyloP data from E transformed to display the correlation between eCLIP 
(y-coordinate) and the indicated methods (x-coordinate) as a function of the distance from peak center. 
Linear regression statistics and the line of unity (in red) are indicated on each plot. G Genomic snapshots of 
individual 3′ UTR showing exemplary correlation between TIA1 eCLIP dataset and GCLiPP. GCLiPP is shown 
in red, while the indicated RBP eCLIP data is shown in blue, and matched control input samples are shown 
in gray for the 3′ UTRs of the indicated gene. r indicates Pearson correlation between pairs of normalized 
read density at a given nucleotide for the indicated comparisons. H 2D density plots showing matched 
correlations between GCLiPP and TIA1 eCLIP (X-axis) and GCLiPP and the matched control input sample 
(Y-axis) for individual 3′ UTR for all expressed genes in eCLIP and GCLiPP datasets. The t-statistic shown is 
for a paired t-test of the correlations. I Overlap of CLIPper-called peaks in 3′ UTRs in GCLiPP and eCLIP. Red 
lines indicate observed overlap of GCLiPP peaks and eCLIP peaks. Gray distribution represents bootstrapped 
expected overlap, derived by computing overlap of GCLiPP-called peaks with eCLIP peaks shuffled within the 
same 3′UTR. This analysis was repeated 500 times. The indicated distance represents the number of standard 
deviations above the mean shuffled overlap of the observed overlap. J Correlation of eCLIP-GCLiPP paired 
t-tests from H and cytosolic RBP abundance in mRNPs
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Given the global similarity between eCLIP and GCLiPP, we systematically com-
pared GCLiPP occupancy maps with individual eCLIP experiments [32]. We exam-
ined pairwise correlations of normalized read density across individual 3′ UTRs 
between GCLiPP and individual RBP eCLIP samples (Fig. 2G, Additional file 1: Fig. 
S1B). In parallel, we compared GCLiPP to the input control for each eCLIP experi-
ment. Since the eCLIP input controls ideally report all crosslinked ribonucleopro-
tein complexes, albeit with low coverage and a low signal to noise ratio, we expected 
GCLiPP to broadly correlate with the input. Nevertheless, eCLIP for many RBPs, such 
as TIA1 and IGF2BP1, matched GCLiPP read density much more closely than the 
eCLIP input control across the transcriptome (Fig.  2H, Additional file  1: Fig. S1C), 
indicating a relatively high contribution of these RBPs to the overall GCLiPP signal. 

Fig. 2 (See legend on previous page.)
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For other proteins, such as PUM2, this comparison showed poor correlation, indi-
cating a low contribution to total RBP occupancy transcriptome-wide. Yet we found 
evidence that GCLiPP captured focal RBP binding to specific sites (UGUA motifs in 
the case of PUM2) that were overrepresented in GCLiPP reads (Additional file 1: Fig. 
S1B, bottom panel). This was revealed when we called GCLiPP peaks with CLIPper 
[29] and compared these peaks with CLIPper-called peaks in eCLIP datasets. The 
observed fraction of PUM2 eCLIP peaks that overlap GCLiPP peaks (0.56) was much 
greater than the fraction overlapping eCLIP peaks randomly shuffled across the 3′ 
UTRs from which they were derived (Additional file 1: Fig. S1D, bottom panel). Simi-
lar results were obtained for TIA-1 (Fig. 2I) and IGF2BP1 (Additional file 1: Fig. S1D, 
top panel). These enrichments above background binding for IGF2BP1, TIA1, and 
PUM2 were among the highest 8 of the 87 RBPs whose eCLIP signals were examined 
(Additional file 1: Fig. S2).

These analyses indicated that GCLiPP captures RNA occupied by any protein. If so, the 
most abundant RBPs should generally make greater contributions to the GCLiPP signal 
than less abundant RBPs. Therefore, we further compared the genome-wide correlation 
between eCLIP and GCLiPP signal with the abundance of these 87 RBPs as previously 
determined via mass spectrometry [21]. There was an overall significant correlation 
between RBP abundance and correspondence between RBP eCLIP and GCLiPP profiles 
(r = 0.28, p = 0.02). However, stratifying RBPs by their predominant cellular localization 
[33] showed that this correlation was driven almost entirely by cytosolic RBPs with no 
correlation for non-cytoplasmic RBPs (Fig. 2J, Additional file 1: Fig. S1E). The fraction 
of eCLIP peaks that overlapped GCLiPP peaks above a shuffled background was also 
significantly greater for cytosolic versus non-cytosolic RBPs (p = 0.003, Additional file 1: 
Fig. S2 inset). These findings were expected, as the GCLiPP experimental protocol pref-
erentially samples the cytosol by eliminating most nuclear material in the cell lysis step. 
In summary, GCLiPP and eCLIP represent similar and complementary methods for 
high-resolution mapping of RBP occupancy on cytosolic RNAs.

Comparison of RBP binding profiles of different T cell states

We further demonstrated the utility of GCLiPP through a series of experiments in T 
cells. Changes in RBP occupancy at any given genomic location can be affected by a vari-
ety of factors, including RBP expression and site availability. To compare RBP occupancy 
between different samples, we developed a deep-learning algorithm, DeepRNAreg, to 
identify regions of differential GCLiPP read density within each 3′UTR and applied it 
to data from unstimulated and stimulated Jurkat cells. DeepRNAreg calculates the area 
under the curve of the read coverage and assigns a differential binding intensity (DBI) 
value to the genomic location. Using DeepRNAreg, we identified differentially bound 
sites between resting and activated Jurkats (Additional file  2: Table  S1-S2), then que-
ried ENCORE eCLIP data to determine which RBP(s) bind to these genomic locations. 
Changes in binding intensity between activated and resting Jurkats mirrored changes 
in RBP expression (Fig. 3A), with higher DBI at sites bound by an RBP associated with 
higher expression of that RBP in activated vs resting cells. These data indicate that RBP 
expression is often a limiting factor for occupancy on transcripts, as higher expression is 
associated with greater occupancy across the binding site repertoire.
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To determine whether any specific RBP-RNA interactions were enriched in either 
resting or stimulated conditions, we identified predicted RBP motifs within each differ-
entially bound region using the oRNAment database [34], and determined the enrich-
ment of the motif in either dataset compared to its normal occurrence within 3′UTRs 
of the human genome. Among the proteins examined, poly-A-binding protein cytoplas-
mic family (PABPC) motifs were enriched in resting, but not in activated Jurkat cells 
(Fig.  3B). However, PABPC proteins were not differentially expressed in these condi-
tions, indicating that changes in binding site availability rather than protein abundance 
may drive this enrichment. PABPC proteins bind to the untemplated poly-A tail of tran-
scripts, as well as to adenosine-rich motifs that are preferentially located near the 3′ end 
of 3′UTRs [35]. Activated T cells preferentially express shortened transcripts through 
utilization of upstream alternative polyadenylation signal sequences (PAS) (Fig. 3C) [35]. 
Therefore, we hypothesized that the reduced global binding to PABPC motifs may reflect 
a reduction in their availability in expressed transcripts. Indeed, the set of PABPC bind-
ing motifs differentially bound in resting Jurkat cells was significantly skewed toward 
those more distant from the translation termination codon (Fig. 3D). A similar but less 
pronounced phenomenon was apparent for all GCLiPP peaks (Fig. 3E). Together, these 

Fig. 3 Activation-induced changes in RBP binding. A Correlation between activation-induced changes 
in RBP expression and protein occupancy at corresponding binding sites in Jurkat cells. Mean differential 
binding intensities were calculated for sets of GCLiPP peaks defined by their overlap with specific RBP 
binding in ENCODE eCLIP datasets. Dots represent individual RBPs, and lines show the concordance between 
the first principal component (blue) describing variation within these data with the line of unity (red). B 
Enrichment of RBP consensus binding motifs centered within regions with increased GCLiPP signal in 
activated vs. resting Jurkat cells. Genomically encoded motifs recognized by 4 PABPC family members were 
enriched in regions differentially bound in resting, but not activated Jurkat cells. C–E Cumulative distribution 
function (CDF) plots depicting the distance from the translation stop codon for the top 10% of differentially 
bound regions in activated compared to resting Jurkat cells filtered for those containing a canonical PAS (C), 
genomic templated PABPC binding site (D), or any GCLiPP peak (E)
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data indicate that global RBP occupancy in Jurkat T cells may be altered by activation-
induced changes in RBP expression and PAS selection.

