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Abstract 

Background: Many elite genes have been identified from the available cotton 
genomic data, providing various genetic resources for gene-driven breeding. How-
ever, backbone cultivar-driven breeding is the most widely applied strategy. Revealing 
the genetic basis of cultivar-driven strategy’s restriction is crucial for transition of cotton 
breeding strategy.

Result: CRI12 is a backbone cultivar in cultivar-driven breeding. Here we sequence 
the pedigree of CRI12 using Nanopore long-read sequencing. We construct a graphi-
cal pedigree genome using the high-quality CRI12 genome and 13,138 structural 
variations within 20 different pedigree members. We find that low hereditary stability 
of elite segments in backbone cultivars is a drawback of cultivar-driven strategy. We 
also identify 623 functional segments in CRI12 for multiple agronomic traits in pres-
ence and absence variation-based genome-wide association study on three cohorts. 
We demonstrate that 25 deleterious segments are responsible for the geographical 
divergence of cotton in pathogen resistance. We also characterize an elite pathogen-
resistant gene (GhKHCP) utilized in modern cotton breeding. In addition, we identify 
386 pedigree fingerprint segments by comparing the segments of the CRI12 pedigree 
with those of a large cotton population.

Conclusion: We characterize the genetic patterns of functional segments in the pedi-
gree of CRI12 using graphical genome method, revealing restrictions of cultivar-driven 
strategies in cotton breeding. These findings provide theoretical support for transition-
ing from cultivar-driven to gene-driven strategy in cotton breeding.
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Background
Upland cotton (Gossypium hirsutum L.) is an important economic crop due to its high 
yield and quality of natural fibers [1, 2]. Therefore, one of the primary goals for cotton 
breeders is to create new lines that can effectively enhance fiber yield and quality. In cot-
ton breeding practices, an accession with elite integrative traits is used as the backbone 
and crossed with other cultivars to create new lines which is a cultivar-driven strategy [3, 
4]. For instance, CRI12, as a cultivar, won the first prize of the National Award for Tech-
nological Invention of China, is selected from cross lines in disease nursery, and has elite 
integrative agronomic traits, especially for high resistance to Fusarium wilt and Verti-
cillium wilt. This backbone cultivar is used to create many progenies, forming CRI12 
pedigree by the cultivar-driven strategy [4]. However, progenies in CRI12 pedigree do 
not retain elite integrative agronomic traits. Apart from CRI12, many other popular cul-
tivars were also used to create new lines in cotton breeding history, and they exhibited 
limited effectiveness in cultivar-driven breeding strategy which appeared in CRI12 pedi-
gree [5]. Although these popular backbone cultivars are focused by both cotton genom-
ics community and cotton breeders, genetic basis of cultivar-driven strategy’s restriction 
in cotton breeding history is still mysterious [3–6].

With a large number of cotton accessions resequenced, a diverse gene pool related to 
lint percentage (LP), fiber length (FL), fiber strength (FS), and other agronomic traits has 
emerged [3–6]. More published cotton reference genomes bring cotton genomics to a 
new era in which pan-genome comes with attention on structural variation (SV) due to 
its large genetic effects and strong interpretability in non-coding regions [7–13]. Graph-
based cotton pan-genome detected new valuable genes from previous cohorts, proving 
the utility of SVs in cotton genomics [11]. However, these genomic analyses based on 
natural population, genetic population, and even cotton pedigrees always focused on 
identification of functional genes and ignored the link between genomic analysis (gene-
driven) and breeding strategy (cultivar-driven), resulting in significant gap between cot-
ton genomics and cotton breeding practices.

To understand genetic mechanisms underlying restrictions of cultivar-driven strat-
egy and promote breeding approach shift to gene-driven strategy, we collected CRI12 
and its 20 pedigree members (comprising 2 parents and 18 progenies). High-quality 
CRI12 genome was assembled and its 20 pedigree members were sequenced by long-
read sequencing technology, giving approximately 20 × depth per sample (Fig. 1a). After 
integrating pedigree variations into a graph-based genome, we utilized three previous 
cohorts (Wang_2017, Ma_2018, and He_2021; n = 733) to identify functional variations 
via presence/absence variation-based genome-wide association study (PAV-GWAS) 
(Fig. 1b) [14–16]. Based on the results of the PAV-GWAS, we found restrictions on cul-
tivar-driven strategy exploring three aspects, (i) segments of low hereditary stability; (ii) 
geographical sub-groups; (iii) pedigree fingerprint segments (Fig. 1c). The cotton pedi-
gree genome informs us to understand genetic basis of limited effectiveness in cultivar-
driven breeding strategy and provides theorical support for breeding strategy shift.
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Results
Characterization of genomic variations in CRI12 pedigree

We employed a combination of Nanopore long reads, Illumina short reads, and Hi-C 
data to assemble the CRI12 genome, capturing a total of 2.24  Gb sequences (contig 
N50 = 11.2 Mb) (Table 1; Additional file 1: Table S1-S3). The assembled genome exhib-
ited high syntenic ratios (ranging from 93.5 to 98.5%) with other upland cotton genomes 

Fig. 1 Overview of this study. a Illustration for sampling and sequencing for CRI12 and its pedigree 
members. Nanopore long reads from 20 pedigree members were gained. b PAVs were used to build a 
graph-genome which was used for PAV-GWAS analysis based on 3 cohorts. c Segments of low hereditary 
stability, geographical sub-groups in functional segments, and pedigree fingerprint segments were 
investigated based on functional segments in CRI12 genome
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(Additional file 1: Table S4) [7, 8, 17]. Moreover, we evaluated the completeness of the 
CRI12 genome using Benchmarking universal single-copy orthologs (BUSCO) and Core 
Eukaryotic Genes Mapping Approach (CEGMA), achieving completeness of 96.1 and 
95.56%, respectively [18, 19] (Table 1) [7, 8, 17]. We annotated a total of 72,262 protein-
coding genes after conducting continuity, consistency, and completeness (3C) evalu-
ations of the assembled CRI12 genome (Table  1). Our results suggest that the CRI12 
genome assembly is highly competent and can be used as a reference genome for down-
stream analyses. To investigate genetic pattern of segments from CRI12 in cultivar-
driven strategy, we collected 20 CRI12 pedigree members including CRI12’s parents ( 
Xingtai6871 and Uganda4; defined as Parent#1 and Parent#2 in this study, respectively) 
and 18 progenies for whole-genome sequencing using ONT long reads to a median of 
20 × coverage (Fig.  1a; Additional file  1: Table  S5-S6). We identified a total of 13,138 
high-quality PAVs (7172 deletions and 5966 insertions) after aligning the long reads of 
the pedigree members to the CRI12 genome (Fig. 2a; Additional file 1: Table S7). Upland 
cotton is an allotetraploid, and its genome (AADD) consists of sub-genome A and sub-
genome D. In CRI12 pedigree, there is no preference on insertion or deletions between 
A and D sub-genomes (Fig. 2a; P = 0.55, χ2 test). The pan-core curve of the 13,138 PAVs 
eventually reached a plateau, confirming the representativeness of the 20 pedigree mem-
bers we selected (Fig. 2b).

Previous studies have demonstrated that transposon activity drives genomic variation, 
thereby promoting genetic innovation [10, 20, 21]. In this study, we annotated sequences 
of 13,138 PAVs, 6076 among them were generated through transposition events (Addi-
tional file 1: Table S8). A considerable proportion (54.3%) of the transposon-influenced 
PAVs displayed a high transposon ratio (> 90%), showing transposons also contribute to 
genomic variations in pedigree (Fig. 2c). Furthermore, we found that exons and introns 
exhibited fewer transposon activities (299 in exons and 449 in introns) as compared 
to interval and promoter, i.e., 3931 in interval and 833 in promoter, indicating genes 
tend to repel transposon activity (Fig.  2d). Analysis of transposon categories revealed 
a total of 26 distinct categories found within the 6076 transposon-influenced PAVs. 
Of these categories, LTR/Gypsy, the most abundant transposon, is highly related with 
PAV length in exon, promoter, and interval regions (Pearson correlation is 0.81, 0.72, 

Table 1 BUSCOs and CEGMAs indicated ratios of benchmarking genes in 2 pipelines were correctly 
assembled in CRI12 genome. The ratios could represent completeness of assembled genome. 
Repeat ratio indicated ratio of repeat sequence in CRI12 genome

Category CRI12 genome

Genome size 2239 Mb

Contigs 974

ContigN50 11.2 Mb

Scaffolds 270

ScaffoldN50 91 Mb

GC content 34.16%

Gene numbers 72,262

BUSCOs 96.10%

CEGMAs 95.56%

Repeat ratio 62.75%
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and 0.73, respectively; 5627 of 6076 PAVs) and relatively lowly related with PAV length 
in intron (Pearson correlation is 0.64; 449 of 6076 PAVs) (Fig. 2e; Additional file 2: Fig. 
S1a), indicating its important role in SVs proved in G. rotundifolium [20]. Surprisingly, 
we observed a strong correlation (r2 = 0.85) between PAV length in exons and the num-
ber of Simple_repeats, which were present at a notably higher proportion in exons (19%) 
when compared to interval regions (13%) (Additional file 2: Fig. S1b). These findings sug-
gest that Simple_repeat is highly correlated with exon, and their relationship should be 
further investigated in future studies. Overall, we constructed a high-quality PAV map 
which could present pedigree’s variation, providing a platform for functional interpreta-
tion on CRI12 pedigree’s large sequence variations.

