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Background
The amount of genomic data collected and utilized for various purposes has been 
increasing rapidly in recent years. The largest direct-to-consumer genetic testing compa-
nies together have genotyped more than 38 million individuals [1]. In the research realm, 
efforts like the UK Biobank [2] and the All of Us Research Program [3] each have col-
lected hundreds of thousands of genetic samples, for the purpose of broadly advancing 
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science. This abundance of genomic data brings much good to society, but due to the 
sensitivity of genetic information and the potential for its misuse, a fundamental issue 
arises of a balance that must be struck between its utility and its protection. Restrictions 
on the use and sharing of genomic data in research, put in place to serve this protective 
role, have led to systems in which most genomic databases are access-controlled, only 
publicly shared in limited forms if at all, for example, in the form of summary-level data 
[4]. Various tools have emerged to facilitate this limited sharing.

A prominent example of such tools is the genotype imputation server. An imputation 
server is a web-based service that facilitates genotype imputation, a process by which 
samples genotyped on an array are algorithmically assigned genotypes at untyped (or 
missing) positions via comparison to a reference panel of deeply sequenced genomes. 
Genotype imputation is a key step in genetic association studies to improve data quality 
and statistical power and as a result is performed widely [5]. Existing imputation servers, 
such as the Michigan Imputation Server (MIS) [6] and the TOPMed Imputation Server 
(TIS) [7], were conceived for two primary purposes intended to provide significant 
value: to improve the user experience of researchers performing imputation, by simplify-
ing technical aspects and to provide convenient public (indirect) access to large refer-
ence panels, many of which are otherwise access-controlled. It was argued that the latter 
aspect “eliminates the need for cumbersome data access agreements” [6]. We believe 
that these imputation servers genuinely do provide great value to researchers and signifi-
cantly ease the process of running imputation, and the research community appears to 
agree; as of June 2023, more than 150 million genomes have been imputed between MIS 
and TIS [8, 9], and there are several imputation servers based on other access-controlled 
datasets, including the Sanger Imputation Service [10] and the ChinaMAP Imputation 
Server [11].

However, the greater convenience provided by imputation servers may come at the 
expense of privacy protection. Imputation fills the gaps in input data, intuitively, by cop-
ying genotypes from the most similar reference panel sequences, and therefore imputa-
tion inherently reveals some information about the underlying reference genomes. The 
starting point of our work was the question: How much?

Following other studies that have demonstrated the vulnerability of genomic data even 
when shared in limited forms [12–14], our objective in this investigation was to deter-
mine what portion of the reference panel (if any) can be reconstructed based on imputa-
tion server output, with the broader goal of evaluating whether there is a substantial risk 
to be addressed. We focused our analysis on the latest version (v4) of the minimac impu-
tation algorithm [15] used by most imputation servers, including MIS and TIS, but also 
surveyed three other prominent imputation algorithms, including the PBWT algorithm 
[16] used by the Sanger Imputation Service.

Given the sensitive nature of the vulnerability investigated, we took great care to con-
duct this work responsibly and ethically. To ensure that we did not expose database 
participants to any additional risk, we conducted our imputation tests only with refer-
ence panels to which we already had full access. In order not to place any substantial 
burden on a live imputation server, we did not conduct any experiments directly on a 
server; rather, we simulated attacks by running the imputation algorithm packages used 
by existing servers, and only queried the servers to understand their input requirements 
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and the analysis pipeline in the initial stage of the investigation. Finally, we informed rep-
resentatives of existing imputation servers and other relevant stakeholders of our find-
ings prior to publication of this work.

Results
We first set out to quantify the risk of data leakage by developing a potential attack 
against existing imputation pipelines and then evaluating its effectiveness. The attack 
strategy resulting from our work consists of two parts: haplotype reconstruction and 
haplotype linking (Fig. 1). The haplotype reconstruction portion utilizes the output from 
imputation to reconstruct a set of reference panel haplotypes for each chromosome or 
for each chromosome “chunk” (i.e., non-overlapping segments within a chromosome), 
depending on the pipeline configuration. (imputation is often run independently on 
chunks to allow for greater parallelization). The haplotype linking portion leverages 
any available genetic relatives to link across these genomic segments (chromosomes 
or chunks) to form sets of haplotypes and diplotypes predicted to belong to the same 
individual.