RBP occupancy of RNA cis‑regulatory elements in primary T cells

Previous global RBP profiling has been conducted with cell lines. To examine tran-
scriptome-wide RBP occupancy in primary T cells, we performed GCLiPP on pri-
mary mouse CD8 and CD4 type 2 helper T cells (Th2) (Fig. 4A). These two subsets of 
T cells perform different functions with CD8 T cells involved in cell-mediated immu-
nity and Th2  cells involved in orchestrating barrier immunity. Despite these differ-
ences, the cells share core T cell machinery and were treated as a broader group of 
primary mouse T cells for the following analyses. Local read density at peaks showed 
reproducible patterns between multiple pooled experiments for the two T cell subsets 
(Additional file 1: Fig. S3A). Similar to Jurkat cells (Fig. 1D, E), distribution of reads in 
primary mouse T cells was enriched in mature transcripts and long noncoding RNAs 
(Additional file 1: Fig. S3B, C). The most striking difference was the greater propor-
tion of reads derived from transposable elements in mouse GCLiPP libraries. This 
increase is likely due to the greater amount of annotated transposable elements in 

Fig. 4 GCLiPP recapitulates previously described mRNA-RBP interactions in primary T cells. A GCLiPP was 
performed on primary mouse Th2 and CD8 T cells. RNAseq and GCLiPP tracks for BIer3, CActb, DCd3g, and E–
GGpx4. RNAseq tracks are from resting Th2 cells. GCLiPP tracks show the sum of five experiments, three in Th2 
and two in CD8 T cells. Location of known RBP binding determinants are shown as insets
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the mouse genome since the relative coverage of these elements was similar between 
species. We examined the GCLiPP profiles at previously characterized cis-regulatory 
elements of various functional and structural categories in primary mouse T cells. As 
in Jurkat cells, we observed GCLiPP read density at Roquin/Regnase binding site in 
the 3′ UTR of Ier3 (Fig. 4B).

Known cis-regulatory elements involved in transcript localization were also rep-
resented by local regions of GCLiPP read density. The Beta-actin “zipcode” element 
is responsible for localization of Actb mRNA to the cellular leading edge in chicken 
embryo fibroblasts [36] and contains conserved linear sequence elements separated 
by a variable linker. These conserved sequence elements are thought to form the 
RNA/protein contacts in a complex involving the actin mRNA- and the RNA-bind-
ing protein Igf2bp1 (previously known as Zbp1) where the non-conserved sequence 
winds around the RBP [37]. This sequence corresponds to the center of the second 
highest peak of GCLiPP read density in the Actb transcript (Fig. 4C).

The canonical PAS (AAU AAA ) binds to RBPs in the polyadenylation complex as part 
of constitutive mRNA metabolism [38]. We examined T cell lineage-defining transcripts 
with well-resolved GCLiPP profiles (due to their high expression levels), including Cd3g 
(Fig. 4D), Cd3e, Cd4, and Cd8b1 (Additional file 1: Fig. S4). The canonical PAS in these 
transcripts were contained within called GCLiPP peaks, often as the peak with the 
highest GCLiPP read density in the entire transcript. Interestingly, the GCLiPP profile 
of Cd8b1 contained direct biochemical evidence for alternative polyadenylation signal 
usage (Additional file  1: Fig. S4C), a phenomenon that has previously been described 
to be important in activated T cells [35]. GCLiPP peaks appeared in multiple canoni-
cal polyadenylation signal sequences in Cd8b1, coincident with clear evidence for both 
short and long 3′ UTR isoform usage indicated by lower RNAseq read counts after the 
initial canonical polyadenylation signal. A similar pattern was apparent in Hifa (Addi-
tional file 1: Fig. S4D) and a number of other highly expressed transcripts.

The insertion of the selenium containing amino acid selenocysteine into selenopro-
teins represents a unique case of RBP regulation of protein translation. Selenoproteins 
are redox enzymes that use selenocysteine at key reactive residues [39, 40]. Selenocyst-
eine is encoded by the stop codon UGA. This recoding occurs only in mRNAs that con-
tain 3′ UTR cis-regulatory elements (termed SECIS elements) that bind to RBPs that 
recruit the elongation factor Eefsec and selenocysteine-tRNA [41, 42]. SECIS elements 
were prominent peaks of GCLiPP read coverage in selenoprotein mRNAs. For exam-
ple, the predicted SECIS element [43] in the 3′ UTR of Gpx4 was entirely covered by 
GCLiPP reads (Fig. 4E). Indeed, a canonical polyadenylation signal and the full hairpin 
structure containing the SECIS element account for essentially all of the GCLiPP reads 
in the Gpx4 3′ UTR (Fig. 4F). Comparing transcriptome-wide in vivo folding data from 
icSHAPE [44] and GCLiPP data supports the identification of an RBP-bound, struc-
tured SECIS element (Fig.  4G,H). Furthermore, this analysis suggests that the folded, 
RBP-bound structure is even larger than that predicted by SECISearch 3, with regions 
of GCLiPP read density and apposed high and low icSHAPE signals spanning almost the 
entire 3′ UTR. Thus, GCLiPP recapitulated previously described structured and single-
stranded RNA cis-regulatory elements that mediate constitutive RNA metabolism, tran-
script localization, regulation of gene expression, and translation.
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Cross‑species comparison of GCLiPP reveals patterns of biochemically shared 

post‑transcriptional regulation

Next, we sought to compare RBP occupancy in mouse and human T cells. To do so, 
we performed Clustal Omega sequence alignments of thousands of human 3′ UTRs 
and their corresponding sequences in the mouse genome, and then designed an algo-
rithm to identify correlated peaks of normalized GCLiPP read density along the aligned 
nucleotides (Fig. 5A). Using this approach, we identified 1047 high-stringency biochemi-
cally shared GCLiPP peaks derived from 901 3′UTRs (Additional file 3: Table S3). As a 
class, biochemically shared peaks exhibited significantly higher sequence conservation 
than the full 3′ UTRs in which they reside (Fig. 5B). The highly conserved, biochemi-
cally shared peak in USP25 exemplifies this general pattern (Fig. 5C, right panel). How-
ever, many biochemically shared peaks did not exhibit corresponding increases in local 
sequence conservation. For example, the ARRB2 mRNA that encodes b-arrestin, another 
regulator of T cell migration in response to chemoattractant gradients [45], exhibited 
a common peak of RBP occupancy in Jurkat cells and primary mouse T cells that is 
roughly equally conserved as the rest of the 3′ UTR (Fig. 5C, left panel).

To examine which RBPs contributed to biochemically shared peaks more than other 
GCLiPP peaks, we used HOMER motif calling software [46] to identify enriched motifs. 
Strikingly, of the six linear sequence motifs present in > 10% of biochemically shared 
peaks with p ≤  10−10, five resemble well-known regulatory sequences (Fig. 5D). The two 
most common appeared to represent canonical CELF [47] and PUM [48] binding motifs. 
Three other identified motifs corresponded to runs of homo-polymers: an A-rich motif 
that resembled the canonical PAS [49]; a poly-U containing motif similar to a sequence 
that has long been known to stabilize mRNAs [50] and a poly-C containing motif similar 
to the C-rich RNAs bound by poly-C binding proteins [51]. We used Metascape [52] to 
identify categories of biologically related genes enriched among mRNAs that contained 
biochemically shared GCLiPP peaks (Fig. 5E and Additional file 4: Table S4). Interest-
ingly, 3 of the 5 most enriched categories were related to RNA regulation (“regulation 
of mRNA metabolism,” “large Drosha complex,” “RNA splicing”), with the broad cate-
gory “post-transcriptional regulation of gene expression” also in the top 10. Thus, bio-
chemically shared GCLiPP binding sites are generally more well conserved than their 
local sequence context, enriched for well-studied RBP binding motifs, and occur prefer-
entially in genes that encode proteins involved in post-transcriptional gene regulation. 
Together, these observations suggest the presence of conserved autoregulatory gene 
expression networks.