Fig. 2 Characterization of genomic variations in CRI12 pedigree. a Statistic about number of PAVs identified 
in CRI-12 pedigree (insertions and deletions) within A and D sub-genomes. b Saturation curve of core 
and pan SVs in the CRI12 pedigree with cultivars added. c Statistic about PAV sequences influenced by 
transposons. Barplot was the distribution of transposon ratio in transposon-influenced segments. Pie 
plot represents PAVs of high transposon ratio (≥ 90%) and common transposon ratio (< 90%). d Genomic 
annotation of transposon-influenced segments. e Statistic about number of transposons of various 
categories in pedigree
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CRI12 pedigree contains valuable genomic variations

SVs contribute significantly to phenotype during crop breeding. In cotton, the use of an 
SV-based pan-genome has accurately reflected the breeding history in China. To identify 
valuable SVs during the formation of the CRI12 pedigree, we constructed a Graphical 
Pedigree Genome (GPG) by integrating 13,138 PAVs into the CRI12 reference genome.

Using the GPG of CRI12, three previous cohorts (Ma_2018, Wang_2017, and 
He_2021) were genotyped, and trait-related PAVs were detected through PAV-GWAS 
for 7 agronomic traits (Fig. 3a; Additional file 1: Table S9-S11; Additional file 2: Fig. 
S2-S5). After applying strict filters to the detected trait-related PAVs (“Methods”), 
a functional PAV pool consisting of 623 variations was created (Additional file  1: 
Table S12). Within this PAV pool, we annotated 131 genes whose exons, introns, and 
promoters were directly influenced by PAVs (Additional file  1: Table  S13). Of these 
131 genes, 48 were related to resistance against Verticillium wilt (VW), and only 25 
had transcriptional activity during Verticillium dahliae infections (Additional file 1: 
Table  S14). We focused on GhNAC083, a gene previously reported as a repressor 
for xylem vessel formation in Arabidopsis thaliana, due to its opposite transcription 
patterns between VW-susceptible and VW-resistant accessions (Additional file  1: 
Table  S15) [22]. As NAC083 is involved in both biotic and abiotic stress responses, 
we inferred that it may also play an important role in cotton’s VW resistance [23]. 
In addition, GhNAC083-silenced plants are more susceptible to Verticillium dahliae 
infection compared to the wild type, indicating that GhNAC083 could enhance VW 
resistance and be utilized in cotton breeding (Fig. 3b).

In the functional PAV pool, we discovered that 495 PAVs were located in the inter-
val region, which was typically ignored in previous GWAS analyses, limiting the further 
utilization of elite genotypes (Fig. 3c) [14–16, 24, 25]. However, by utilizing an expres-
sion array with a population scale (Wang_2017 and He_2021 cohorts, n = 314 in total), 
we were able to link these functional non-coding PAVs to genes through eQTL analy-
sis (Additional file 1: Table S10-S11) [15, 26]. Based on the effect of functional PAVs on 
agronomic traits and gene expression (positively or negatively associated), we classified 
all 2306 identified SV-Gene-Phenotype (SGP) triplets into consistent and conflict cat-
egories (Fig. 3d; Additional file 1: Table S16). Genes within consistent SGP triplets had 
higher expression with the gradual improvement of fiber quality, while those within con-
flict triplets showed a decline in gene expression as fiber quality improved (Additional 
file 2: Fig S6-S7). In the Wang_2017 cohort, we noted that enrichment of genes related to 
fatty acid metabolism (ko01212) among both consistent and conflict SGP triplets (Addi-
tional file  2: Fig. S8). The fatty acid metabolism pathway contained six genes includ-
ing three genes each from the consistent and conflict SGP triplets (Additional file  1: 
Table S17). In the two consistent SGP triplets (Parent#1_DEL_2442-GhKCR1A-FL and 
Parent#2_DEL_5283-GhKCR1D-FL), the transcription abundance of GhKCR1 increased 
from 1 day post anthesis (DPA) to 8 DPA, indicating its essential role in fiber elonga-
tion. Two different elite variations from Parent#1 and Parent#2 linked to homologs of 
GhKCR1 in the A and D sub-genomes, respectively (Fig. 3e, f ). The number of cultivars 
that contained these two elite variations increased with the improvement of fiber length 
(Additional file  2: Fig. S9). We noticed that GhKCR1A in long fiber cultivars (rank of 
fiber length at 50–75% and 75–100%) exhibited higher expression levels than short fiber 



Page 7 of 24Liu et al. Genome Biology          (2023) 24:282  

cultivars (rank of fiber length at 0–25%) with both 6.5% increase (P values were 0.02 and 
0.01, respectively) (Fig.  3g). GhKCR1D had similar transcription patterns with GhK-
CR1A, and long fiber cultivars (rank of fiber length at 50–75% and 75–100%) exhibited 
6.5 and 13% increase in expression level (P values were 0.035 and 0.0025, respectively) 
compared to short fiber cultivars (rank of fiber length at 0–25%), respectively. This result 
shows that higher expression level of GhKCR1s is related with longer fiber length in a 

Fig. 3 PAV-GWAS for agronomic traits. a PAV-GWAS for Verticillium wilt resistance, and the threshold of P value 
was set as 0.01. b VIGS assay on GhNAC083. c Genomic annotation for trait-related PAVs. d Concept illustration 
for consistent and conflict SV-Gene expression-Phenotype triplets. e Display of Parent#1_DEL_2442 and 
Parent#2_DEL_5283. The alignment of long reads from Parent#1 and Parent#2 were displayed in IGV toolkit. 
f Fiber length divergence of 2 genotypes compared to CRI12-like genotypes in Wang_2017 cohort (n = 169). 
Boxplot center, median; bounds of box, lower quartile (Q1) and upper quartile (Q3); minima, Q1 − 1.5 (Q1–
Q3); maxima, Q1 + 1.5 (Q1–Q3). The dots represent for original values. P values were calculated by t-test and 
“**” represent for P ≤ 0.01. g Gene expression of GhKCR1A and GhKCR1D in wang_2017 cohort (n = 169). 
X-axis was the rank of fiber length (from short to long; divided into quartiles). Y-axes are TPM (transcripts 
per million mapped reads) of GhKCR1A and GhKCR1D, respectively. The description of boxes is the same as 
that in f, and “***” represents for P ≤ 0.001 in t-test. h Illustration for prediction of agronomic trait based on 
functional variations by support vector regression. i Pearson correlation between predicted phenotype and 
real phenotype
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population scale. Interestingly, the expression of GhKCR1 in the A sub-genome was 
higher than that in the D sub-genome, indicating asymmetric selection on GhKCR1s 
from different sub-genomes (Fig. 3g). GhKCR1 encodes very-long-chain 3-oxoacyl-CoA 
reductase, responsible for the first reduction step in synthesis of very-long-chain fatty 
acids (VLCFAs) which is important for fiber elongation [27–29]. Based on gene annota-
tion and the performance of the two SGP triplets in the population, we concluded that 
GhKCR1s identified from the above two SGP triplets could be used as candidate genes 
for improving fiber length. To examine the effects of the trait-related PAVs identified in 
this work, we constructed a set of support vector regression (SVR) models to predict 
agronomic traits based on genotype data (Fig. 3h). The Pearson correlation coefficient 
between predicted values and true values of multiple traits ranged from 0.58 to 0.85 (P 
values range from 1.09e − 52 to 1.38e − 129). These results show that except for fiber 
uniformity and fiber length, the other agronomic traits could be predicted reliably by 
models constructed based on functional PAVs (Fig. 3i).

Allelic variations were detected based on an accurate PAV map (482 pairs), and their 
effects were evaluated using the results of PAV-GWAS (Additional file 1: Table S18). 
We focused on a pair of non-coding allelic deletions, Xinluzhong7_DEL_3213-Par-
ent#2 _DEL_2661 in the Wang_2017 cohort. On this locus, Parent#2-like genotypes 
had significantly higher fiber uniformity than Xinluzhng7-like genotypes (P = 0.002) 
(Additional file 2: Fig. S10a and S10b). However, compared to CRI12-like genotypes, 
both Parent#2-like and Xinluzhong7-like genotypes did not reach the significant 
divergence threshold in fiber uniformity (P = 0.07 and P = 0.3 for Parent#2-like and 
Xinluzhong7-like genotypes, respectively), resulting in their dismissal according to 
the threshold of PAV-GWAS described in the “Methods” (Additional file 2: Fig. S10a 
and S10b). Furthermore, we discovered 39 and 7 genes linked to Parent#2_DEL_2661 
and Xinluzhong7_DEL_3213, respectively, from eQTL results, indicating that allelic 
variation might regulate different gene networks and lead to phenotype divergence 
(Additional file 1: Table S19; Additional file 2: Fig S10c).