Fig. 1 Overview of genome reconstruction attack on public imputation servers. The attack scenario we 
demonstrate in this work consists of two stages: haplotype reconstruction (HR; A) and haplotype linking (HL; 
B). In each round of HR, (1) a pool of queries targeting a short genomic region including a low-frequency 
variant is constructed and (2) passed to the imputation server, generating imputed data. (3) A classifier 
processes the output patterns to predict how many reference panel (RP) haplotypes a query matched. (4) If 
a query matched a small number of RP haplotypes, it is strategically extended to generate fewer matches, 
then passed back through imputation. (5) If a query matched a single RP haplotype, the corresponding 
imputed output often exactly reveals that haplotype. A set of reconstructed haplotypes (representing 
chromosomes or sub-chromosome chunks, depending on the configuration of the imputation server) are 
passed to HL. (6) HL leverages an auxiliary genomic dataset (a “relative set”) which might contain relatives 
of RP individuals whose data are among the reconstructed haplotype set (the “target haplotypes”). (7) HL 
runs an identity-by-descent (IBD) detection algorithm to get shared segments between each possible target 
haplotype and relative set sample pair. These segments are used to compute the semi-kinship (SK) coefficient 
for each pair, a measure of relatedness. (8) A probabilistic linking algorithm we developed uses these SK 
scores to link sets of haplotypes predicted to originate from the same individual. These correspond to RP 
genomes that are successfully reconstructed by the attack
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The haplotype reconstruction portion of our attack was formulated with the minimac 
imputation algorithm in mind and exploits the following key observation: If minimac 
is run on a query that exactly matches a single reference panel haplotype, the program 
will tend to assign to the query variants and other nearby variants the genotypes of the 
matching sample, with extreme dosage values. By dosage, we refer to the expected count 
of an allele (a continuous value between 0 and 1), where extreme values near 0 or 1 rep-
resent high confidence in a genotype prediction of 0 (reference allele) or 1 (alternative 
allele), respectively. Implicit in this observation is that the resulting output may contain 
a reconstructed portion of the matching genome and that this occurrence will be evi-
dent in the output dosages. We define an imputation “query” to be a sample sequence 
provided as input to the imputation pipeline, including a set of variants and the corre-
sponding genotype assignments. Thus, a query could be a sample genotyped on an array, 
as in the typical use case, but could also consist of artificially constructed variants in an 
adversarial setting.

Our haplotype reconstruction strategy takes advantage of these insights and proceeds 
as follows. It samples an initial set of short queries (each including one low-frequency 
variant to increase the chance for a unique match), runs them through minimac, and 
parses the resulting output to recognize when there have been unique matches to the 
reference panel and reference haplotypes may have been reconstructed. Queries match-
ing a small number of reference haplotypes (e.g., in the range of 2 to 5), also produce 
special dosage patterns (Additional file 1: Fig. S1; Additional file 1: Fig. S2), and when 
these are detected, a query-extension strategy is used to attempt to reconstruct all the 
matching samples.

For simplicity, we begin by analyzing the setting in which a query is imputed against 
the full chromosome, as opposed to separately on each chromosome chunk; later, we 
present analogous results for imputing chunks. In general, we observed that the imputa-
tion output of a query of only eight variants exactly matching a single 1000 Genomes 
Phase 3 (1KG) chromosome 20 [17] haplotype typically corresponded to the whole 
matching haplotype, with zero mistakes over the entire length of the chromosome 
(Additional file 1: Fig. S3). In other words, it was possible to perfectly reconstruct a chro-
mosome of an individual in 1KG with only a single run of imputation. For more algorith-
mic details of our attack strategy, see the “Methods” section.

Our haplotype reconstruction algorithm output 3656 (73%) of the 5008 haplotypes of 
chromosome 20 in 1KG with high accuracy (each with 100 mismatches or fewer, out of 
1,047,613 variants in total) using one million artificial input samples (Fig. 2A). Ninety-
six percent  of all reconstructed haplotypes (including duplicates) perfectly matched a 
reference panel haplotype, and only 3.9% of the reconstructed haplotypes did not match 
any 1KG haplotype (i.e., had more than 100 mismatches) and therefore were considered 
incorrect. These incorrect outputs, in stark contrast to the correct ones, typically exhib-
ited more than 1000 mismatches, while the correct outputs mostly had zero mismatches 
(Additional file 1: Fig. S4).

To verify that our haplotype reconstruction strategy works for reference panels differ-
ent from 1KG in size and cohort composition, we also tested it on two subsets of All of 
Us (AoU) genomic data simulating access-controlled, ancestry-specific reference pan-
els available on imputation servers (Methods): a panel about half the size of 1KG (1250 
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samples) of Asian American individuals and a panel about twice the size of 1KG (5000 
samples) of Black or African American individuals [3]. For these panels, we were simi-
larly able to reconstruct large portions of the chromosome 20 haplotypes (more than 
75% and 30%, respectively) using the same number of one million queries (Fig. 2B).

Note that the apparent diminishing return in terms of the number of new haplo-
types reconstructed over the course of each attack is due to the initial target variants of 
the queries being chosen “blindly,” that is, without knowledge of haplotypes that have 
already been reconstructed, which results in increasing frequency of redundant outputs. 
A more sophisticated query selection approach may minimize redundancy to further 
increase the effectiveness of the attack.