GCLiPP‑guided CRISPR dissection of biochemically shared post‑transcriptional 

cis‑elements

We hypothesized that functionally conserved destabilizing cis-regulatory elements 
could be identified by examining biochemically shared GCLiPP peaks in 3′ UTRs of 
labile transcripts. To prioritize candidates, we computed Pearson correlation coeffi-
cients for the normalized GCLiPP profiles of 3′UTRs of genes expressed in both Jurkat 
cells and primary mouse T cells (Fig. 6A, black histogram) and examined transcript 
instability by RNAseq analysis of primary mouse T cells treated with actinomycin D 
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(Fig. 6A, red histogram). The proto-oncogene PIM3 emerged as an outstanding can-
didate with both strong interspecies GCLiPP correlation and very high transcript 
instability. Alignment of the GCLiPP profiles of human and mouse PIM3 revealed a 
dominant shared peak of GCLiPP read density (Fig. 6B). This peak corresponded to 

Fig. 5 Comparison between mouse and human GCLiPP reveals principles of shared post-transcriptional 
regulation. A Schematic illustration of 3′ UTR alignment and biochemically shared GCLiPP peak calling. B 
Distribution of conservation across 100 vertebrates (PhyloP score) of regions in the human genome. Blue 
indicates biochemically shared peaks and gray indicates the 3′ UTRs of the transcripts that those peaks are 
contained within. For both peaks within ARRB2 and USP25, their matched conservation of peak and UTR are 
indicated by connected vertical lines. C Human and mouse normalized GCLiPP density and conservation 
(PhyloP) across aligned nucleotides of the indicated 3′ UTRs. Biochemically shared peaks of GCLiPP read 
density are indicated in pink. D HOMER called motifs enriched in biochemically shared peaks. Percentages 
indicate the frequency of occurrence of the indicated motif in biochemically shared peaks versus non-shared 
background peaks. P-value indicates HOMER calculated p-value of enrichment. E Metascape called biological 
enrichment categories of genes containing biochemically shared peaks. The background set was all genes 
that contained peaks in both mouse and human GCLiPP datasets that did not contain a shared peak
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a highly conserved region of the transcript that contains a G-quadruplex, followed 
by a putative AU-rich element (ARE) and a CELF binding motif (Fig.  6C). Another 
conserved region with G-quadruplex followed by a putative ARE appeared upstream 
of the biochemically share GCLiPP peak. We numbered these conserved regions 
ARE1 and ARE2 according to their order in the 3′UTR and hypothesized that ARE2 
would exert greater cis-regulatory activity than ARE1, given its RBP occupancy in 
both species and the relative lack of occupancy in ARE1. To test this hypothesis, we 
performed CRISPR dissections of both the human and mouse PIM3 3′UTRs (Fig.  6 
and Additional file 5: Table S5). These analyses produced largely concordant patterns 
of post-transcriptional cis-regulatory activity in the human (Fig.  6D–G) and mouse 
(Fig. 6H–K) 3′UTR, with the greatest significant destabilizing effect corresponding to 
the shared region of GCLiPP read intensity covering the ARE2 element. Consistent 
with this portrait of the entire 3′ UTR, when we filtered specifically for mutations that 
completely deleted either ARE1 or ARE2, we observed significantly greater expression 
of transcripts derived from cells with ARE2 deleted versus ARE1 (Fig. 6L, M). Thus, 
PIM3 is a very unstable transcript with highly concordant RBP occupancy in human 
and mouse cells. Functional dissection of the post-transcriptional regulatory land-
scape of this gene revealed that this biochemical concordance between mouse and 
human cells is mirrored at a functional level, with the most highly occupied region 
indicated by GCLiPP read density corresponding to the most destabilizing region of 
the 3′ UTR.

GCLiPP‑guided functional analysis of autoimmune disease‑associated SNPs

We reason that RBP occupancy maps could be used to guide functional annotation of 
sequence variants that lie within RNA in cis-regulatory elements. To test this possibility, 
we intersected our Jurkat GCLiPP peaks with probable casual single-nucleotide poly-
morphisms (SNPs) associated with human immune-mediated diseases. A previously 
developed algorithm, Probabilistic Identification of Casual SNPs (PICS) [14] identified 
candidate causal SNPs through fine-mapping that were linked to immune-mediated 

(See figure on next page.)
Fig. 6 Biochemically and functionally shared post-transcriptional regulation of PIM3 in human and mouse 
cells. AZ-scores of Pearson correlation between mouse and human GCLiPP (black distribution) and transcript 
instability as measured by comparing transcript read abundance in untreated versus actinomycin D-treated 
mouse T cells (red distribution) for 7541 genes with matched data. Vertical lines indicate observations for 
PIM3. B Normalized human and mouse GCLiPP read density and C PhyloP across aligned nucleotides of PIM3 
3′ UTR (as depicted in Fig. 5). Insets show sequences of putative regulatory elements. D–G Dissection of 
human PIM3 3′UTR in Jurkat T cells. D GCLiPP peaks aligned to schematic illustration of 3′UTR. E Change in 
expression along the 3′UTR relative to median expression of all possible deletions. Per-nucleotide effect score 
was calculated by comparing median normalized RNA/gDNA ratio for all shown deletions spanning a given 
nucleotide with median of all shown deletions. Experiment 1 and 2 are biological duplicates which were 
transfected with 80 or 120 μM of gRNAs respectively. Red bars indicate putative ARE-containing cis-regulatory 
elements. F Unadjusted − log10 p-values from Welch’s two sample t-test comparing all deletions spanning 
a nucleotide with all other deletions across both replicate experiments in E. G Size of deletions generated 
using CRISPR-Cas9. Arrow heads represent gRNA placement. H–K Dissection of mouse PIM3 3′UTR. Data 
are represented identically to human data, except that mouse primary CD8 T cells were used, and both 
mouse experiments 1 and 2 used a gRNA concentration of 80 μM. L Effect of deletions spanning putative 
ARE-containing cis-regulatory elements. The RNA/DNA ratio for mutants deleting ARE1 and ARE2 are shown 
in human Jurkat T cells. M Same as in L but using data from mouse primary T cells
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diseases. PICS2 [53] has expanded that list to include variants identified with more 
recently collected GWAS data. Within these variants, we identified 63 SNPs that appear 
within a GCLiPP peak in a 3′UTR in Jurkat cells (Additional file 6: Table S6). These vari-
ants were associated with a variety of immune-mediated disorders and appeared in a 
variety of genes that are expressed in T cells (Fig. 7A). To test whether disease-associated 
probable causal variants overlapping GCLiPP peaks mark functional RNA cis-regulatory 

Fig. 6 (See legend on previous page.)
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Fig. 7 GCLiPP and PICS2-identified probable causal SNPs guide dissection of cis-regulatory elements in 
3′UTR. A Top 15 PICS2 SNPs within GCLiPP peaks with gene location (x-axis) and ranked by PICS2 probability 
score (y-axis). Diseases associated with SNPs are marked by color. B GCLiPP track of IKZF1 3′UTR. Arrow heads 
represent gRNA placement to delete two regions (R1 and R2). Vertical dotted line indicates variant location. 
C Representative IKZF1 protein expression detected by intracellular flow cytometry in Jurkat cells edited 
with non-targeting control gRNAs (Ctrl), or paired gRNAs targeting IKZF1 3′UTR R1 (blue) or IKZF1 3′UTR R2 
deletion (red). D Normalized IKZF1 gMFI for 3 replicate CRISPR targetings from 2 independent experiments. E 
GCLiPP track of CD5 3′UTR in Jurkats, similar annotations as B. F CD5 expression in Jurkats cells and G primary 
human CD4 T cells targeted with non-targeting control gRNAs (Ctrl; gray) or CD5 3′UTR gRNAs to induce 
deletion (red). Histogram shows representative flow cytometry data (left) and normalized geometric mean 
fluorescence intensity (gMFI) for F 3 replicate CRISPR targeting in 3 independent experiments for Jurkats 
and G 5 replicates of individuals or pooled individuals from 2 independent experiments for primary human 
T cells. H GCLiPP track of STAT6 3′UTR in Jurkats. I pSTAT6 gMFI of Jurkat cells or J primary human CD4 T cells 
polarized to Th2 cells targeted with non-targeting control (Ctrl), STAT6 coding region dual gRNAs (STAT6 KO) 
or STAT6 3′UTR paired gRNAs following treatment with IL-4 for 0, 5, 10, 15, or 30 min. Data are shown for I 
2–3 replicate CRISPR targetings from 3 independent experiments for Jurkats and J 9 individuals or pooled 
individuals from 3 independent experiments for primary human CD4 T cells
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elements, we deleted 4 individual RBP binding sites in the 3′UTRs of 3 distinct immu-
nologically important genes using a dual guide RNA (gRNA) CRISPR-Cas9 editing 
approach.