Low hereditary stability for functional segments in backbone cultivar

The functional PAV pool of the CRI12 pedigree revealed that valuable variations were 
generated during its formation. Taking the phenotype effects into consideration, we 
defined a deleterious/favorable segment in CRI12 genome if the variation in alterna-
tive genome happened on corresponding locus could improve/reduce agronomic traits 
(Additional file 2: Fig. S11). Each functional variation in the pedigree represents either 
a favorable or deleterious segment in CRI12, and we classified all CRI12 segments into 
four categories such as Parent#1-inherited, Parent#2-inherited, CRI12-specific, and 
Biparental, based on the segment source (Fig. 4a). The source of Biparental segments in 
CRI12 is unclear due to the lack of genomic information about the parents of Parent#1 
and Parent#2. Given that the Biparental segments were present in both Parent#1 and 
Parent#2, we concluded that they were likely inherited by CRI12’s parents from progeni-
tor cultivars. The present/absent information regarding CRI12 segments among pedi-
gree members enabled us to characterize the genetic patterns of the backbone cultivar in 
cultivar-driven strategy.
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Fig. 4 Genetic patterns of functional segments in CRI12 pedigree. a Conceptual illustration for segments 
of 4 categories. Parent#1-inhrited segments in CRI12 were inherited from Parent#1, presenting a structural 
variation in Parent#2. Parent#2-inherited segments in CRI12 were inherited from Parent#2, presenting a 
structural variation in Parent#1. CRI12-specific segments were those created by CRI12, presenting a structural 
variation in both Parent#1 and Parent#2. Biparent segments were those both present in CRI12’s 2 parents, 
only presenting a structural variation in progenies. b Relationship between Fusarium wilt resistance and 
functional segments of 4 categories in cultivars (Wang_2017 cohort, n = 208). X-axis represents for rank of 
disease index (from low to high; divided into quartiles) and Y-axis represents for segment number in cultivars 
from each quartile. Orange lines were CRI12-specific segments. Red lines were Parent#1-inherited segments. 
Blue lines were Parent#2-inherited segments, and turquoise lines were Biparent segments. The dots represent 
for the median values of segments in cultivars from each quartile. c Top 4 pieplots represent for favorable/
deleterious ratio of 4 segment categories. The bottom boxplot was the hereditary stability evaluation of 
Fusarium wilt-resistant segments. X-axis represents 4 segment categories and y-axis represents the segment 
number retained in 18 progenies. Boxplot center, median; bounds of box, lower quartile (Q1) and upper 
quartile (Q3); minima, Q1 − 1.5 (Q1–Q3); maxima, Q1 + 1.5 (Q1–Q3). The dots represent for original values. 
d P value of t-tests for retained segments of 4 categories. e Distribution of fiber-quality-related segments in 
pedigree. The left parallel coordinate plots displayed segment number of 4 categories. SV axis represents 
for variations. Class axis represents for 4 segment categories which have been annotated in figure legends. 
Progenies axis represents for 18 progenies. Right heatmap were detailed presence of each functional 
segments in 18 progenies. X-axis represents for segments and y-axis represents for 18 progenies which are 
consistent with the progenies axis in left parallel coordinate plots. The top parallel coordinate-heatmap 
illustrates distribution of favorable fiber quality-related segments, while the bottom plot set illustrates 
deleterious fiber quality-related segments
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According to the results of PAV-GWAS on Fusarium wilt resistance (FR), 70 FR-
related segments were identified. Among these 70 segments, 4, 7, 14, and 45 of them 
were assigned as Parent#1-inherited, Parent#2-inherited, CRI12-specific, and Biparental 
segments, respectively (Additional file 1: Table S20). We evaluated the effects of 70 FR-
related segments belong to four categories in the Wang_2017 cohort (Fig. 4b). The cul-
tivars with more CRI12-specific segments exhibited higher resistance to Fusarium wilt 
(lower disease index), indicating the positive effects of CRI12 in pathogen resistance. 
The ratio of favorable to deleterious segments in the CRI12-specific category reached 
92.9% (13 favorable and 1 deleterious), while the ratios in the other three categories 
ranged from 42.9 to 53.3% (Fig. 4c). These results indicated that, compared to its par-
ents, CRI12 generated more favorable FR-related segments, contributing to its pathogen 
resistance. However, we also found that these favorable CRI12-specific segments were 
less frequent in 18 progenies compared to segments inherited from its two parents and 
ancestral cultivars (P values ranged from 0.01 to 7e − 10), indicating low hereditary sta-
bility of CRI12-specific segments (Fig. 4c, d). The nature of the cultivar-driven strategy is 
to pass elite genomic segments from the backbone cultivar to its progenies. Our results 
showed the high ratio of favorable CRI12-specific segments, proving that CRI12 is com-
petent to be a backbone cultivar, while their low hereditary stability suggests that they 
may be difficult to utilize adequately in a cultivar-driven strategy.

Among the 342 segments that influence fiber quality (FL, FS, FU, and FE), 199 
were favorable while the remaining 143 were deleterious (Fig.  4e; Additional file  1: 
Table S21). The ratio of the four categories did not show any imbalance between the 
favorable and deleterious segments (P values range from 0.9 to 0.13, chi-square test), 
implying that the genomic resource for cotton fiber quality improvement in CRI12 
pedigree is diverse (Fig.  4e; Additional file  1: Table  S22). Similar to genetic pattern 
of 70 FR-related segments, both favorable and deleterious CRI12-specific segments 
presented low hereditary stability (P value ranged from 0.0008 to 3.5e − 40) (Fig. 4e; 
Additional file  2: Fig. S12). Moreover, we found that fiber quality-related biparental 
segments (both favorable and deleterious) were more stable in heredity than segments 
of the other three categories (P value were from 0.0012 to 3.5e − 40) (Fig. 4e; Addi-
tional file 2: Fig. S12). In the genetic trajectory of biparent segments in pedigree for-
mation, we inferred that at least three rounds of selection for hereditary stability had 
occurred (from progenitor cultivars to Parent#1|Parent#2, from Parent#1|Parent#2 
to CRI12, and from CRI12 to progenies). We concluded that only segments of high 
hereditary stability could be retained in progenies. This result showed that a cultivar-
driven strategy could fix favorable segments of biparental category. However, delete-
rious segments from progenitor cultivars were fixed simultaneously during pedigree 
formation, and the accumulation of these highly stable segments could narrow the 
genetic background of the pedigree, damaging the potential of modern cultivars in 
cotton breeding.

Geographically specific sub‑groups in valuable segments

Cultivars in the CRI12 pedigree have been widely planted in China from the North-
west (Xinjiang Province) to the South (Hubei Province), suggesting the spread of 
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favorable segments in CRI12 across different regions. To cluster functional segments 
into geographically specific sub-groups (SGs), we used the non-negative matrix fac-
torization (NMF), an algorithm that has previously been used to detect genomic sig-
natures [30].

To perform NMF analysis in the Wang_2017 cohort (195 cultivars retained after trim-
ming foreign-introduced cultivars), we generated a present/absent matrix of 70 FR-
related CRI12 segments, and two SGs were classified according to the feature-marker 
matrix (“Methods”; Fig. 5a; Additional file 2: FigS13a). The 195 retained cultivars were 
from four regions: the Yellow River region (H, 99 cultivars), the Yangtze River region (Y, 
66 cultivars), the Northwest region (NW, 21 cultivars), and the early cotton producing 
region (N, 13 cultivars) (Additional file 1: Table S23). We noticed that segments in SG1 
(45 segments) were preferentially present in cultivars from the N, NW, and H regions, 
while SG2 (25 segments) was preferentially present in cultivars from the Y region 
(Fig. 5a; Additional file 1: Table S24). The Fusarium wilt resistance of cultivars from the 
H, NW, and N regions was higher than that of cultivars from the Y region (P value was 
from 0.006 to 1.8e − 6), and among the three regions, the Fusarium wilt resistance of cul-
tivars did not show any divergence (P value was from 0.79 to 0.97) (Fig. 5b, c). According 
to the results of the effect evaluation, we found that 95.6% of the segments in SG1 were 
favorable, while all segments in SG2 were deleterious (Fig. 5d). For each sample, the ratio 
of SG1 segments to SG2 segments was negatively related to the disease index, indicat-
ing that the ratio of SG1/SG2 segments is related to a cultivar’s Fusarium wilt resistance 
(Fig.  5d). Among the four categories, only CRI12-specific segments showed a signifi-
cant divergent ratio between the two SGs (P = 0.01, chi-square test), and all favorable 
CRI12-specific segments belonged to SG1 (Fig. 5e). However, regardless of SG1 prefer-
ence (those in the Y region) or SG2 preference (those in the H, N, and NW regions), 
several CRI12-specific segments were severely absent, indicating inadequate utiliza-
tion of elite genomic resources (Fig. 5f ). In these severely absent segments, a segment 
(D10: 64,941,033–64,944,924) contained a new gene, CRI12_D10G2690 (Fig. 5g), which 
encodes a KH domain-containing protein (GhKHCP) which is involved in RNA-binding 

Fig. 5 Geographical sub-groups in functional segments. a Cluster result of cultivars from 4 regions. The value 
in heatmap is the median feature-sample score of cultivars from each region. Four regions were clustered 
into two clades (red and blue dashed lines represent regions where segments belong to sub-group1 and 
sub-group2 enriched, respectively) by hierarchical method. b Disease index of cultivars from 4 regions 
in Wang_2017 cohort (n = 195). c t-test for disease index of cultivars from every 2 regions. d The left 
pieplots represented for ratio of favorable/deleterious segments in SG1 and SG2. The middle scatter plot 
was the Pearson correlationship between SG1/SG2 segments ratio and disease index (the disease index 
was normalized by median disease index). The yellow barplot was the SG1/SG2 segment ratio for each 
cultivar, while the blue barplot was the disease index for each cultivar normalized by median disease index 
in Wang_2017 cohort (n = 195). e Statistic about number of segments of 4 categories in SG1 and SG2. f 
The present/absent information of CRI12-specific segments in cultivars from Yangtze River region and the 
other 3 regions (Yellow River region, Northwestern region, early cotton producing region). g Illustration for 
deletions of GhKHCP in CRI12 pedigree. h The top boxplot was the transcription abundance of CRI12-like 
and Parent#2-like (with GhKHCP deletion) genotypes in Wang_2017 cohort (n = 195). The bottom boxplot 
was the disease index of 2 genotypes (Wang_2017 cohort; n = 195). P value was calculated by t-test and “***” 
represents for P ≤ 0.001. Boxplot center, median; bounds of box, lower quartile (Q1) and upper quartile (Q3); 
minima, Q1 − 1.5 (Q1–Q3); maxima, Q1 + 1.5 (Q1–Q3). i The conceptual illustration for bottleneck effect in 
cultivar-driven strategy. Orange segments represent for segments with low hereditary stability

(See figure on next page.)
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activities. A KH domain protein was shown to enhance the plant immune response in 
apple [31]. Cultivars without this segment showed a natural knock-out for GhKHCP 
(P = 0) and a significant increase in Fusarium wilt susceptibility (P = 0.0004) (Fig. 5h).

This segment contained GhKHCP only appeared in 18 and 43 cultivars from the Y 
and H regions, respectively (Additional file  2: Fig. S14). Correspondingly, there were 
only 6 progenies that inherited this CRI12-specific segment, showing its low hereditary 

Fig. 5 (See legend on previous page.)
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stability (Fig.  5g). We calculated the present frequency of the 13,138 segments in the 
pedigree and large population (733 accessions) (Additional file 1: Table S26). Segments 
retained by less than 6 pedigree members had lower present frequencies in the large 
population than those retained by more than 12 pedigree members (P = 6.7e − 14), and 
we inferred that the “bottleneck effect” had occurred on these segments (Additional 
file 2: Fig. S15). The cultivar-driven strategy is widely applied in modern cotton breed-
ing, in which cultivars from various pedigrees are utilized as elite gene donors. Thus, 
favorable segments with low hereditary stability are hard to spread widely among cotton 
germplasm (Fig. 5i).