We conducted additional reconstruction experiments to study the factors that under-
lie performance differences in a range of reference panels. Comparing panels of different 

Fig. 2 Our haplotype reconstruction strategy extracts a substantial number of chromosome-length 
haplotypes from imputation reference panels. We tested our haplotype reconstruction strategy, leveraging 
fractional dosage data output by imputation, on different reference panels (RPs), including (A) 1000 Genomes 
Phase 3 (1KG) and (B) two population-specific subsets of All of Us data: one including 1250 Asian American 
individuals and another including 5000 Black or African American individuals. C The “discrete imputation” 
version, utilizing only the discrete predictions of most likely genotype at each site, was also tested on 1KG. 
A reconstructed haplotype was “correct” if it had no more than 100 variants with mismatching genotypes 
compared to a RP haplotype and that closest haplotype had not previously been reconstructed correctly. 
We chose 100 as an example cutoff to allow nearly-perfect reconstructions to be considered correct, but as 
illustrated in Additional file 1: Fig. S4, any value in the range of 0 to 500 could likely have been chosen with 
little effect on the results as visualized in these plots. The count of “incorrect” haplotypes was incremented 
if a reconstructed haplotype had more than 100 genotype differences from the closest RP match and 
was sufficiently different (> 100 mismatches) from the previous incorrect haplotypes. Horizontal dotted 
lines represent percentages of the total number of haplotypes in a RP. In all cases, our strategy accurately 
reconstructed a large portion of the RP using a realistic number of queries. The results shown are for imputing 
chromosome 20; analogous results for imputing only the first 20-Mbp chunk of chromosome 20 are provided 
in Additional file 1: Fig. S9
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sizes sampled from the same cohort (1KG) indicated that a larger panel size tends to 
increase the rate of correct reconstruction and reduce error (Additional file 1: Fig. S5). 
We believe this is likely because when a panel is larger, more constructed queries will 
have a unique match relative to those with no matches; misclassification of the latter as 
uniquely matching queries is the primary source of error in our setting. On the other 
hand, holding panel size constant and varying panel ancestry composition revealed that 
more homogeneous ancestry-specific cohorts, together with more accurate estimates of 
allele frequencies in the panel, may boost reconstruction performance by improving the 
uniqueness of query seeds (Additional file 1: Fig. S6). We provide a more detailed discus-
sion of these results in Additional file 1: Supplementary Note 1.

The haplotype reconstruction strategy described above hinges on interpreting the 
fractional (expected) dosage output by imputation, which can also be calculated from 
genotype probabilities if those are included in the imputation output. Although impu-
tation could be configured (albeit at the expense of some utility) to provide only dis-
crete genotype predictions (i.e., 0 or 1), we identified a reconstruction strategy that can 
circumvent this limitation (Methods). This modified strategy is based on the following 
insight: If a query perfectly matching a single reference haplotype is imputed, then any 
subsequent queries extending the original query by including additional variants from 
the output will tend to have identical imputation results, since the perfect match is likely 
preserved. This property allows an adversary to identify queries with a unique match 
to a reference panel haplotype. We evaluated our modified reconstruction strategy on 
chromosome 20 of 1KG and were again able to reconstruct a large share of the 1KG hap-
lotypes (Fig. 2C), though at a lower reconstruction rate per input query sequence (e.g., 
about 425 reconstructed haplotypes for 200,000 input queries).

To test whether our findings would apply to imputation servers using alternative 
imputation tools in addition to minimac, we tested the discrete-genotype version of our 
reconstruction algorithm against IMPUTE5, Beagle5.4, and PBWT software [16, 18, 19]. 
The attack remained effective, with varying proportions of correct to incorrect recon-
structed haplotypes, for all algorithms tested (Additional file 1: Fig. S7). While IMPUTE 
and Beagle share some similarity with minimac in that all three methods use hidden 
Markov models (HMMs) [20] as a key component, they take different approaches for 
utilizing the HMMs. Moreover, PBWT adopts a fundamentally different problem for-
mulation based on set-maximal matches between pairs of sequences. Thus, our results 
suggest that the threat of data leakage in the imputation output is inherent to the task of 
imputation and not confined to specific algorithms.

In the current settings of MIS and TIS, imputation is performed separately on each 
chromosome chunk of 20 Mbp (i.e., the first chunk spanning base positions 1 to 20M, 
the second chunk spanning 20M+1 to 40M, etc.). This means that a short query, which 
falls within a single chunk, will result in imputation output only over that chunk. The 
reconstruction attack described above translates easily into this setting: Applied to the 
first chunk of chromosome 20, about 68% and 34% of the haplotypes in the reference 
panel could be reconstructed after one million queries with the fractional dosage and 
the discrete genotype output, respectively (Additional file 1: Fig. S8). As queries for the 
different chunks of a chromosome could be batched into the same input file, this set-
ting does not necessarily increase the number of interactions with an imputation server 
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required to retrieve a comparable amount of data, although the retrieved data are more 
fragmented.

The output of our haplotype reconstruction algorithm is a set of haplotypes corre-
sponding to reference panel samples. But even if executed with perfect accuracy and all 
haplotypes were recovered (for all 20-Mbp chunks in the case of MIS and TIS), it would 
still not be known to the adversary which group of haplotypes corresponds to the same 
individual. We sought to determine whether an adversary could also infer this informa-
tion. To this end, we show that the reconstructed chunks corresponding to an individ-
ual may all exhibit quantifiable relatedness to the genome of a genetic relative and thus 
could be linked.