Ikaros family zinc finger 1 (IKZF1) is a pleiotropic transcriptional factor involved in 
lymphocyte differentiation [54]. Its 3′UTR contains 3 probably causal SNPs associated 
with type 1 diabetes (Fig. 7B). We generated two separate deletions using paired gRNAs 
(Fig. 7B, gray arrow heads) containing these SNPs and observed decreased IKZF1 pro-
tein expression compared to control cells in Jurkats (Fig. 7C, D), suggesting presence of a 
cis-regulatory element in the 3′UTR.

Intersection of GCLiPP and PICS2 data also revealed a probable causal SNP associated 
with rheumatoid arthritis in the 3′UTR of CD5 (Fig. 7E), which encodes an inhibitory 
receptor expressed on T cells [55]. Deletion of this region with paired gRNAs (at 50–60% 
editing efficiency; data not shown) decreased CD5 expression in Jurkats (Fig.  7F). To 
determine whether this effect is also observed in primary T cells, the same deletion 
was generated in human CD4 T cells and showed similar decreased in CD5 expression 
(Fig. 7G). Together, this suggests the presence of a cis-regulatory element in the 3′UTR 
of CD5 that is conserved between Jurkat cell line and primary human T cells.

SNP rs1059513 in the 3′UTR of STAT6 had a PICS2 probability score 0.985 for asso-
ciation with allergy, making it by far the most likely causal variant in the locus for this 
trait. STAT6 is an important signaling protein and transcription factor that is pivotal 
for mounting a type 2 inflammatory response. It is activated by Janus kinase (JAK)-
mediated phosphorylation downstream of IL-4 and IL-13 signaling [56]. To determine 
whether the identified RBP binding site affected STAT6 expression and function, we 
used CRISPR-Cas9 to generate a small deletion (Fig.  7H) and treated the edited cells 
with IL-4 to measure phospho-STAT6 (pSTAT6). STAT6 3′UTR edited cells showed 
similar phosphorylation kinetics as control (Additional file  1: Fig. S5A), but overall 
decreased pSTAT6 expression compared to controls (Fig. 7I, Additional file 1: Fig. S5B) 
in Jurkats. The same deletion in primary CD4 T cells polarized toward Th2 cells also 
showed comparable phosphorylation kinetics as non-targeting control cells (Additional 
file  1: Fig. S5C) and decreased pSTAT6 expression during IL-4 treatment (Fig.  0.7  J, 
Additional file 1: Fig. S5D).

In summary, a GCLiPP-guided analysis of probable causal SNPs in 3′UTRs efficiently 
identified functional RNA cis-regulatory elements in human T cells that regulate pro-
tein expression. These findings demonstrate the utility of a transcriptome-wide profile of 
RBP occupancy in the T cell transcriptome.

Discussion
Interconnected networks of RBPs and RNAs form a complex layer of post-transcrip-
tional regulation that affects all biological processes. Understanding these networks 
remains one of the key challenges in deciphering how the genome encodes diverse 
cell identities and behaviors [14, 57]. Methods like DNase I hypersensitivity and 
ATAC-seq that query regulatory element accessibility and occupancy without prior 
knowledge of their protein-binding partners have proven themselves as powerful 
techniques for the systematic mapping of cis-regulatory sequences in DNA [58, 59]. 
Their development has allowed for comparisons in the regulatory structure of diverse 



Page 17 of 30Zhu et al. Genome Biology          (2023) 24:281  

cell types [60] and for functional analysis of genetic variants [14]. Large-scale eCLIP 
analyses of individual RBPs have begun the intensive process of documenting RBP 
binding sites in the transcriptome of a few model cell types, providing a useful reposi-
tory of RNA regulatory data [19, 61, 62]. Here, we describe GCLiPP, an optimized 
method for global RBP occupancy mapping with methodologic and performance sim-
ilarities to eCLIP. We generated and validated a RBP binding map of the transcrip-
tome in T cells and used it as a guide to identify cis-regulatory elements in 3′UTRs. 
As ATAC-seq has been used to define global regulatory elements involved in tran-
scription, we demonstrated the use of GCLiPP to discover RNA regulatory elements 
that mediate post-transcriptional gene regulation.

Our data demonstrate that GCLiPP maps RBP occupancy at a higher resolution 
than what has been achieved with organic phase separation techniques. This feature, 
together with its technical similarity with RBP-specific eCLIP, make GCLiPP a par-
ticularly valuable tool for the identification and functional analysis of RNA cis-regula-
tory elements. The preferential capture of polyadenylated transcripts is both a feature 
and a limitation of GCLiPP. Methods using proximity-based CLIP [61], locked nucleic 
acid (LNA) capture probes [18], and organic phase separation [15, 16] more broadly 
represent non-polyadenylated noncoding RNAs. Similar to these other techniques, 
GCLiPP relies on UV crosslinking to isolate RBPs, likely preferentially capturing 
ssRNA while under-sampling double-stranded cis-regulatory elements. In the future, 
GCLiPP could be modified to include LNA probes to diversify the types of transcripts 
captured, and improved with a ribosomal depletion step to limit rRNA in the sample.

Dissection of the human PIM3 and mouse Pim3 3′UTRs demonstrated the util-
ity of GCLiPP for decoding biochemically shared and functionally conserved post-
transcriptional regulation. The PIM family of serine/threonine kinases exert profound 
regulatory effects on MYC activity, cap-dependent translation independent of mTOR, 
and BAD-mediated antagonism of apoptosis [62]. Post-transcriptional regulation of 
PIM kinases is important, as proviral integrations in the Pim1 3′ UTR are highly onco-
genic [63]. Pim3 mRNA was abundant but highly labile in T cells, with a turnover rate 
in the top 2% of expressed mRNAs. PIM family members contain multiple ARE-like 
repeats of AUUU(A), but the specific sequences responsible for rapid mRNA decay 
have not been described and cannot be predicted from the primary sequence alone. 
The PIM3 3′UTR contains two phylogenetically conserved regions with very simi-
lar predicted ARE sequences. Of these regions, we predicted that greater regulatory 
activity would be exerted by the region with GCLiPP evidence for RBP occupancy 
in both human and mouse cells. CRISPR dissection bore out this prediction in both 
species. The inactive conserved region may be structurally inaccessible to RBP occu-
pancy, or it may be occupied and exert regulatory activity only in other cell types or 
signaling conditions.

Targeted dissection of GCLiPP-identified RBP binding regions within 3′UTRs of 
immunologically relevant genes also led to discovery of cis-regulatory regions that 
modulate protein expression. Decreased expression of both CD5 and IKZF1 after 
deletion of the targeted regions suggests the presence of a post-transcriptional stabi-
lizing or translational element. Lower levels of pSTAT6 similarly indicate stabilizing 
activity in STAT6 3′UTR. Our data uncovered conserved regulatory activity in the 
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dissected 3′UTRs in both Jurkats and primary human T cells, demonstrating the util-
ity of using Jurkat RBP binding data to guide discovery of post-transcriptional ele-
ments for shared expressed genes in primary T cells.