We also performed NMF analysis on 59 fiber length-related segments from the 
Wang_2017 cohorts which were divided into two SGs: 29 segments in SG1 and 30 seg-
ments in SG2 and these classified cultivars into two clades (Additional file 1: Table S27; 
Additional file 2: Fig. S13b; Additional file 2: Fig. S16a). Clade I contained the cultivars 
from the N and NW regions, while clade II had the cultivars from the H and Y regions. 
Furthermore, we found that there were only 2 and 3 genes directly influenced by seg-
ments in SG1 and SG2, respectively (Additional file 1: Table S28). CRI12_A09G0106 in 
SG2, which encodes an ISWI chromatin-remodeling complex ATPase, was identified 
because of an insertion in its last exon by Ekangmian10. Cultivars with this insertion 
had shorter fiber length (P = 0.007) and a lower expression level of CRI12_A09G0106 
(P = 1.33e − 5) (Additional file  2: Fig. S16b). ISWI members have been shown to be 
essential for the formation of heat stress memory in Arabidopsis thaliana [32]. In cot-
ton, we also found that CRI12_A09G0106 had divergent transcriptional patterns under 
heat and cold stresses (Additional file  2: Fig. S16c). Interestingly, the transcriptional 
abundance of CRI12_A09G0106 increased during heat stress, while its expression 
was repressed in long fiber cultivars, implying its contradictory role in the heat stress 
response and fiber elongation.

Fingerprint segments in CRI12 pedigree

In the above results regarding “bottleneck effects,” we have identified that segments with 
low hereditary stability always had low present frequencies in large populations. How-
ever, we also found several segments that were retained by most pedigree members but 
were also rare in the large population. We assigned these pedigree-locked segments as 
“pedigree FingerPrint Segments” (FPS) (Fig.  6a). To detect the FPS quantitatively, we 
applied TF-IDF (term frequency–inverse document frequency) algorithm (“Methods”) 
to calculate the fingerprint score of each segment (Additional file 1: Table S29). Finally, 
we identified 367 FPS by setting the threshold of the fingerprint score as 2, in which 
no functional segments were included (Fig. 6b and c; Additional file 1: Table S30). We 
checked the pedigree-population distribution of both FPS and functional segments, 
indicating that the TF-IDF algorithm had accurately detected the FPS (Fig.  6d). Most 
functional segments were broadly introduced to cultivars in the large population, while 
fingerprint segments were restricted to the pedigree members, presenting a pedigree-
lock on them (Fig.  6d). The genomic annotation showed that 265 FPS were in the 
genomic interval region, hindering the comprehensive interpretation of these pedigree-
locked segments (Additional file  1: Table  S30). Thus, we focused on those influencing 
genes directly (overlapped with exons, introns, and promoters), and a total of 126 genes 
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were gained. The KEGG enrichment in 126 genes showed that there were no significant 
enrichment items, indicating that FPS-influenced genes had no pathway preference and 
these genes affect multiple traits.

We used a temporal fiber development transcriptome to select six candidate genes 
that could potentially contribute in fiber elongation (highest expression level on 10 DPA) 
(Fig. 6e). Among the six candidate genes, only GhFAO1 was found to be related to fiber 
length on a population scale (Fig. 6f; Additional file 1: Table S31). GhFAO1 encoded a 
long-chain fatty alcohol oxidase that can oxidize long-chain fatty alcohol into long-chain 
fatty aldehyde, which is the precursor of long-chain fatty acid [33]. We inferred that 
GhFAO1 is an important gene controlling the upstream reactions of long-chain fatty acid 
synthesis. We also identified three Verticillium wilt-resistant genes (larger than twofold 
change in mean expression level of resistant and susceptible plants), GhGSO2, GhEXT3, 

Fig. 6 Fingerprint segments in CRI12 pedigree. a Conceptual illustration for pedigree fingerprint segments. 
b Fingerprint score of 13,138 segments. c Fingerprint score of functional segments. d Presence/absence 
of 13,138 segments in CRI12 pedigree and 733 cultivars. e Transcription abundance of fiber length-related 
candidate genes influenced by fingerprint segments. f Transcription abundance of GhFAO1 in cultivars 
with various fiber length. TPM (transcripts per million mapped reads). Boxplot center, median; bounds of 
box, lower quartile (Q1) and upper quartile (Q3); minima, Q1 − 1.5 (Q1–Q3); maxima, Q1 + 1.5 (Q1–Q3). g 
Transcription abundance of 3 Verticillium wilt-resistant genes. For X-axis, R represents for resistant accession 
and S represents for susceptible accession, while numbers represent hours after pathogen infection
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and GhADHL6, using transcriptome data (P value ranging from 0.01 to 0.0004) (Fig. 6g). 
GSO2 encoded an LRR receptor-like serine/threonine-protein kinase that could help to 
construct the Casparian strip diffusion barrier, trapping pathogens [34]. EXT3 is a struc-
tural component that strengthens the primary cell wall to protect the cell from patho-
gens [34, 35]. Combining with the functional annotation and higher expression levels 
in resistant accessions, these three genes were referred as potential gene resources for 
improving Verticillium wilt resistance. The above results showed that FPS, although was 
locked in the pedigree, still contained elite gene resources that could only be detected by 
comparing genomic landscapes between the pedigree and natural population.

Discussion
Backbone cultivars, which possess elite gene resources, have played a crucial role in 
the history of cotton breeding [11, 25, 36]. Despite numerous genome-wide associa-
tion studies identifying favorable loci, the utilization of elite genomic segments from 
backbone cultivars still remains limited in practical cotton breeding [7, 14–16, 24, 25]. 
Therefore, it is imperative to integrate pedigree genomic analysis into cotton breeding 
practices to fully leverage elite genomic segments offered by backbone cultivars. We 
constructed GPG (Graphical Pedigree Genome) of CRI12 to capture genomic variations 
in CRI12 pedigree. CRI12’s GPG provides a platform for gene clone, genome-wide asso-
ciation studies, and pedigree genomic analysis, discovering low hereditary stability and 
geographical grouping of elite segments in backbone cultivar. In addition, we proposed a 
new concept called “pedigree fingerprint segments” to identify potential elite segments 
that are still confined within pedigree.

Graphical genomes with a large number of SVs have exhibited strong utility in many 
other crops, including cotton [11, 37–39]. However, the identification of SVs and the 
construction of graphical genomes require a set of high-quality assembled genomes [40]. 
The detection of SVs using short reads results in high false positive rate, and genome-
based SV detection is impractical for cohorts with hundreds of individuals [41, 42]. In 
this study, we introduce a cost-effective strategy for dependable graphical genome con-
struction using long reads with moderate depth. The utility of this strategy for genetic 
analysis in cohorts is demonstrated by the representativeness of PAVs in GPG. Previous 
PAV-GWAS based on cotton pan-genomes provided valuable PAVs associated with fiber 
yield and quality, allowing identification of causal genes [11, 25]. Through the utiliza-
tion of GPG, we successfully identified 623 functional genomic segments associated with 
fiber yield, fiber quality, and pathogen resistance. These segments have the potential 
to serve as markers for genome selection, with the exception of those influencing two 
fiber quality traits, fiber uniformity, and fiber length. It is worth noting that for these 
two traits, the predicted values showed a weak Pearson correlation with the actual traits. 
Because GPG only considers variations in pedigree, it may overlook variations related to 
fiber uniformity and fiber length compared to a cotton pan-genome including 182,593 
SVs [11].

The limited hereditary stability of elite genomic segments in backbone cultivars poses 
a restriction on the application of a cultivar-driven breeding strategy. This highlights 
the need for a shift in breeding strategy from cultivar-driven to gene-driven approaches 
in modern crop breeding. Genetic analysis based on large genomic variations have 
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constructed functional genomic segment pools which not only contained elite genes and 
cis-eQTLs but also valuable trans-eQTLs [10, 11, 25]. The development of plant genome 
editors has facilitated the precise insertion of large sequences, enabling the manipula-
tion of elite genomic segments [43]. This is particularly advantageous for segments that 
contain multiple genes or are located within genomic interval regions. After introducing 
a set of elite segments into cultivars using genome editors, the optimal combination of 
genomic segments can be identified through genome selection based on GPG. Thus, we 
propose a 4G cotton breeding strategy, GPG construction-Genomic analysis-Genome 
editing-Genome selection, to make full use of elite genomic segments in backbone cul-
tivars. The strategy mainly depends on the initial step, GPG construction. This step 
requires the characterization of the genomic landscape of multiple pedigrees to build an 
integrated pedigree genomic resource map capturing functional segments and pedigree 
fingerprint segments present in all backbone cultivars.

Conclusions
The PAV-GWAS based on GPG had detected a set of favorable segments in CRI12 pedi-
gree which could be used in cotton molecular breeding. Revealing genetic basis of culti-
var-driven strategy’s restriction provides theorical support for breeding strategy shift. In 
the future, we hope that genomic landscapes of more cotton pedigrees are characterized 
to construct an entire pedigree genomic resource map capturing elite segments from all 
cotton backbone cultivars.

Methods
Plant material

G. hirsutum. cv CRI12 and its 20 pedigree members (2 parents and 18 progenies) were 
cultivated in the field of Institute of Cotton Research, Chinese Academy of Agricultural 
Sciences, Anyang, Henan, China. For each pedigree member, three leaves (after the third 
leaf spread) from five plants were harvested and frozen immediately in liquid nitrogen. 
Six tissues from CRI12 plants including stem, root, leaf, petal, ovule (0 DPA), and fiber 
(1 DPA) were collected to perform transcriptome analysis for genome annotation.