The approach we developed for this haplotype linking portion of the attack first finds 
identical-by-descent (IBD) segments between a set of reconstructed haplotypes, the 
“target set,” and an external panel of potential relatives, the “relative set.” In practice, this 
relative set could consist of any public or access-controlled genomic datasets to which 
an attacker has obtained access. The identified IBD segments are then used to compute 
a statistic that we define as the semi-kinship (SK) coefficient (Methods) for each pair of 
samples between the two sets. This SK coefficient indicates the expected relatedness of 
two individuals and is formulated specifically to compare a haploid sample with a diploid 
sample. The empirical distribution of the SK coefficients stratified by relatedness degree 
and by genomic region is summarized in Fig. 3A, which shows a consistent separation 
between related and unrelated pairs in all genomic regions. Note that the elevated SK 
values observed on chromosomes 14 and 15 for unrelated individuals are the product of 
likely spurious IBD segments shared by many individuals in the dataset.

These coefficients are then passed as input into a probabilistic linking algorithm we 
developed leveraging variational Bayesian inference and network flow optimization 
(Additional file  1: Fig.  S9; Methods). This algorithm predicts target set chunks with a 
similar SK profile across the individuals in the relative set to come from the same indi-
vidual. We enhance the performance of our algorithm by performing a series of pre-
liminary steps, where SK information is combined with the results of imputing chunks 
against the relative set (which reveals potential IBD segments that cross chunk bounda-
ries) to produce an initial linking solution (Methods; Additional file 1: Fig. S10 and Addi-
tional file 1: Fig. S11).

To evaluate the effectiveness of our haplotype linking algorithm, we tested it using 
genetic data from 2000 AoU participants, including 100 pairs of related individuals (20 
pairs each of 1st- through 5th-degree relatives) and randomly sampled 900 pairs of unre-
lated individuals. All 44 haploid autosomal chromosomes of one individual in each pair 
were split into 20 Mbp chunks (310 in total) and included in the target set, for a total of 
310K haplotype chunks, shuffled to obfuscate the individual of origin. The other indi-
vidual in each pair was assigned to the relative set.

Using our linking algorithm, we were able to reassemble a majority of haplotype 
chunks from the target individuals with 1st-degree relatives in the relative set, includ-
ing on average 172.8 chunks, out of the possible 310. The algorithm performed with 
decreased but still substantial success for individuals with more distant relatives in the 
relative set, for example, linking on average 98.6, 46.9, and 14.2 chunks for those with 
2nd-, 3rd-, and 4th-degree relatives, respectively (Fig. 3B). An even greater portion of 
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reference panel genomes could be reassembled if full chromosomes were returned by 
an imputation server, indicating that the chunking behavior provides some amount of 
protection against attempts to link the haplotypes: In an experiment with the same input 
split only into chromosome haplotypes rather than chunks, our algorithm was able to 
link on average 41.2, 33.7, 20.4, and 6.6 chromosomes (out of 44 haploid autosomal chro-
mosomes in total) for target individuals with 1st-, 2nd-, 3rd-, and 4th-degree relatives, 
respectively (Additional file 1: Fig. S12).

Note that, in most cases beyond the 1st degree, we would only expect to obtain linked 
sets where each chunk is haploid, since most such relatives are genetically related only 
through one side of the family; it is therefore interesting that we were sometimes able 
to correctly link both haplotypes of a chunk: for individuals with 2nd- and 3rd-degree 
relatives, our algorithm on average linked about 7.8% and 3.5% of the genome (in base 
pair length) as diploid sequence, respectively. We believe that these results are likely 

Fig. 3 Our haplotype linking strategy leverages shared relatedness patterns across genomic regions to link 
reconstructed haplotypes from the same individual. We first visualize the distribution of semi-kinship (SK) 
coefficients across different degrees of relatedness (1st, 2nd, and 3rd), compared to unrelated individuals (A). 
SK coefficients are separately calculated for non-overlapping 20-Mbp chunks of each chromosome. Markers 
indicate the mean, and error bars indicate standard deviation. The distributions of the larger (max) and the 
smaller (min) SK values between the two target haplotypes, compared against their relative, are plotted 
separately. Elevated SK for related pairs distinguishes reconstructed haplotypes from the same individual, 
enabling them to be linked by our algorithm. B Left, the average number of haplotypes linked by our 
algorithm (out of 310 chunks in total), by degree of available relative. Error bars indicate standard deviation. 
“Incorrect” haplotypes refer to haplotypes assigned to the wrong individual. The rightmost bar represents 
unassigned (UA) sets, not assigned because the majority of haplotypes did not come from the same 
individual, with the number of such sets indicated in parentheses. Right, estimated proportion of individuals 
and their genomes which an adversary could expect to successfully link, given access to an nth-degree 
relative for those individuals. Each point (p, g) on the curve indicates that at least proportion g of the 
genome (in base pair length) could be linked for proportion p of the samples. These curves show smoothed 
cumulative distributions summarized in the bar chart (left). C Estimated proportion of RP individuals and the 
proportion of their genomes we could expect an adversary to be able to link, given access to a relative set 
containing a particular fraction of the population to which the RP individuals belong. Each point (p, g) on the 
curve indicates that at least proportion g of the genome (in base pair length) could be linked for proportion 
p of the samples. Our estimation leverages a population genetic model to calculate the probability of an 
adversary having access to relatives of different degrees, on which basis the degree-specific distributions in 
(B) are combined with weights
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explained by phasing error switching stretches of homologous chromosomes in the 
reference panel, an otherwise benign error (with likely minimal impact on imputation 
accuracy), which actually increases the power of a haplotype linking attack.