The mechanism by which these elements affect protein expression, and their role in 
regulating T cell biology is not yet well-defined. However, quantitative changes in CD5 
and IKZF1 expression are expected to alter T cell activation and differentiation, respec-
tively [54, 55, 64]. STAT6 plays clear mechanistic roles in allergy and asthma, and a 
recent study showed that altered STAT6 expression due to rare germline gain of func-
tion promoter mutations cause severe allergic disorders [56]. Mechanistic investigation 
is warranted to understand how the RBP-occupied region containing a highly probable 
causal SNP for allergy regulates STAT6 expression and T cell biology in the context of 
allergic responses. Together, these targeted dissections further highlight the utility of 
unbiased high-resolution biochemical determination of RBP occupancy for annotating 
the regulatory transcriptome in conjunction with genetic data.

Systematic comparison with eCLIP data for 87 individual RBPs [32] indicated that 
GCLiPP roughly represented a weighted average of all potential eCLIP experiments for 
cytosolic RBPs. GCLiPP peaks overlapped eCLIP peaks at a frequency much greater 
than would be expected by chance, even though different cell types were used for the 
GCLiPP and eCLIP experiments. These findings are consistent with the prior observa-
tion that binding sites for individual proteins detected by eCLIP generally differ little 
between cell types with different tissue origin [19]. Nevertheless, the precise profiles of 
RBP occupancy and regulation of individual transcripts may be subject to cell type and 
context-dependent differences in RBP expression, binding activity, and site accessibil-
ity. Overall GCLiPP read density correlated with eCLIP read density in a manner that 
corresponded with the relative abundance of a given RBP in purified cellular mRNPs 
[21]. Still, the eCLIP peaks for some low abundance RBPs were significantly enriched 
in GCLiPP profiles. The strongest correlations were observed for abundant cytosolic 
RBPs, and the correspondence between eCLIP and GCLiPP was only apparent for cyto-
solic, but not non-cytosolic RBPs. This result was expected since the GCLiPP proto-
col selectively enriches for cytosolic polyadenylated RNA. GCLiPP could be modified 
to intentionally enrich for nuclear RBPs to examine the regulatory landscape of mRNA 
biogenesis.

We leveraged the matched datasets from similar cell types expressing many shared 
transcripts to perform a cross-species comparison of the post-transcriptional regula-
tory landscape. As might be expected, the sequences of 3′ UTR regions that appeared as 
peaks of RBP occupancy in both species were in general more conserved than the full-
length 3′ UTRs in which they occurred. These biochemically shared peaks were enriched 
in well-known RBP-binding cis-regulatory sequences including PUM motifs, CELF 
motifs, and canonical polyadenylation signals. We also found clear biochemically shared 
peaks with relatively poor sequence conservation. These regions retain RBP occupancy 
despite an evident lack of strong selective pressure on their primary sequence, perhaps 
due to highly degenerate and/or structural determinants of RBP occupancy. RNAs with 
conserved structure and RBP binding but poorly conserved primary sequence have been 
reported before, and they are enriched in gene regulatory regions [65, 66]. Finally, we 
noted that transcripts with biochemically shared peaks tended to encode proteins that 
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were themselves involved in post-transcriptional gene regulation. This pattern is consist-
ent with previous suggestions that autoregulatory or multi-component feedback loops 
may be a conserved mode of post-transcriptional gene regulation [67].

Conclusion
The GCLiPP datasets reported here provide a rich resource for the annotation and 
experimental dissection of cis-regulatory function in mRNAs. GCLiPP detected RBP 
occupancy at many known cis-regulatory regions, including canonical polyadenyla-
tion signals and elements that control mRNA localization, translation, and stability, and 
provide a biochemical correlate of functional activity. Our method generated higher-
resolution mapping of RBP binding sites compared to phase separation biochemical 
approaches, similar to ENCORE. These data are provided to the scientific community 
for browsing and mining in a readily accessible form online. Combining GCLiPP with 
unbiased biochemical assays, genetic analyses and other datasets probing RNA regula-
tory circuits will yield a roadmap for the dissection of post-transcriptional regulatory 
networks and hypothesis generation of multi-omics studies.

Methods
Cells

Primary  CD4+ and  CD8+ mouse T cells were isolated from C57BL/6 J mouse peripheral 
lymph nodes and spleen using positive and negative selection Dynabeads, respectively, 
according to the manufacturer’s instructions (Invitrogen). All mice were housed and 
bred in specific pathogen-free conditions in the Animal Barrier Facility at the Univer-
sity of California, San Francisco. Animal experiments were approved by the Institutional 
Animal Care and Use Committee of the University of California, San Francisco. Cells 
were stimulated with immobilized biotinylated anti-CD3 (0.25 mg/mL, BioXcell, clone 
2C11) and anti-CD28 (1  mg/mL, BioXcell, clone 37.51) bound to Corning 10-cm cell 
culture dishes coated with Neutravidin (Thermo) at 10 mg/mL in PBS for 3 h at 37 °C. 
Cells were left on stimulation for 3 days before being transferred to non-coated dishes 
in T cell medium [68] supplemented with recombinant human IL-2 (20 U/mL, NCI). 
Th2 cell cultures were also supplemented with murine IL-4 (100 U/mL) and anti-mouse 
IFN-γ (10 µg/mL). CD8 T cell cultures were also supplemented with 10 ng/mL recombi-
nant murine IL-12 (10 ng/mL). For re-stimulation, cells were treated with 20 nM phor-
bol 12-myristate 13-acetate (PMA) and 1 µM ionomycin (Sigma-Aldrich) for 4 h before 
harvest.

Peripheral blood mononuclear cells (PBMCs) were isolated from anonymous donors 
through Ficoll-Paque Plus centrifugation gradient (Cytiva). CD4 T cells were isolated 
from PBMCs using EasySep Human CD4 + Isolation Kit according to the manufactur-
er’s protocol (StemCell Technologies). Cells were stimulated on plates coated with anti-
CD3 (1 μg/ml, UCSF Monoclonal Antibody Core; clone OKT-3) and anti-CD28 (2 μg/
ml, Miltenyi Biotec; clone 15E8). After 2 days of stimulation, cells were electroporated to 
incorporate CRISPR-Cas9 RNPs and placed back on anti-CD3- and anti-CD28-coated 
plates for 1 day. Cells were then rested in T cell media supplemented with recombinant 
human IL-2 (20 U/mL, NCI). For Th2 polarizing conditions, cultures were supplemented 
with human recombinant IL-4 (12.5  ng/mL, R&D Systems) and human anti-IFN- γ 
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(10 μg/ml, Invitrogen, clone NIB42) during stimulation and only with anti-IFN- γ (5 μg/
ml) during rest. Protein readout for CD5 was conducted 4 days after electroporation and 
6 days for pSTAT6. T cell media consisted of RPMI-1640 supplemented with 10% fetal 
bovine serum (FBS) (Omega), L-glutamine, penicillin, streptomycin, sodium pyruvate, 
β-mercaptoethanol, and HEPES. Jurkat cells were grown in RPMI supplemented with 
FBS, L-glutamine, penicillin, and streptomycin.

Measurement of mRNA decay

Cells were stimulated with PMA and Ionomycin for 4 h and then additionally treated 
with actinomycin D (Sigma-Aldrich) at 5 µg/mL for an additional 0, 1, 2, or 4 h. After 
treatment, cells were lysed with Trizol LS (Life Technologies) and processed with Direct-
zol™ 96-well RNA (Zymogen). RNA was quantified with an ND-1000 spectrophotom-
eter (NanoDrop) and reverse transcribed with SuperScript III First Strand Synthesis Kit 
(Invitrogen).