Genomic DNA extraction and genome sequencing

Total genomic DNA from collected leaves was extracted for Nanopore long-read 
sequencing using a Nanopore PromethION 48 sequencer. Genomic DNA was frag-
mented by Covaris g-TUBE. Subsequently, DNA repair and adapter ligation were per-
formed. Finally, DNA fragments longer than 3 kb were collected for library construction..

For Illumina short-read sequencing, gel electrophoresis was used to detect degrada-
tion and contamination of DNA on 1% agarose gel. AMPure XP system (Beckman Coul-
ter, Beverly, USA) was used to purify DNA, and the 3’ end of the DNA fragment was 
adenylated and then linked with an adaptor for hybridization. Electrophoresis was used 
to select DNA fragments with proper length in PCR assays which were subsequently 
purified for library construction. The products in library were clustered and sequenced 
on Illumina Hiseq platform to generate reads with the length of 150 bp.

To perform Hi-C sequencing, DNA extracted from young leaves of CRI12 was cross-
linked and then digested with a restriction enzyme, DpnII. The fragments digested by 
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the enzyme were biotinylated and the read pairs with physical interaction will be ligated 
to each other which were enriched for library construction and were sequenced by Illu-
mina Hiseq platform.

De novo assembly of CRI12 genome

About 280 Gb raw data generated by Nanopore long-read sequencing was used to per-
form draft genome assembly. The quality control of Nanopore reads was performed 
by Nanoplot (v1.40.0). Filtered Nanopore long reads were assembled by NextDenovo 
(https:// github. com/ Nexto mics/ NextD enovo). The result of NextDenovo was trans-
ferred to SmartDenovo (https:// github. com/ ruanj ue/ smart denovo) for tandem assembly. 
Racon was applied to polish the tandem assembly by NextDenovo and SmartDenovo for 
three times [44]. Subsequently, Illumina short reads with genomic coverage of 60-fold 
were filtered by Fastp and utilized to correct sequencing errors within Nanopore long 
reads by Pilon [45, 46]. The contigs polished by Illumina short reads were regarded as 
draft genome and assembled into chromosomes by Hi-C reads. Hi-C reads were aligned 
to draft genome by Bowtie2 (v.2.4.5) [47]. Juicer pipeline (https:// github. com/ aiden lab/ 
juicer) was used to analyze alignment results and to generate an interaction matrix [48]. 
The interaction matrix was treated by 3d-dna pipeline (https:// github. com/ theai denlab/ 
3d- dna) to perform chromosome scaffolding [49]. The misassemblies within hanged 
chromosomes were corrected manually by Juicerbox (https:// github. com/ aiden lab/ Juice 
box/ wiki/ Downl oad).

Genome annotation of CRI12

We employed three strategies including de novo prediction, protein homology predic-
tion, and transcript-based prediction to annotate genes in CRI12 genome.

For de novo prediction, four software, Augustus (https:// github. com/ Gaius- Augus 
tus/ Augus tus), GlimmerHMM (http:// ccb. jhu. edu/ softw are/ glimm erhmm/), Geneid 
(https:// genome. crg. es/ softw are/ geneid/), and Genscan (http:// genes. mit. edu/ burge 
lab/ softw are. html), were applied [50–53]. Protein coding sequences from G. hirsutum 
(http:// cotton. hzau. edu. cn/ EN/ downl oad. php), G. barbadense (http:// cotton. hzau. edu. 
cn/ EN/ downl oad. php), G. arboreum (http:// bioin fo. ayit. edu. cn/ downl oads/), and G. 
raimondii (https:// phyto zome. jgi. doe. gov/ pz/ portal. html# !bulk? org= Org_ Graim ondii) 
were collected for homology prediction. Transcripts from six CRI12 tissues including 
roots, stems, leaves, petals, ovules on 0 DPA, and fibers on 1 DPA were used for tran-
script-based prediction. We used EvidenceModeler (https:// github. com/ EVide nceMo 
deler/ EVide nceMo deler/ relea ses) to integrated gene models generated by above three 
strategies [54]. The functions of these predicted protein sequences were annotated by 
interproscan (v.5.51–85.0) [55]. Repeat regions were gained through the combination of 
de novo prediction and homology prediction by RepeatMasker (v.4.1.0) [56, 57].

Phenotype data collection of pedigree varieties

The phenotype data of CRI12 pedigree varieties were collected from different locations 
(8 locations for fiber yield and 9 locations for fiber quality) in 2 years (2019, 2020), and 
each natural environment had 3 biological replicates. Lint percentage (LP) was calcu-
lated based on harvested fibers from 30 balls. The fiber quality traits including half mean 
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length (FL), fiber uniformity (FU), fiber strength (FS), and elongation (E) were measured. 
Fiber quality trait was evaluated by a high-volume instrument (HFT9000) at the Cot-
ton Quality Testing Center in Institute of Cotton Research, Chinese Academy of Agri-
cultural Science (CRI, CAAS). For Verticillium wilt and Fusarium wilt resistance, GB/
T22101.5–2009 was used to calculate disease index. Three replicates were planted (6 
pots were used for each replication and 4 plants were planted in each pot) in a green-
house to observe phenotype after infection. The phenotypic data was normalized by 
maximum value to perform hierarchical cluster.

SV detection in CRI12 pedigree varieties

About 28 to 69 Gb raw data was generated for 20 pedigree members after ONT sequenc-
ing. Subsequently, long reads were aligned to the CRI12 genome by NGMLR (v0.2.7) 
with the parameter –x ONT after quality control by Nanoplot (v1.40.0) with default 
parameter [56, 57]. Based on alignment results, Sniffles Package (v1.0.12) was used to 
detect SVs which were longer than 20 bp [58]. Simultaneously, cuteSV (v1.0.9) was also 
applied to detect SVs (larger than 20 bp) from NGMLR results [59]. Only SVs from two 
SV sets (generated by Sniffles and cuteSV) had an over 50% reciprocal overlap were 
retained as final SVs. According to a reported strategy, SVs detected from each pedigree 
cultivar were merged into a non-redundant SV set [60]. The sequences of non-redundant 
SV set were extracted for transposon detection with RepeatMasker (v.4.1.0) [56, 57].

GPG construction, PAV‑GWAS, and eQTL analysis

Sequences of insertions and deletions (PAVs) in the non-redundant SV set were collected 
and integrated into CRI12 genome by vgtoolkit (v1.33.0) to build a graphical pedigree 
genome (GPG) [61]. Raw data of samples in 3 cohorts were downloaded according to acces-
sion provided by NCBI. The phenotype data of ma_419 was downloaded (http:// cotton. 
hebau. edu. cn/). The Best Linear Unbiased Prediction (BLUP) value of phenotype data from 
12 natural environments was gained through the R package lme4 (v1.1–7). The phenotype 
of samples in the other 2 cohorts is available in corresponding studies (Phenotype data of 
individuals in He_2021 is available at https:// doi. org/ 10. 1038/ s41588- 021- 00844-9; while 
Fusarium wilt resistance of Wang_2017 is available at https:// doi. org/ 10. 1002/ advs. 20200 
2723; fiber-related traits of Wang_2017 are available at https:// doi. org/ 10. 1038/ ng. 3807). 
Short reads of cultivars in 3 cohorts were aligned to GPG by vgtoolkit (v1.33.0) to generate 
the genotype matrix [61]. With the combination of phenotypic and genotypic matrices, we 
used EMMAX (http:// csg. sph. umich. edu/ kang/ emmax/ downl oad/ index. html) to perform 
PAV-GWAS to identified PAVs related to agronomic traits including VW resistance, FW 
resistance, fiber length, fiber strength, fiber uniformity, fiber elongation, and lint percentage.

Because of small marker number, markers’ −  log10 (P) value is low. To select trait-
related variations and avoid false positive results, we set 0.01 P value for marker selec-
tion, and phenotype divergence between reference and alternative genotypes was 
significant at P ≤ 0.05. Moreover, after phenotype-genotype reciprocal check, PAVs 
were filtered by its influence on gene expression in a population scale. Finally, functional 
PAV pool was built by phenotypic-gene expression filtering on significant PAVs from 
EMMAX results [62].
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Transcriptome data of 314 samples of wang_2017 and He_2021 cohorts were collected 
from NCBI. We applied Hisat2-Stringtie pipeline to gain transcription abundance of 
each gene in CRI12 genome [63, 64]. Using gene expression and genotype matrix as phe-
notype and genotype file, respectively, we performed eQTL analysis by EMMAX [62].

Virus induced gene silencing and V. dahliae inoculation

A specific fragment of GhNAC083 in cotton cultivar CRI12 was amplified and inserted 
to a tobacco rattle virus vector (pTRV2). As a phenotype marker of the VIGS experi-
ment, fragments of PDS were also inserted to pTRV2. pTRV2 and pTRV1 were trans-
ferred into Agrobacterium tumefaciens GV3101. The CRI12 plants were cultivated in 
illumination incubator with 16  h/8  h light/dark at 25℃. Plants inoculated with empty 
pTRV2 and pTRV1 were used as mock controls. The VIGS procedure was implemented 
according to the previously reported method [65]66. Two weeks after Agrobacterium 
tumefaciens inoculation, PDS-silenced plants turned to be bleach, and we inoculated the 
GhNAC083-silenced and control plants with 15  mL Vd076 spore suspension at about 
1 ×  107 spores/mL after hurting the roots of a plant for each sample. Afterwards, we 
checked the phenotype of inoculated plants after 14 days after inoculation of V. dahliae, 
observing the splitted stems by a microscope. To check the colonization of the V. dahliae 
in the plants, we selected splitted stems from inoculated plants and cultured them on 
PDA agar medium for 3 days.

The front primer of GhNAC083 for VIGS is GTA ATG AGA GTA ACA, while the 
reverse primer of GhNAC083 is CCA TGC CAT TCC CTC.