Lastly, we used a theoretical population genetic model (Additional file  1: Fig.  S13; 
Methods) to assess the likelihood that an adversary has access to the genomic data of rel-
atives needed for the haplotype linking portion of the attack. Using this model, we found 
that with access to an external database containing even 0.5% of the population to which 
reference panel individuals belong, at least 17% of the genome could be linked for 5% of 
reference panel individuals (Fig. 3C). This means that an adversary with access to any 
one of several existing large genomic databases could perform haplotype linking, and in 
theory the strategy could even leverage the database of a public third-party genetic gene-
alogy service like GEDmatch [21], as we illustrate in Additional file 1: Fig. S14. While the 
theoretical model is based on a number of simplifying assumptions and should only be 
taken as a guideline, it indicates that this portion of the attack is feasible under realistic 
conditions.

Discussion
The sum of our results reveals a novel threat vector in existing imputation services, sug-
gesting the need for a broader community discussion on suitable mitigating measures. 
We would like to make explicit that our goal is not to cause alarm, but rather to share 
key evidence about the existence and the extent of these privacy risks to inform efforts 
for genomic data protection.

Our findings indicate, notably, that imputation server users who have not completed 
the data use agreements typically required for direct access to certain panels could 
still obtain access to portions of these genetic sequences using strategies similar to the 
ones we have demonstrated. This potentially undermines the conditions under which 
access-controlled genomic data were made available for use by imputation servers, 
which depend on the assumption that the individual-level data are sufficiently hidden 
from the users. Furthermore, the reference panels currently used by imputation servers 
include panels like the Consortium on Asthma among African-ancestry Populations in 
the Americas (CAAPA) panel [22] dedicated for genomes which we might believe are 
particularly important to protect: those of individuals who are in an underrepresented 
population, have a sensitive phenotype, or both. There is also the potential for the recon-
struction attack to be modified to specifically target a vulnerable population, e.g., by 
including in queries variant alleles that are associated with rare medical conditions. The 
risk of reconstruction appears more significant when taking into consideration stud-
ies which have demonstrated re-identification of genomes using public databases and 
compelling arguments for genome-wide genetic information to be considered inherently 
identifiable [13, 14].

An important factor to consider when assessing the feasibility of the reconstruction 
attack is the computational costs involved. The runtime of haplotype reconstruction 
scales linearly with the number of queries imputed, and the greater part of the runtime 
is the time for imputation, which depends on the resources and latency of the imputa-
tion server rather than on the adversary’s resources. Based on our estimates of current 
MIS processing times and imputing a small batch of 128 queries at a time, processing 
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one million queries as we did in our experiments would take approximately 10 days 
(Additional file 1: Fig. S15). These queries could be grouped into larger batches to run 
simultaneously through imputation, which would reduce the number of times an adver-
sary would need to submit a request to the imputation server and thus further reduce 
the overall runtime. The upper limit on the size of each batch would be the maximum 
sample count allowed by the server; for MIS, this is currently 50 thousand [8]. Regard-
ing the haplotype linking algorithm, the runtime scales approximately linearly with the 
number of haplotypes in the target set and with the number of samples in the relative set 
(Additional file 1: Fig. S16). Extrapolating based on our experiments, we would expect 
linking the haplotypes in a panel the size of 1KG using a relative set of 10,000 samples to 
take about 9.5 hours. Therefore, we believe that the reconstruction strategies we demon-
strated are not overly burdensome from a computational perspective.

We recommend several measures that could be put in place to mitigate the identi-
fied risk. First, access to service could be controlled so that only approved or verified 
individuals can impute using reference panels that are otherwise not available to them. 
However, we recognize that such a measure could in implementation risk presenting a 
barrier to some researchers performing valuable work, so it would need to be executed 
with care to minimize this possible side effect. For example, one could adopt a tiered 
system whereby anyone with an account could still run imputation with a publicly acces-
sible database such as 1KG. Second, rate-limitations on querying could be put in place. 
Although an adversary could circumvent this barrier by creating multiple accounts or 
colluding with other users, it could make an attack less practical given the large number 
of queries required to obtain the majority of a reference panel. Third, imputation serv-
ers could attempt to prevent anomalous queries by restricting the allowed input. Most 
simple measures (e.g., raising the minimum query size threshold) would be largely inef-
fective, as queries may be embedded in realistic samples to avoid detection. But a more 
stringent measure like requiring input to include all and only variants present in one of 
a set of accepted genotyping arrays has the potential to slow down the attacks we have 
presented at the cost of some utility due to reduced flexibility. Similarly, filtering rare 
variants from reference panels might slow down an attack at the cost of being able to 
impute those variants (Additional file  1: Fig. S17). Filtering particularly sensitive vari-
ants such as those linked to medical conditions could prevent them from being learned, 
also by sacrificing some utility. In general, it may be possible to recognize adversarial 
behavior by inspecting a user’s complete course of interaction with the server. Authenti-
cation of user identities would also aid in holding a user responsible if data reconstruc-
tion attempts are detected.