GCLiPP and RNAseq

 ~ 100 ×  106 mouse T cells cultured from 3 mice or ~ 100 ×  106 Jurkat T cells were washed 
and resuspended in ice-cold PBS and UV irradiated with a 254-nm UV crosslinker 
(Stratagene) in three doses of 4000, 2000, and 2000 mJ, swirling on ice between doses. 
Cells were pelleted and frozen at − 80  °C. Thawed pellets were rapidly resuspended in 
400 µL PXL buffer without SDS (1 × PBS with 0.5% deoxycholate, 0.5% NP-40, Protease 
inhibitor cocktail) supplemented with 2000 U RNasin (Promega) and 10 U DNase (Invit-
rogen). Pellets were incubated at 37 °C with shaking for 10 min, before pelleting of nuclei 
and cell debris (17,000 g for 5 min). Supernatants were biotinylated by mixing at room 
temperature for 30 min with 500 µL of 10 mM EZ-Link NHS- SS-Biotin (Thermo) and 
100 µL of 1 M sodium bicarbonate. Supernatants were mixed with 1 mg of washed oligo-
dT beads (New England Biolabs) at room temperature for 30 min and washed 3 times 
with magnetic separation. Oligo-dT selected RNA was eluted from beads by heating in 
poly-A elution buffer (New England Biolabs) at 65 °C with vigorous shaking for 10 min. 
An aliquot of eluted RNA was treated with proteinase K and saved for RNAseq analysis 
using Illumina TruSeq Stranded Total RNA Library Prep Kit according to the manufac-
turer’s instructions. Cells treated with actinomycin D as described above were also col-
lected for RNAseq to generate transcriptome-wide measurements of transcript stability.

The remaining crosslinked, biotinylated mRNA-RBP complexes were captured on 250 
µL of washed M-280 Streptavidin Dynabeads (Invitrogen) for 30 min at 4 °C with con-
tinuous rotation to mix. Beads were washed 3 times with PBS and resuspended in 40 
µL of PBS containing 1000 U of RNase T1 (Thermo) for 1  min at room temperature. 
RNase activity was stopped by addition of concentrated (10% w/v) SDS to a final con-
centration of 1% SDS. Beads were washed successively in 1 × PXL buffer, 5 × PXL buffer, 
and twice in PBS. Twenty-four picomoles of 3′ radiolabeled RNA linker was ligated to 
RBP-bound RNA fragments by resuspending beads in 20 µL ligation buffer containing 
10 U T4 RNA Ligase 1 (New England Biolabs) with 20% PEG 8000 at 37° for 3 h. Beads 
were washed 3 × with PBS and free 5′ RNA ends were phosphorylated with polynucleo-
tide kinase (New England Biolabs). Beads were washed 3 × with PBS and resuspended 
in ligation buffer containing 10 U T4 RNA Ligase 1, 50 pmol of 5′ RNA linker, and 20% 
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PEG 8000 and incubated at 15 °C overnight with intermittent mixing. Beads were again 
washed 3 times in PBS and linker-ligated RBP-binding fragments were eluted by treat-
ment with proteinase K (Sigma-Aldrich) in 20 µL PBS with high-speed shaking at 55 
°C. Beads and supernatant were mixed 1:1 with bromophenol blue formamide RNA gel 
loading dye (Thermo) and loaded onto a 15% TBE-Urea denaturing polyacrylamide gel 
(Bio-Rad). Ligated products with insert were visualized by autoradiography and com-
pared to a control ligation (19 and 24 nt markers). Gel slices were crushed and soaked in 
gel diffusion buffer (0.5 M ammonium acetate; 10 mM magnesium acetate; 1 mM EDTA, 
pH 8.0; 0.1% SDS) at 37 °C for 30 min with high-speed shaking, ethanol precipitated, and 
resuspended in 20 µL of RNase-free water. Ligated RNAs were reverse transcribed with 
Superscript III reverse transcriptase (Invitrogen) and amplified with Q5 polymerase 
(New England Biolabs). PCR was monitored using a real-time PCR thermal cycler and 
amplification was discontinued when it ceased to amplify linearly. PCR products were 
run on a 10% TBE polyacrylamide gel (Bio-Rad), size selected for an amplicon with the 
predicted 20–50 bp insert size to exclude linker dimers, and purified from the gel (Qia-
gen). Cleaned up library DNA was quantified on an Agilent 2100 Bioanalyzer using the 
High Sensitivity DNA Kit before being sequenced. All GCLiPP and RNAseq sequencing 
runs were carried out on an Illumina HiSeq 2500 sequencer.

GCLiPP and RNAseq bioinformatics analysis pipeline

FastQ files were de-multiplexed and trimmed of adapters. Each experiment was per-
formed on three technical replicates per condition (resting and stimulated) per experi-
ment. Cloning replicates and experiments were pooled in subsequent analyses. Jurkat 
and mouse T cell trimmed sequence reads were aligned to the hg38 human or mm10 
mouse genome assembly using bowtie2, respectively. After alignment, PCR amplifica-
tion artifacts were removed by de-duplication using the 2-nt random sequence at the 
5′ end of the 3′ linker using a custom script that counted only a single read containing a 
unique linker sequence and start and end position of alignment per sequenced sample. 
Peaks of GCLiPP read density were called by convolving a normal distribution against a 
sliding window of the observed read distribution with a custom script (utr_peak_finder.
pl). A 70-nucleotide window was analyzed centered on every nucleotide within the 3′ 
UTR. For each window, the observed distribution of read density was compared to a 
normal distribution of the same magnitude as the nucleotide in the center of the win-
dow. The Pearson correlation coefficient was computed for each nucleotide and peaks 
were defined as local maxima of goodness of fit between observed GCLiPP read density 
and the normal distribution, requiring a read depth above 20% of the maximum read 
depth in the 3′ UTR global minimum of 10 reads. RNAseq reads were aligned using 
STAR Aligner (https:// github. com/ alexd obin/ STAR) [69] to align against the mm10 
genome, and gene expression data were calculated as fragments per kilobase per million 
reads. Source code for data visualization software Thagomizer can be found at https:// 
github. com/ sskhon- 2014/ Graphy.

Comparison of GCLiPP to individual eCLIP datasets

eCLIP data [32] from K562 cell line were downloaded via the ENCODE data portal 
(http:// www. encod eproj ect. org/). The first replicate set of bigwig files were downloaded 

https://github.com/alexdobin/STAR
https://github.com/sskhon-2014/Graphy
https://github.com/sskhon-2014/Graphy
http://www.encodeproject.org/
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for each RBP deposited online at the time of analysis (December 2017) (Additional file 7, 
Table S7) as well as CLIPper-called peaks for the same. To facilitate comparisons with 
GCLiPP, we called GCLiPP peaks in the Jurkat data using CLIPper [29] after re-aligning 
Jurkat GCLiPP reads to hg19. Correlation analysis was performed with a custom perl 
script that calculated the Spearman correlation for read depth at each nucleotide in the 
3′ UTR of all genes that were expressed in each dataset (as determined by CLIP read 
depth). ~ 5000–15,000 expressed genes were included in the correlation analysis for each 
RBP. For comparison to mRNP abundancy, log10 RBP mass spectrometry spectra counts 
of HEK293 cells were utilized from [21]. To stratify RBPs by subcellular localization, data 
were taken from the COMPARTMENTS database, with RBPs with a localization score 
of 5 in the cytosol counted as cytosolic and lower counted as non-cytosolic [33]. All cus-
tom scripts are available at https:// github. com/ Ansel Lab/ GCLiPP- Manus cript- scrip ts.

RBP domain analysis

We called Jurkat GCLiPP peaks aligned to hg38 using CLIPper2.0 [29]. Each peak was 
resized to 200 bp and oriented at the original peak center. The 200 bp RNA sequence of 
each peak was analyzed using pf_fold method from ViennaRNA (RNAlib version 2.4.13) 
[30] to calculate base-pairing probability for each pair of nucleotides and presented as an 
average for all the identified RBP binding sites. The PTBP1 eCLIP dataset (hg38) from 
K562 cells was downloaded from ENCORE (GSM2424223) and processed in similar 
manner. The matrices in Fig. 2A and Fig. S1A are zoomed into the central 150-bp region.