SV visualization

The visualization of SVs in CRI12 pedigree cultivars was performed by IGV (https:// github. 
com/ igvte am/ igv) [66].

Construction of phenotypic prediction models

For each agronomic trait, corresponding PAVs in functional PAV pool were selected as 
features in a support vector regression model which is built by scipy (v.0.12.0). The Pear-
son correlation between predicted and real phenotypes was calculated by pearsonr func-
tion in scipy.

Non‑negative matrix factorization analysis

We transferred PAV genotype matrix of 733 cultivars into segment retain matrix and 
applied NMF function in sklearn (v.1.1.3) package in python to perform NMF analy-
sis. The segment retain matrix has shape (m, n) in which m presents for m segments 
and n presents for n cultivars.  Segmenti,j = 1 means  cultivarj had  segmenti, otherwise, 
 segmenti is absent in  cultivarj. In NMF pipeline, the segment matrix  Sm,n was factor-
ized into 2 matrices,  Wm,f (feature-marker matrix) and  Hf,n (feature-sample matrix). 
The value of f is the compressed feature numbers in NMF (the number of SGs in this 
study). Feature number was set from 2 to 10 and evaluated by silhouette score calcu-
lated from results of KMeans (in sklearn package) cluster on matrix  Wm,f.  Wm,f and  Hf,n 
enable us to classify segments and samples into sub-groups, respectively. For segments, 
if max  (valuem,1,  valuem,2…valuem,f) =  valuem,f  (valuei,j ∈  Wm,f), we assigned  segmentm as 
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member in sub-group f, and  valuem,f was assigned as feature-marker score. For samples, 
if max  (value1,n,  value2,n…valuef,n) =  valuef,n  (valuei,j ∈  Hf,n), we assigned that sub-group f 
was preferentially present in  samplen, and  valuef,n was assigned as feature-sample score.

Identification of fingerprint segments

Segments in CRI12 which were widely inherited to progenies but absent in 3 cohorts 
were assigned as pedigree fingerprint segments (PFS). To identify PFS in CRI12 pedi-
gree, we utilized tf-idf (term frequency–inverse document frequency) algorithm which 
was used to deal keyword extraction in natural language processing researches. In this 
study, term frequency of  segmenti  (tfi) was defined as  numberprogenies with segmenti/20, in 
which 20 represented for 20 pedigree members we collected. While inverse docu-
ment frequency of  segmenti  (idfi) was defined as lg(733/numbercultivars with segmenti) in 
which  numbercultivars with segmenti represented the number of cultivars with  segmenti in 3 
cohorts, and 733 represented the total cultivar number in 3 cohorts. Fingerprint score 
for  segmenti was defined as  tfi ×  idfi, and segments whose fingerprint score larger than 2 
was identified as fingerprint segments.

Statistical analysis

All statistical analysis in this research was implemented by scipy package in python 
(v3.8).
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structural variations. Table S8. Transposon Annotation for each SV. Table S9. Basic information about 3 cohorts. 
Table S10. SRR accession number of 169 samples in Wang_2017 cohort. Table S11. SRR accession number of 
145 samples in He_2021 cohort. Table S12. Statistic about functional PAVs. Table S13. Genomic annotation for 
functional PAVs. Table S14. Functional annotation for genes directly influenced by functional PAVs. Table S15. 
Transcription abundance of VW-related genes between resistant and susceptible accessions. Table S16. SV-Gene 
expression-Phenotype triplets underlying non-coding SVs. Table S17. 6 genes in fatty acid elongation pathways. 
Table S18. Allelic SVs in CRI12 pedigree. Table S19. Regulation networks formed by a pair of allelic deletions. 
Table S20. Category information about 70 Fusarium wilt resistance segments. Table S21. Category information 
about fiber-quality segments. Table S22. Chisquare test for fiber-quality segments. Table S23. Source of 195 
samples in Wang_2017 cohort. Table S24. Sub-groups in Fusarium wilt resistance-related segments. Table S25. 
Chisquare test for 4 categories in 2 sub-groups divided from 70 FR segments. Table S26. Distribution of segments 
in CRI12 pedigree and population with 733 samples. Table S27. Sub-groups in Fiber-quality related segments. 
Table S28. Genomic annotation about fiber-quality related segments. Table S29. Fingerprint score of 13138 seg-
ments. Table S30. Genomic annotation for fingerprint segments in CRI12 pedigree. Table S31. t-test about fiber 
length of 5 sub-populations in Wang_2017 cohort.

Additional file 2: Fig. S1. Statistic about transposons in CRI12 pedigree PAVs. a. Pearson correlationship between 
number of transposon and PAV length in 4 genomic regions. b. Ratio of 26 tranposon categories in 4 genomic 
regions. The sum of all values in a column was 1. Fig. S2. GWAS for fiber-related traits in Ma_2018 cohort (n=419). 
a-e. Manhattan plot and Q-Q plot for lint percentage, fiber length, fiber strength, fiber uniform and fiber elonga-
tion. Threshold of P-value was set as 0.01 and all selected locus were furtherly filtered as described in Methods. Fig. 
S3. GWAS for fiber-related traits in Wang_2017 cohort (n=169). a-d. Manhattan plot and Q-Q plot for fiber length, 
fiber strength, fiber uniform and fiber elongation. Threshold of P-value was set as 0.01 and all selected locus were 
furtherly filtered as described in Methods. Fig. S4. GWAS for fiber-related traits in He_2021 cohort (n=145). a-c. Man-
hattan plot and Q-Q plot for lint percentage, fiber length, fiber strength and fiber elongation. Threshold of P-value 
was set as 0.01 and all selected locus were furtherly filtered as described in Methods. Fig. S5. GWAS for pathogen-
resistance traits in Ma_2018 cohort (n=408) and Wang_2017 (n=208). a-b. Manhattan plot and Q-Q plot for Fusar-
ium wilt resistance in Wang_2017 cohort (n=208). c. Q-Q plot for GWAS on Verticillium wilt resistance in Ma_2018 
cohort (n=408). Fig. S6. Transcription abundance of genes from SGP triplets in Wang_2017 (n=169). a. Genes in 
consistent SGPs related to fiber strength, fiber uniform and fiber elongation. X-axis was the rank of agronomic trait 
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(from low to high in quartiles). Y-axis was the TPM of genes in Wang_2017 cohort. b. Genes in conflict SGPs related 
to fiber strength, fiber uniform and fiber elongation. Fig. S7. Transcription abundance of genes from SGP triplets in 
He_2021 (n=145). a. Genes in consistent SGPs related to fiber length, fiber strength and fiber elongation. X-axis was 
the rank of agronomic trait (from low to high in quartiles). Y-axis was the TPM of genes in He_2021 cohort. b. Genes 
in conflict SGPs related to fiber length, fiber strength and fiber elongation. Fig. S8. Genes from SGP triplets about 
fiber length in Wang_2017 (n=169). a. Left boxplot was transcription abundance of genes in consistent SGPs related 
to fiber length. X-axis was the rank of fiber length (from short to long in quartiles). Right barplot was the KEGG result 
of genes in consistent SGPs in Wang_2017 cohort. b. Left boxplot was Transcription abundance of genes in conflict 
SGPs related to fiber length. X-axis was the rank of fiber length (from short to long in quartiles). Right barplot was 
the KEGG result of genes in conflict SGPs in Wang_2017 cohort. Fig. S9. Two elite deletions contained in Wang_2017 
(n=169). Fiber length was sorted into quartiles from short to long. The total number of 2 deletions contained by 
cultivars in each quartile was counted. Fig. S10. Allelic fiber uniform-related SVs in CRI12 pedigree. a.Allelic deletions 
in CRI12 pedigree. Purple lines represent for Uganda4_DEL_2661; Orange lines represent for CRI12 genotypes and 
blue lines represent for Xinluzhong7 genotypes. b. Fiber uniform of 3 genotypes. c. Gene regulatory network of 
allelic deletions. Fig. S11. Illustration on relationship between variations in alternative genomes and segments in 
CRI12 genome. Variations in alternative genomes reducing agronomic trait are mapped to corresponding favorable 
segments in CRI12 genome (segment1 and segment4 in CRI12 improve trait). Variations in alternative genomes 
improving agronomic trait are mapped to corresponding deleterious segments in CRI12 genome (segment2 and 
segment3 in CRI12 reduce trait). Fig. S12. Hereditary stability of fiber quality-related segments in CRI12 pedigree. a. 
The boxplot of pedigree favorable segments of 4 categories. b. The boxplot of pedigree deleterious segments of 4 
categories. c. t-test on hereditary stability among favorable segments of 4 categories. d. t-test on hereditary stability 
among deleterious segments of 4 categories. Fig. S13. Feature number in NMF analysis. a. Selection on number of 
features in 70 Fusarium wilt resistant segments. b. Selection on number of features in fiber length related segments. 
X-axis is the number of features in NMF analysis and Y-axis is the silhouette score of sample-feature matrix. Fig. S14. 
Number of cultivars containing GhKHCP from 4 regions. The orange bars are numbers of cultivars with GhKHCP from 
4 regions, while turquoise bars are numbers of cultivars without GhKHCP from 4 regions. Cultivars without GhKHCP 
were enriched in Yangze River region (χ2 test). Fig. S15. Bottoleneck effect in CRI12 pedigree. Orange box is the 
present frequency of segment with low hereditary stability in 733 population. While, turquoise box is the present 
frequency of segment with high hereditary stability in 733 population (P=6.7e-14). Fig. S16. NMF result for fiber 
length-related segments. a. Cluster result of cultivars from 4 regions. The value in heatmap is the median feature-
sample score of cultivars from each region, and 4 regions were clustered by hierarchical method. b. Fiber length of 2 
genotypes (CRI12-like and Ekangmian10-like) and the transcription abundance of CRI12_A09G0106 of 2 genotypes. c. 
The expression of CRI12_A09G0106 after cold and heat treat in 1, 3, 6 and 12 hours.

Additional file 3. Review history.

Acknowledgements
The chat-GPT was used for grammar correction after the manuscript was written.