We acknowledge that these suggestions are not fully protective and that a more rigor-
ous algorithmic solution may be desirable. For example, differential privacy (DP) [23] 
could be applied to reduce the degree of possible leakage, but it is not immediately clear 
whether a suitable trade-off between privacy and utility can be achieved using existing 
techniques. Furthermore, our results suggest that the exposure of some amount of infor-
mation about the individual sequences in the reference panel is likely inherent to the 
task of imputation; therefore, we do not expect there will be a perfect solution that sac-
rifices no utility. We believe that, in the absence of such a solution, our suggestions here 
could help establish an acceptable balance, which recognizes both the genuine value of 
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the imputation server and the urgency of protecting participants in a rapidly growing 
number of genomic data collections.

Conclusions
In this study, we have presented evidence that genomic sequences in a reference panel 
used by an imputation server can be partially reconstructed by strategically query-
ing the server and analyzing its output. Our findings suggest that the controlled-access 
genomic data used by existing imputation servers may not be sufficiently protected from 
users who do not have permission to access them directly. We have described several 
strategies that could be implemented by the servers to enhance privacy without overly 
compromising utility. We believe that our results should serve as an example of how 
widespread and seemingly safe data sharing practices can harbor a vulnerability and why 
we need efforts to assess existing and future data sharing mechanisms from an adver-
sarial perspective. Policies that protect genomic data can only be effective to the extent 
that our beliefs about where risk exists are accurate.

Methods
Seed‑sieve‑extend (SSE) strategy for haplotype reconstruction

Relevant details about minimac

The haplotype reconstruction portion of our attack was designed with the minimac 
imputation algorithm used by the Michigan Imputation Server (MIS) in mind [6]. Like 
other imputation algorithms, minimac takes as input a set of query sequences (typically 
samples genotyped on an array) and uses a reference panel of sequenced samples to pre-
dict the most likely genotypes at positions where the input is untyped, outputting for 
each position typed in the reference panel and for each input sample haplotype a geno-
type prediction and a corresponding dosage value. Assuming biallelic variants, a geno-
type value of 0 corresponds to the reference allele (REF) and a value of 1 corresponds 
to the alternative allele (ALT). The output dosage value indicates, roughly, confidence in 
the genotype prediction. A dosage close to 0 indicates the REF allele is likely and a dos-
age close to 1 indicates the ALT allele is likely. Minimac has been updated over the years 
for the sake of space and computational efficiency, and the current state-of-the-art is 
minimac4 (which is the specific version of the package we use throughout), but the high-
level algorithm remains the same as the original.

Minimac models the imputation problem with a hidden Markov model (HMM) such 
that a hidden state Si at SNP base position i takes on a value in {1, . . . , n} , where n is 
the number of haplotypes in the reference panel, and an observation Xi represents the 
observed genotype and takes on a value in {0, 1} , viewed as a noisy copy of the genotype 
of the reference haplotype Si at the same position. Given a set of observed genotypes at a 
subset of positions, minimac uses the standard forward-backward algorithm to get a dis-
tribution expressing the most likely hidden states (reference haplotypes) at each untyped 
position. This distribution is translated into a genotype distribution based on the geno-
types of the reference haplotypes, and the expected value associated with this genotype 
distribution corresponds to the dosage value output by the program. The discrete geno-
type prediction is the most likely genotype according to the distribution.
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Intuitively, imputation models each query haplotype as a “mosaic” of the haplotypes 
in the reference panel, as if the query sequence is composed of pieces of the reference 
haplotypes, so that those pieces can be used to fill in the gaps in the query. This con-
ceptualization is justified by the fact that even distantly related individuals share short 
stretches of DNA, known as identity-by-descent (IBD) segments. Considered this way, 
minimac can be thought of as finding the closest matching reference haplotype at each 
point along the genome. In actuality, minimac computes a probability distribution over 
all reference haplotypes at each position, but a haplotype that matches the query closely 
over a stretch of positions will be weighted heavily in the distribution at those positions.

Key insights enabling the strategy

The reconstruction strategy we devised hinges on a consequence of the points made just 
above: A query sequence that exactly matches only one single reference panel haplotype 
will result in genotype and dosage output that reveal information about the matching 
haplotype. Specifically, at positions where the query matches the haplotype and at other 
nearby positions, the output genotypes will tend to be those of the matching reference 
haplotype, and the output dosages will tend to be very close to 0 or 1 (extreme dosages), 
indicating “high confidence” in the genotype output. This occurs because, as noted 
above, a haplotype that closely matches the query at a set of positions will be heavily 
weighted in the distribution at those positions: in HMM terminology, no other reference 
haplotype is as likely to have emitted the observed genotypes in the query than the one 
haplotype with exactly those genotypes.