We used available resting and activated Jurkat expression data [70] (GSE145453) to 
calculate read counts mapped to RBP domains using annotations from RBPDBv1.3 [71] 
as a reference. Proteomics data of RBPs expressed in human Th0 cells was obtained and 
identified as described [12]. RBPs that contained more than one annotated domain based 
on RBPDBv1.3 were considered as an individual count in each appropriate category.

Conservation of RBP binding sites

To evaluate sequence conservation across various datasets, we performed CLIPper2.0 
peak calling on sequencing data obtained through XRNAX [15] and OOPS [16]. The 
average PhyloP conservation score, obtained from UCSC genome browser as a bigwig of 
PhyloP scores of conservation 100 vertebrates, was calculated across all the sites within 
each method. This average was then standardized to contain a mean of 0 and a standard 
deviation of 1. Sequencing data for XRNAX (PRJEB26441; run accession ERR2537875) 
and OOPS (PRJEB26736; run accession SAMEA4663545, SAMEA4663546, 
SAMEA4663547, SAMEA4663548) was retrieved from EMBL-EBI ENA server and 
mapped to hg38 before CLIPper2.0 analysis. Specifically, our analysis used XRNAX data 
without ribosomal depletion and OOPS data performed using 150 mJ/cm2 crosslinking 
condition.

Identifying differential RBP binding

We used DeepRNAreg (accompanying manuscript available upon request) to compare 
GCLiPP datasets from activated and resting Jurkat cells to obtain a list of genomic loci 
within 3′UTRs that were enriched in either condition, and assign a differential bind-
ing intensity (DBI) value to each site. This list of loci was intersected with all ENCORE 

https://github.com/AnselLab/GCLiPP-Manuscript-scripts
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eCLIP datasets for K562 cells to assign corresponding predicted RBPs for each identi-
fied binding region. For regions assigned to each RBP, we calculated the mean DBI for 
activated and resting Jurkat cells, and expressed the mean DBI fold change as the ratio 
of these means. Gene expression in activated and resting Jurkat cells was determined by 
calculating total read counts from Jurkat expression data [70] (GSE145453). Source code 
for DeepRNAreg is available at https:// github. com/ Ansel Lab/ DeepR NA- Reg.

The same sets of regions differentially bound in activated or resting Jurkat cells were 
scored for the presence of consensus RBP recognition motifs within an 8-base pair win-
dow centered at the differential binding site. Enrichment of each binding motif within 
these regions was calculated against the background frequency of the same motif within 
the entire set of 3′ UTRs of genes bearing differentially bound regions. This analysis was 
performed for 119 RBPs that are represented in the oRNAment database of consensus 
binding sequences [34] and expressed in Jurkat cells [70].

CRISPR editing

Guide RNA sequences were selected using the Benchling online CRISPR design tool 
(https:// bench ling. com/ crispr) with guides selected to target genomic regions of 
GCLiPP read density. Synthetic crRNAs and tracrRNA (Dharmacon) were resuspended 
in water or 10  mM Tris–HCl Buffer pH 7.4 (Dharmacon) at 160  µM and allowed to 
hybridize at 1:1 ratio for 30  m at 37  °C. For CRISPR dissection experiments, all crR-
NAs were mixed at an equimolar ratio before annealing to tracrRNA. This annealed 
gRNA complex (80 µM) was then mixed 1:1 by volume with 40 µM S. pyogenes Cas9-
NLS (University of California Berkeley QB3 Macrolab) to a final concentration of 20 µM 
Cas9 ribonucleotide complex (RNP). The complexed gRNA:Cas9 RNP and random 
200  bp ssDNA (100  pmol, IDT) were nucleofected into primary mouse T cells (24  h 
after stimulation) or primary human T cells (48 h after stimulation) with the P3 Primary 
Cell 96-well Nucleofector™ Kit or into Jurkat cells with the SE Cell Line 96-well Nucle-
ofector™ Kit using a 4-D Nucleofector following the manufacturer’s recommendations 
(Lonza). Cells were pipetted into pre-warmed media and then returned to CD3/CD28 
stimulation for another 2 days for primary mouse T cells or 1 day for primary T cells and 
then expanded for an additional 3–5 days. Jurkat cells were expanded in resting condi-
tions for 3–10 days after electroporation.

To validate deletion, gDNA was isolated from a portion of the edited cells using 
QuickExtract DNA Solution (Lucigen) following the manufacturer’s protocol. Edited 
regions were amplified through PCR using designed primers and MyTaq 2 × Red Mix 
(Bioline) and ran on 2% agarose gel. DNA bands were detected and quantified using Bio-
Rad ChemiDoc.

3′ UTR dissection

3′ UTR dissection was performed as described [72]. Gene edited cells were harvested 
into Trizol reagent (Invitrogen) and total RNA was phase separated and purified from 
the aqueous phase using the Direct-zol RNA miniprep kit with on-column DNase treat-
ment (Zymogen). Genomic DNA was extracted from the remaining organic phase by 
vigorous mixing with back extraction buffer (4 M guanidine thiocyanate, 50 mM sodium 
citrate, 1  M Tris base). cDNA was prepared with oligo-dT using the SuperScript III 

https://github.com/AnselLab/DeepRNA-Reg
https://benchling.com/crispr
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reverse transcription kit (Invitrogen). cDNA and genomic DNA were used as a template 
for PCR using MyTaq 2 × Red Mix (Bioline). To equilibrate the number of target mol-
ecules and number of PCR cycles between samples, we performed semi-quantitative 
PCR followed by agarose gel electrophoresis to determine a PCR cycle number where 
genomic DNA first showed visible bands. This cycle number was then used with a titra-
tion of cDNA concentrations. A concentration that amplified equivalently was selected 
for analysis by deep sequencing. To quantify relative RNA/DNA ratios, cDNA and 
genomic DNA amplicons were purified using a QIAquick PCR purification Kit (Qia-
gen) and quantified on an Agilent 2100 Bioanalyzer using the High Sensitivity DNA Kit 
(Agilent).

Amplicons were tagmented with the Nextera XT kit (Illumina) and sequenced on 
an Illumina 2500 HiSeq. Reads were aligned to a custom genome consisting of the tar-
geted PCR amplicon using STAR aligner and mutations were scored using an awk script 
(https:// github. com/ alexd obin/ STAR/ blob/ master/ extras/ scrip ts/ sjFro mSAMc ollap 
seUan dM. awk). RNA/DNA read ratios were calculated for all mutations over 20 nucleo-
tides long and less than 250 nucleotides long, and relative expression was quantified as 
the median normalized RNA/DNA ratio for this subset of mutations. Mutations had to 
have at least 10 reads in both the RNA and gDNA amplicons and mutations with an 
RNA/DNA ratio of greater than 10 were excluded as outliers. Effect sizes for each nucle-
otide of the amplicon in each experiment were computed by comparing this median 
normalized RNA/DNA ratio for all mutations spanning a given nucleotide to all other 
mutations. Combined p-values were calculated using Welch’s two sample t-test compar-
ing all mutations spanning a given nucleotide with all other mutations.