Review history
The review history is available as Additional file 3.

Peer review information
Wenjing She was the primary editor of this article and managed its editorial process and peer review in collaboration 
with the rest of the editorial team.

Authors’ contributions
G.S., J.L., S.L., D.Z., and H.C conceived and designed the research. D.Z., H.C., and S.L. selected cotton materials for experi-
ment. S.L. performed data analysis and M.H. performed wet-lab experiment. Q.W, Y.Z, and L.L planted and collected 
samples. S.L. wrote the manuscript and G.S., J.L., and J.A revised the manuscript.

Funding
Research reported in this paper was supported by National Key Research and Development Program of China (No. 
2022YFF1001400). The Project of Sanya Yazhou Bay Science and Technology City (No. SCKJ-JYRC-2022–92). Hainan 
Yazhou Bay Seed Lab (No. B21HJ0222). National Natural Science Foundation of China (No. 31621005 and No. 31901581), 
Central Public-interest Scientific Institution Basal Research Fund (No.1610162021013), and Agricultural Science and 
Technology Innovation Program of Chinese Academy of Agricultural Sciences. The funders had no role in the design of 
the study, collection, analysis, or interpretation of the data, the writing of the manuscript, or the decision to submit the 
manuscript for publication.

Availability of data and materials
All data (ONT long reads, Illumina short reads, Hi-C data, and transcriptome data) used for CRI12 assembly is available at 
PRJNA1000640 [67]. ONT long reads for 20 CRI12 pedigree members are available at PRJNA1000641 [68].
Previous published data used in this paper: (i) Transcriptome data of Verticillium wilt infection was fetched in BioProject 
PRJNA593765 [69]. (ii) Transcriptome data of fiber development was fetched in SRA database with accession number 
SRR2917183- SRR2917197 and SRR1695191-SRR1695194 [70, 71]. (iii) Accession numbers of the genomic and transcrip-
tome data from 3 cohorts were available in Supplementary table 10 and 11 [14–16, 26].
There were no scripts and software used other than those mentioned in the “Methods” section.



Page 22 of 24Liu et al. Genome Biology          (2023) 24:282 

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 6 June 2023   Accepted: 26 November 2023

References
 1. Yang Z, Qanmber G, Wang Z, Yang Z, Li F. Gossypium genomics: trends, scope, and utilization for cotton improve-

ment. Trends Plant Sci. 2020;25:488–500.
 2. Wen X, Chen Z, Yang Z, Wang M, Jin S, et al. A comprehensive overview of cotton genomics, biotechnology and 

molecular biological studies. Sci China Life Sci. 2023;66(10):2214–56.
 3. Ma X, Wang Z, Li W, Zhang Y, Zhou X, Liu Y, et al. Resequencing core accessions of a pedigree identifies derivation of 

genomic segments and key agronomic trait loci during cotton improvement. Plant Biotechnol J. 2019;17(4):762–75.
 4. Lu X, Fu X, Wang D, Wang J, Chen X, Hao M, et al. Resequencing of cv CRI-12 family reveals haplotype block 

inheritance and recombination of agronomically important genes in artificial selection. Plant Biotechnol J. 
2019;17(5):945–55.

 5. Wang N, Li Y, Shen C, Yang Y, Wang H, Yao T, et al. High-resolution sequencing of nine elite upland cotton cultivars 
uncovers genic variations and breeding improvement targets. Plant J. 2023;113(1):145–59.

 6. Lu X, Chen X, Wang D, Yin Z, Wang J, Fu X, et al. A high-quality assembled genome and its comparative analy-
sis decode the adaptive molecular mechanism of the number one Chinese cotton variety CRI-12. Gigascience. 
2022;11:giac019.

 7. Ma Z, Zhang Y, Wu L, Zhang G, Sun Z, Li Z, et al. High-quality genome assembly and resequencing of modern cotton 
cultivars provide resources for crop improvement. Nat Genet. 2021;53(9):1385–91.

 8. Yang Z, Ge X, Yang Z, Qin W, Sun G, Wang Z, et al. Extensive intraspecific gene order and gene structural variations in 
upland cotton cultivars. Nat Commun. 2019;10(1):2913–89.

 9. Chen ZJ, Sreedasyam A, Ando A, Song Q, De Santiago LM, Hulse-Kemp AM, et al. Genomic diversifications of five 
Gossypium allopolyploid species and their impact on cotton improvement. Nat Genet. 2020;52(5):525–33.

 10. Wang M, Li J, Qi Z, Long Y, Pei L, Huang X, et al. Genomic innovation and regulatory rewiring during evolution of the 
cotton genus Gossypium. Nat Genet. 2022;54(12):1959–71.

 11. Jin S, Han Z, Hu Y, Si Z, Dai F, He L, et al. Structural variation (SV)-based pan-genome and GWAS reveal the impacts of 
SVs on the speciation and diversification of allotetraploid cottons. Mol Plant. 2023;16(4):678–93.

 12. Huang G, Wu Z, Percy RG, Bai M, Li Y, Frelichowski JE, et al. Genome sequence of Gossypium herbaceum and genome 
updates of Gossypium arboreum and Gossypium hirsutum provide insights into cotton A-genome evolution. Nat 
Genet. 2020;52(5):516–24.

 13. Hu Y, Chen J, Fang L, Zhang Z, Ma W, Niu Y, et al. Gossypium barbadense and Gossypium hirsutum genomes provide 
insights into the origin and evolution of allotetraploid cotton. Nat Genet. 2019;51(4):739–48.

 14. Ma Z, He S, Wang X, Sun J, Zhang Y, Zhang G, et al. Resequencing a core collection of upland cotton identifies 
genomic variation and loci influencing fiber quality and yield. Nat Genet. 2018;50(6):803–13.

 15. He S, Sun G, Geng X, Gong W, Dai P, Jia Y, et al. The genomic basis of geographic differentiation and fiber improve-
ment in cultivated cotton. Nat Genet. 2021;53(6):916–24.

 16. Wang M, Tu L, Lin M, Lin Z, Wang P, Yang Q, et al. Asymmetric subgenome selection and cis-regulatory divergence 
during cotton domestication. Nat Genet. 2017;49(4):579–87.

 17. Wang M, Tu L, Yuan D, Zhu D, Shen C, Li J, et al. Reference genome sequences of two cultivated allotetraploid cot-
tons, Gossypium hirsutum and Gossypium barbadense. Nat Genet. 2019;51(2):224–9.

 18. Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. BUSCO: assessing genome assembly and anno-
tation completeness with single-copy orthologs. Bioinformatics. 2015;31(19):3210–2.

 19. Parra G, Bradnam K, Korf I. CEGMA: a pipeline to accurately annotate core genes in eukaryotic genomes. Bioinfor-
matics. 2007;23(9):1061–7.

 20. Wang M, Li J, Wang P, Liu F, Liu Z, Zhao G, et al. Comparative genome analyses highlight transposon-medi-
ated genome expansion and the evolutionary architecture of 3D genomic folding in cotton. Mol Biol Evol. 
2021;38(9):3621–36.

 21. Wang M, Wang P, Lin M, Ye Z, Li G, Tu L, et al. Evolutionary dynamics of 3D genome architecture following polyploidi-
zation in cotton. Nat Plants. 2018;4(2):90–7.

 22. Yamaguchi M, Ohtani M, Mitsuda N, Kubo M, Ohme-Takagi M, Fukuda H, et al. VND-INTERACTING2, a NAC domain 
transcription factor, negatively regulates xylem vessel formation in Arabidopsis. Plant Cell. 2010;22(4):1249–63.

 23. Yang SD, Seo PJ, Yoon HK, Park CM. The Arabidopsis NAC transcription factor VNI2 integrates abscisic acid signals 
into leaf senescence via the COR/RD genes. Plant Cell. 2011;23(6):2155–68.

 24. Fang L, Wang Q, Hu Y, Jia Y, Chen J, Liu B, et al. Genomic analyses in cotton identify signatures of selection and loci 
associated with fiber quality and yield traits. Nat Genet. 2017;49(7):1089–98.

 25. Li J, Yuan D, Wang P, Wang Q, Sun M, Liu Z, et al. Cotton pan-genome retrieves the lost sequences and genes during 
domestication and selection. Genome Biol. 2021;22(1):119.



Page 23 of 24Liu et al. Genome Biology          (2023) 24:282  

 26. Li Z, Wang P, You C, Yu J, Zhang X, Yan F, et al. Combined GWAS and eQTL analysis uncovers a genetic regu-
latory network orchestrating the initiation of secondary cell wall development in cotton. New Phytol. 
2020;226(6):1738–52.

 27. Beaudoin F, Gable K, Sayanova O, Dunn T, Napier JA. A Saccharomyces cerevisiae gene required for heterologous 
fatty acid elongase activity encodes a microsomal beta-keto-reductase. J Biol Chem. 2002;277(13):11481–8.

 28. Yang Z, Liu Z, Ge X, Lu L, Qin W, Qanmber G, et al. Brassinosteroids regulate cotton fiber elongation by modulat-
ing very-long-chain fatty acid biosynthesis. Plant Cell. 2023;35(6):2114–31.

 29. Beaudoin F, Wu X, Li F, Haslam RP, Markham JE, Zheng H, et al. Functional characterization of the Arabidopsis 
beta-ketoacyl-coenzyme A reductase candidates of the fatty acid elongase. Plant Physiol. 2009;150(3):1174–91.

 30. Robbe P, Ridout KE, Vavoulis DV, Dréau H, Kinnersley B, Denny N, et al. Whole-genome sequencing of 
chronic lymphocytic leukemia identifies subgroups with distinct biological and clinical features. Nat Genet. 
2022;54(11):1675–89.

 31. Wang W, Wang S, Gong W, Lv L, Xu L, Nie J, et al. Valsa mali secretes an effector protein VmEP1 to target a K 
homology domain-containing protein for virulence in apple. Mol Plant Pathol. 2022;23(11):1577–91.