The insight described above means that when a query exactly matches a single refer-
ence panel haplotype, we may be able to recognize from the output dosages that this has 
occurred (a pattern of uniformly extreme dosage values is atypical) and infer that the 
corresponding output genotypes are likely to match a particular reference panel haplo-
type. In other words, if we can generate queries that exactly match the reference haplo-
types, we may get reconstructed haplotypes in the imputation output and can recognize 
the likely success of this reconstruction. This observation provides the basis for our hap-
lotype reconstruction strategy.

Overview of the approach

The high-level structure of our seed-sieve-extend (SSE) strategy for haplotype recon-
struction is as follows: first, it generates a large number of short queries (“seeds”) and 
runs them together through minimac. Then, it utilizes a classifier operating on the out-
put dosages to predict how many reference haplotypes the query matches. If a query is 
predicted to match one or a small number of reference haplotypes (say, 2 to 5, which 
also produces distinct dosage patterns), it proceeds with these and discards the rest 
(“sieving”). If the dosage pattern indicates that a uniquely matching reference chromo-
some or chunk has been retrieved in its entirety (imputation operates at the chromo-
some or subchromosome chunk level, rather than over the whole genome), the strategy 
has achieved its objective for that query. Alternatively, if a query matches some small 
number of reference haplotypes, the original query is strategically extended to attempt 
to retrieve each of the matching haplotypes (“extension”). This whole process is repeated 
with different queries and on different chromosomes/chunks to retrieve additional 
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reference panel haplotypes. Below, we detail the attack scenario and each step of the 
attack, but note that values and data used in experiments, and other experiment-specific 
details, are discussed later in the “Haplotype reconstruction experiments” section.

Attack scenario

Our haplotype reconstruction strategy was devised based on the following scenario: An 
imputation server holds a hidden reference panel (meaning a user cannot directly access 
the genotype data) and an adversary’s objective is to retrieve as much of the genomic 
data in that reference panel as possible through interaction only via the imputation 
server. The adversary’s attack strategy may submit to the server as input an unlimited 
number of queries, where a query is a properly formatted set of variants and genotype 
assignments at those variants. The server’s output returned to the adversary, given an 
input query sequence, is the result of a minimac run with that query as input. Initially, we 
assume that the imputation output contains both imputed genotypes and corresponding 
dosages, at exactly the positions where reference panel samples are typed. Later, we also 
discuss an alternate strategy which assumes only discretely imputed genotypes, and not 
continuous dosages, are output.

Step 1: Seed

The first step of the strategy is to generate a large number of query sequences to be input 
into minimac, the goal being that some of them perfectly match one or a small number 
of reference panel haplotypes. These are the “seeds” around which we hope to recon-
struct the reference haplotypes. In order to accomplish this goal, short queries (of, say, 
8 variants) are used because a given conformation of genotypes over a large number of 
variants would be very unlikely to match any reference haplotype due to the exponential 
number of possible conformations. Specifically, the strategy repeatedly chooses a small 
set of variants, enumerates all possible genotype conformations on that set, and submits 
all of these conformations as queries. In this way, there is a guarantee that some queries 
will match the reference haplotypes.

Variant sets are chosen strategically in an attempt to increase the probability that some 
conformations match one or a small number of haplotypes. A variant with a low minor 
allele frequency (MAF) is chosen per set and fixed with the ALT allele, and the rest of the 
set is populated with variants with high MAF. The idea here is that because only a small 
number of haplotypes will have the ALT allele at the low-MAF SNP, it is more likely that 
some queries will match a small number of haplotypes. For example, if 8 haplotypes in 
the reference panel have the ALT allele at variant X, it is certain that at least one of the 
queries will exactly match between 1 and 8 haplotypes, since we are generating all pos-
sible conformations over the other set variant genotypes. High-MAF variants are cho-
sen for the rest of the set to make it more likely that haplotypes with the ALT allele in 
the low-MAF variant will have different genotypes in the other set variants, resulting in 
fewer matches for different queries. High-MAF variants are chosen not to be too close 
together. Due to linkage disequilibrium, variants very near in centimorgan (cM) distance 
are more likely to have the same genotypes across haplotypes. However, the set variants 
are also chosen to be not too far apart, as we observed that variant sets with variants 
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nearer to each other produced cleaner dosage patterns when a query sequence on those 
sets matched one or a small number of reference haplotypes.

Our implementation, to create each set, generates a random position within the 
bounds of the chromosome and attempts to build a variant set centered roughly around 
that position, moving on to another random position if it fails. It takes arguments speci-
fying query length (number of set variants), allele frequency cutoffs for what counts as 
a low-MAF or high-MAF variant, and the minimum and maximum genetic distance 
spacing allowed between variants during set construction. To enable the variant spacing 
strategy, genetic distance values (in cM) were obtained for all variants using hg38 genetic 
maps provided by the authors of SHAPEIT4 and using a code adapted from theirs to 
interpolate genetic distances at positions not included in the maps [24]. For the variant 
MAF values, we used population-specific gnomAD allele frequency data [25] combined 
by weighted average to fit the composition of the reference panel. The specific weight-
ings for the different reference panels used in the experiments are noted in the “Haplo-
type reconstruction experiments” section.