Shared peak calling, motif analysis and icSHAPE and phylogenetic analyses

3′ UTR alignments of mouse and human were performed by downloading hg38 RefSeq 
3′ UTRs from UCSC genome browser (http:// genome. ucsc. edu), identifying syntenic 
regions of the mouse genome in mm10 with the KentUtils liftOver program (https:// 
github. com/ ucscG enome Brows er/ kent) and aligning UTRs with Clustal Omega (http:// 
www. ebi. ac. uk/ Tools/ msa/ clust alo/) [73]. Alignments were programmatically per-
formed for all human 3′ UTRs with a custom perl script (get_alignment_from_fasta.
pl). Biochemically shared peaks were called by the following algorithm (implemented 
in conserved_peak_finder.pl). This algorithm normalizes GCLiPP read density (i.e., the 
fraction of the maximal read depth within that 3′ UTR) at each position and calculates 
the correlation between mouse and human normalized signal. To favor regions with a 
clear local peak of GCLiPP read density, the algorithm further calculates the correlation 
between the observed data and a normal distribution centered at the point being exam-
ined in both the mouse and human data tracks. These three Spearman correlations were 
added together to calculate a numerical score, and shared peaks were defined as local 
maxima of these scores. To identify high-stringency peaks, peaks were only accepted 
if they (1) had a correlation of > 0.75 between mouse and human, (2) had a peak that 
had a read density of > 0.5 of the maximum read density within that 3′ UTR in one data 
track (mouse or human) and > 0.2 in the other, and (3) had > 10 reads at that location 
in both mouse and human datasets. Biological enrichment of genes with shared peaks 
was calculated using the Metascape [52] online interface (http:// metas cape. org) using 

https://github.com/alexdobin/STAR/blob/master/extras/scripts/sjFromSAMcollapseUandM.awk
https://github.com/alexdobin/STAR/blob/master/extras/scripts/sjFromSAMcollapseUandM.awk
http://genome.ucsc.edu
https://github.com/ucscGenomeBrowser/kent
https://github.com/ucscGenomeBrowser/kent
http://www.ebi.ac.uk/Tools/msa/clustalo/
http://www.ebi.ac.uk/Tools/msa/clustalo/
http://metascape.org
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the default settings, with the exception that a background set of genes was included in 
the analysis, specifically all genes that contain a called GCLiPP peak in both human and 
mouse datasets that do not contain a biochemically shared peak.

For motif calling, HOMER [46] was used in RNA mode with the “noweight” option to 
turn off GC correction to search for motifs of width 5, 6, or 7 nucleotides, with other-
wise default parameters. The positive sequence set was the mouse and human sequences 
of the biochemically shared GCLiPP peaks, the negative sequence set was all other 
GCLiPP-called peaks from Jurkat and mouse T cells that were not shared across spe-
cies. For icSHAPE, we used a published bigwig file of locally normalized icSHAPE signal 
intensity generated in mouse ES cell [44]. Conservation of loci in the mouse and human 
genomes were obtained from the UCSC genome browser as a bigwig of PhyloP scores 
of conservation across 60 placental mammals (mouse) and 100 vertebrates (human) 
(http:// hgdow nload. cse. ucsc. edu/ golde npath/ mm10/ phylo P60way/, http:// hgdow nload. 
cse. ucsc. edu/ golde npath/ hg38/ phylo P100w ay/).

Mapping SNPs within GCLiPP peaks

We intersected our list of 3′UTR RBP peaks, determined using our peak calling algo-
rithm, with a curated list of predicted disease causal SNPs [53] to identify SNPs within 
predicted RBP binding regions. We limited our analysis to SNPs located in the 3′UTR 
of genes that contained at least 1 GCLiPP peak. Specific regions in the 3′UTR of CD5, 
IKZF1, and STAT6 were deleted in resting Jurkats using CRISPR-Cas9 RNPs as previ-
ously mentioned. Protein expression of the edited genes was measured by flow cytom-
etry 3–5 days after nucleofection.

Flow cytometry

Cells were stained with Live/Dead eFluor780 (Invitrogen) and anti-human CD5 
(UCHT2) or intracellularly with anti-human IKZF1 (R32-1149) using the Foxp3 Tran-
scription Factor Staining Kit (eBioscience). For pSTAT6 expression, Jurkat cells or pri-
mary human T cells were treated with recombinant human IL-4 (12.5  ng/mL; R&D 
Systems) for 0, 5, 10, 15, or 30 min, immediately fixed with 1.5% PFA for 10 min and per-
meabilized with ice-cold methanol for 15 min before staining with pSTAT6 (A15137E) 
for 1 h at room temperature. Primary T cells were additionally stained with anti-human 
CD4 (OKT4) and anti-human CD8 (HIT8a). Cells were analyzed on LSRII and FAC-
SAria cytometers. GraphPad Prism was used for data visualization and for Mann–Whit-
ney two-tailed t-test.

Oligonucleotide and primer sequences

GCLiPP 3′ RNA linker: 5′-NNGUG UCU UUA CAC AGC UAC GGC GUC G-3′
GCLiPP 5′ RNA linker: 5′-CGA CCA GCA UCG ACU CAG AAG-3′
GCLiPP Reverse transcription primer: 5′-CAA GCA GAA GAC GGC ATA CGA GAT 

NNNNNNCGC TAG TGA CTG GAG TTC AGA CGT GTG CTC TTC CGA TCC GAC GCC 
GTA GCT GTG TAAA-3′ (NNNNNN is barcode for demultiplexing).

GCLiPP 3′ PCR primer: 5′-CAA GCA GAA GAC GGC ATA CGA GAT -3′
GCLiPP 5′ PCR primer: 5′-AAT GAT ACG GCG ACC ACC GAG ATC TAC ACT GGT 

ACT CCG ACC AGC ATC GAC TCA GAAG-3′

http://hgdownload.cse.ucsc.edu/goldenpath/mm10/phyloP60way/
http://hgdownload.cse.ucsc.edu/goldenpath/hg38/phyloP100way/
http://hgdownload.cse.ucsc.edu/goldenpath/hg38/phyloP100way/
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Read1seq sequencing primer for GCLiPP: 5′-ACA CTG GTA CTC CGA CCA GCA TCG 
ACT CAG AAG-3′Index sequencer primer for GCLiPP: 5′-GAT CGG AAG AGC ACA 
CGT CTG AAC TCC AGT CAC-3′

PIM3 (human) gRNA1: TGT GCA GGC ATC GCA GAT GG
PIM3 (human) gRNA2: GAC TTT GTA CAG TCT GCT TG
PIM3 (human) gRNA3: GTG GCT AAC TTA AGG GGA GT
PIM3 (human) gRNA4: AAA CAA TAA ATA GCC CCG GT
PIM3 (human) gRNA5: TTG AGA AAA CCA AGT CCC GC
PIM3 (human) gRNA6: CAG GAG GAG ACG GCC CAC GC
PIM3 (human) gRNA7: TTT ATG GTG TGA CCC CCT GG
PIM3 (human) gRNA8: CCA AGC CCC AGG GGA CAG TG
Pim3 (mouse) gRNA1: GTT CAA TTC TGG GAG AGC GC
Pim3 (mouse) gRNA2 CTG GTT CAA GTA TCC ACC CA
Pim3 (mouse) gRNA3: CCA TAA ATA AGA GAC CGT GG
Pim3 (mouse) gRNA4: GCT TCC TCC CGC AAA CAC GG
Pim3 (mouse) gRNA5: CTG GTG TGA CTA AGC ATC AG
Pim3 (mouse) gRNA6: TGG AGA AGG TGG TTG CTT GG
Primers
PIM3 F (human): TCC AGC AGC GAG AGC TTG TGA GGA G
PIM3 R(human): TGA TCT CCA GAC ATC TCA CTT TTG AACTG 
PIM3 R2(human): TGA GAT AGG TGC CTC ACT GAT TAA GCA TTG GTG ATC TCC 

AGA CAT CTC ACT TTT GAA CTG 
Pim3 F (mouse): GCG TTC CAG AGA ACT GTG ACC TTC G
Pim3 R (mouse): TAT GAT CTT CAG ACA TTT CAC ACT TTTG 
CD5 gRNA1: GGA GCC TCG GGT CTG ATC AA
CD5 gRNA2: GCT CTT CCA GAC TTA TTA TG
IKZF1 R1 gRNA1: AAG GCT GAC TTG TGT TCA TG
IKZF1 R1 gRNA2: GCA ACA AAC TGA CTC TAA GA
IKZF1 R2 gRNA1: TTA TCA TTG CAT ATC AGC AA
IKZF1 R2 gRNA2: ACA TAA TGC TTT TGG TGC GA
STAT6 gRNA1: GGG GTT AGC ATA TGT CAG AG
STAT6 gRNA2: CCA AAT TCC TGT TAG CCA GG
STAT6 KO gRNA1: TCA TAA GAA GGC ACC ATG GT
STAT6 KO gRNA2: CTG GAT CCT CTT CAG CAC TA
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