 32. Brzezinka K, Altmann S, Czesnick H, Nicolas P, Gorka M, Benke E, et al. Arabidopsis FORGETTER1 mediates stress-
induced chromatin memory through nucleosome remodeling. Elife. 2016;5:e17061.

 33. Zhao S, Lin Z, Ma W, Luo D, Cheng Q. Cloning and characterization of long-chain fatty alcohol oxidase LjFAO1 in 
lotus japonicus. Biotechnol Prog. 2008;24(3):773–9.

 34. Nakayama T, Shinohara H, Tanaka M, Baba K, Ogawa-Ohnishi M, Matsubayashi Y. A peptide hormone required for 
Casparian strip diffusion barrier formation in Arabidopsis roots. Science. 2017;355(6322):284–6.

 35. Yoshiba Y, Aoki C, Iuchi S, Nanjo T, Seki M, Sekiguchi F, et al. Characterization of four extensin genes in Arabidop-
sis thaliana by differential gene expression under stress and non-stress conditions. Dna Res. 2001;8(3):115–22.

 36. Li Y, Si Z, Wang G, Shi Z, Chen J, Qi G, et al. Genomic insights into the genetic basis of cotton breeding in China. 
Mol Plant. 2023;16(4):662–77.

 37. Zhou Y, Zhang Z, Bao Z, Li H, Lyu Y, Zan Y, et al. Graph pangenome captures missing heritability and empowers 
tomato breeding. Nature. 2022;606(7914):527–34.

 38. Qin P, Lu H, Du H, Wang H, Chen W, Chen Z, et al. Pan-genome analysis of 33 genetically diverse rice accessions 
reveals hidden genomic variations. Cell. 2021;184(13):3542–58.

 39. Liu Y, Du H, Li P, Shen Y, Peng H, Liu S, et al. Pan-genome of wild and cultivated soybeans. Cell. 
2020;182(1):162–76.

 40. Liu Y, Tian Z. From one linear genome to a graph-based pan-genome: a new era for genomics. Sci China Life Sci. 
2020;63(12):1938–41.

 41. Gong T, Hayes VM, Chan E. Detection of somatic structural variants from short-read next-generation sequencing 
data. Brief Bioinform. 2021;22(3)bbaa056..

 42. Clark BE, Shooter C, Smith F, Brawand D, Thein SL. Next-generation sequencing as a tool for breakpoint analysis 
in rearrangements of the globin gene clusters. Int J Lab Hematol. 2017;39(Suppl 1):111–20.

 43. Sun C, Lei Y, Li B, Gao Q, Li Y, et al. Precise integration of large DNA sequences in plant genomes using PrimeRoot 
editors. Nat Biotechnol. 2023. https:// doi. org/ 10. 1038/ s41587- 023- 01769-w.

 44. Vaser R, Sović I, Nagarajan N, Šikić M. Fast and accurate de novo genome assembly from long uncorrected reads. 
Genome Res. 2017;27:737–46.

 45. Chen S, Zhou Y, Chen Y, Gu J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 2018;34:i884–90.
 46. Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S, et al. Pilon: an integrated tool for comprehensive 

microbial variant detection and genome assembly improvement. PLoS ONE. 2014;9:e112963.
 47. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 

2009;25:1754–60.
 48. Durand NC, Shamim MS, Machol I, Rao S, Huntley MH, Lander ES, et al. Juicer provides a one-click system for 

analyzing loop-resolution Hi-C experiments. Cell System. 2016;3:95–8.
 49. Dudchenko O, Batra SS, Omer AD, Nyquist SK, Hoeger M, Durand NC, et al. De novo assembly of the Aedes 

aegypti genome using Hi-C yields chromosome-length scaffolds. Science. 2017;356:92–5.
 50. Stanke M, Waack S. Gene prediction with a hidden Markov model and a new intron submodel. Bioinformatics. 

2003;19:ii215–25.
 51. Parra G, Blanco E, Guigó R. GeneID in Drosophila. Genome Res. 2000;10:511–5.
 52. Burge C, Karlin S. Prediction of complete gene structures in human genomic DNA. J Mol Biol. 1997;268:78–94.
 53. Majoros WH, Pertea M, Salzberg SL. TigrScan and GlimmerHMM: two open source ab initio eukaryotic gene-

finders. Bioinformatics. 2004;20:2878–9.
 54. Haas BJ, Salzberg SL, Zhu W, Pertea M, Allen JE, Orvis J, et al. Automated eukaryotic gene structure annotation 

using EVidenceModeler and the program to assemble spliced alignments. Genome Biol. 2008;9:7.
 55. Quevillon E, Silventoinen V, Pillai S, Harte N, Mulder N, Apweiler R, et al. InterProScan: protein domains identifier. 

Nucleic Acids Res. 2005;33:W116–20.
 56. Bao W, Kojima KK, Kohany O. Repbase Update, a database of repetitive elements in eukaryotic genomes. Mob 

DNA. 2015;6:11.
 57. Tempel S. Using and understanding RepeatMasker. Methods Mol Biol. 2012;859:29–51.
 58. Sedlazeck FJ, Rescheneder P, Smolka M, Fang H, Nattestad M, Haeseler A, et al. Accurate detection of complex 

structural variations using single-molecule sequencing. Nat Methods. 2018;15:461–8.
 59. Jiang T, Liu YZ, Jiang Y, Li JY, Gao Y, Cui Z, et al. Long-read-based human genomic structural variation detection 

with cuteSV. Genome Biol. 2020;21:189.
 60. Chakraborty M, Emerson J.J, Macdonald S.J, Long A.D. Structural variants exhibit widespread allelic heterogene-

ity and shape variation in complex traits. Nat Commun. 2019;10(1):4872
 61. Garrison E, Sirén J, Novak AM, Hickey G, Eizenga JM, Dawson ET, et al. Variation graph toolkit improves read map-

ping by representing genetic variation in the reference. Nat Biotechnol. 2018;36:875–9.

https://doi.org/10.1038/s41587-023-01769-w


Page 24 of 24Liu et al. Genome Biology          (2023) 24:282 

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

 62. Kang HM, Sul JH, Service SK, Zaitlen NA, Kong SY, Freimer NB, et al. Variance component model to account for 
sample structure in genome-wide association studies. Nat Genet. 2010;42:348–54.

 63. Kim D, Langmead B, Salzberg SL. HISAT: a fast spliced aligner with low memory requirements. Nat Methods. 
2015;12(4):357–60.

 64. Pertea M, Pertea GM, Antonescu CM, Chang TC, Mendell JT, Salzberg SL. StringTie enables improved reconstruction 
of a transcriptome from RNA-seq reads. Nat Biotechnol. 2015;33(3):290–5.

 65. Li ZK, Chen B, Li XX, Wang JP, Zhang Y, Wang XF, et al. A newly identified cluster of glutathione S-transferase genes 
provides Verticillium wilt resistance in cotton. Plant J. 2019;98:213–27.

 66. Thorvaldsdóttir H, Robinson JT, Mesirov JP. Integrative Genomics Viewer (IGV): high-performance genomics data 
visualization and exploration. Brief Bioinformatics. 2013;14:178–92.

 67. Liu S, Zuo DY, Cheng HL, He M, Wang QL, Lv LM, Zhang YP, Javaria A, Liu J, Song GL. Cotton pedigree genome 
reveals restriction of cultivar-driven strategy in cotton breeding. Datasets. Bioproject. 2023. https:// www. ncbi. nlm. 
nih. gov/ biopr oject/? term= PRJNA 10006 40. Accessed 1 Aug 2023

 68. Liu S, Zuo D.Y, Cheng H.L, He M, Wang Q.L, Lv L.M, Zhang Y.P, Javaria A, Liu J, Song G.L. Cotton pedigree genome 
reveals restriction of cultivar-driven strategy in cotton breeding. Datasets. Bioproject. 2023. https:// www. ncbi. nlm. 
nih. gov/ biopr oject/? term= PRJNA 10006 41. Accessed 1 Aug 2023

 69. Xiong XP, Sun SC, Zhu QH, Zhang XY, Li YJ, Liu F, Xue F, Sun J. The cotton lignin biosynthetic gene Gh4CL30 regulates 
lignification and phenolic content and contributes to Verticillium Wilt resistance. Mol Plant Microbe Interact. 
2021;34(3):240–54.

 70. Zhang T, Hu Y, Jiang W, Fang L, Guan X, Chen J, et al. Sequencing of allotetraploid cotton (Gossypium hirsutum L. 
acc. TM-1) provides a resource for fiber improvement. Nat Biotechnol. 2015;33(5):531–7.

 71. Liang W, Fang L, Xiang D, Hu Y, Feng H, Chang L, Zhang T. Transcriptome analysis of short fiber mutant ligon lint-
less-1 (li1) reveals critical genes and key pathways in cotton fiber elongation and leaf development. PLoS ONE. 
2015;10(11):e143503.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA1000640
https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA1000640
https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA1000641
https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA1000641

	Cotton pedigree genome reveals restriction of cultivar-driven strategy in cotton breeding
	Abstract 
	Background: 
	Result: 
	Conclusion: 

	Background
	Results
	Characterization of genomic variations in CRI12 pedigree
	CRI12 pedigree contains valuable genomic variations
	Low hereditary stability for functional segments in backbone cultivar
	Geographically specific sub-groups in valuable segments
	Fingerprint segments in CRI12 pedigree

	Discussion
	Conclusions
	Methods
	Plant material
	Genomic DNA extraction and genome sequencing
	De novo assembly of CRI12 genome
	Genome annotation of CRI12
	Phenotype data collection of pedigree varieties
	SV detection in CRI12 pedigree varieties
	GPG construction, PAV-GWAS, and eQTL analysis
	Virus induced gene silencing and V. dahliae inoculation
	SV visualization
	Construction of phenotypic prediction models
	Non-negative matrix factorization analysis
	Identification of fingerprint segments
	Statistical analysis

	Anchor 29
	Acknowledgements
	References