Step 2: Sieve

The second step of the strategy, once the query sequences have been run through mini-
mac, is to utilize the imputation dosage output to predict, for each query, how many ref-
erence panel haplotypes it matched. As discussed above, when a query matches a small 
number of reference haplotypes, this fact is likely to be recognizable by specific patterns 
in the dosages (Additional file  1: Fig. S1; Additional file  1: Fig. S2). A random forest 
classifier, trained on the dosage output resulting from queries with known numbers of 
matches, is used to recognize these patterns and make predictions. We configured and 
trained the classifier to classify dosage data from the full length of the chromosome and 
assign a match count prediction of 1 through 5 or Other, with Other covering queries 
with more than five matches and also those with none.

When the classifier predicts no matches or a large number of matches (6 or more) 
for a query, the corresponding output is discarded. This is because the imputation out-
puts resulting from these queries represent a mixture of many samples, and extracting a 
single reference panel haplotype from these outputs is difficult. What we have left after 
this “sieving” is only the imputation output corresponding to queries predicted to have 
matched a small number of reference haplotypes (1 through 5). For queries the classifier 
predicted to have matched a single haplotype, we infer that a reference panel haplotype 
has been reconstructed, and the program saves off the corresponding output genotype 
data as such. The rest of the remaining queries move on to the extension step.

We used the scikit-learn RandomForestClassifier module [26] to implement the classi-
fier. The classifier was designed to operate on bucketed dosage data, so both for training 
and for use in the attack, output dosage data were first processed into counts of dosages 
falling into each of 21 non-overlapping dosage range buckets. These buckets consisted of 
the following: (1) buckets of size α = 0.1 at each end (extending from 0 and from 1), (2) 
buckets of size β = 0.02 centered at the expected values of the dosage “stripes” antici-
pated in the patterns for 1 to 5 matches (see the “Step 3: Extend” section for elaboration), 
and (3) additional buckets that span the remaining gaps in the dosage domain of 0 to 1. 
We used 75 decision trees in the classifier. Training data included 100 sets of dosage data 
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from 1KG for each of the six classes (1 through 5, Other). Although our classifier serves 
only as an example approach to separate out the most promising queries from the rest, 
we proceeded with it in the rest of our experiments, since it led to successful reconstruc-
tion results across various settings, as shown in our results. An evaluation of our classi-
fier’s performance on test data is provided in Additional file 1: Fig. S18.

Step 3: Extend

For queries classified as matching a small number of reference haplotypes, an extension 
strategy is used to attempt to retrieve all the matching haplotypes. As shown in Addi-
tional file 1: Fig. S1, the number of haplotypes a query matches corresponds to the num-
ber of “stripes” evident in the pattern of dosage values in its output. For example, a query 
constructed strategically (as discussed in the “Step 1: Seed” section) that matches two 
reference panel haplotypes will display extreme dosages and a stripe of dosages close 
to 0.5. This happens because the two matches are weighted more heavily along those 
positions, and so the output dosages are close to 0 where both have the REF allele, close 
to 1 where they both have the ALT allele, and close to 0.5 where one has the REF allele 
and the other the ALT allele. The explanation works analogously for greater numbers of 
matches: the output of a query matching n haplotypes is characterized by concentrations 
of dosages (“stripes”) at multiples of 1/n, corresponding to the proportions of REF/ALT 
alleles among the matches at different positions. These are the stripes that the classifier 
in the previous step is effectively trained to recognize.

It follows from this understanding, for the two-matches example, that if we add to the 
original query a variant with an output dosage near 0.5 and assign it the REF allele in 
a new query, the new query will match only one of the two haplotypes matching the 
original query. If we assign it the ALT allele in another new query, we will only match the 
other haplotype. In this way, we may be able to reconstruct both matching haplotypes, 
and this process can be generalized to a wider range of match counts.

Specifically, our program, given a query matching n haplotypes, chooses a nearby vari-
ant whose allele frequency falls within a specified distance from 1/n (in our experiments 
0.025, but this distance could be optimized to be as small as possible while still reliably 
capturing nearby variants). We then create two new extended queries using both alleles 
of this variant; that is, the added variant is set to the ALT allele in one query and it is set 
to the REF allele in the other. The former is expected to match only one reference hap-
lotype, as the dosage of the variant indicated only one ALT allele among the matches. 
The latter new query is expected to match n− 1 haplotypes and is further extended by 
choosing another variant the same way as before (now using n− 1 instead of n to deter-
mine the dosage range from which to draw the variant).

Alternative strategy for discrete genotype predictions

This alternative strategy assumes that imputation only outputs discrete genotypes and 
not continuous dosages. It hinges on the following insight: let us say we have a query 
that perfectly matches a single reference haplotype. If we impute on this query, form 
a new query by appending to the original query a nearby variant and genotype assign-
ment from the imputation output, and impute with this new query, the output genotype 
predictions will tend to be the same as for the original query. This occurs because, as 
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discussed earlier, the imputation output genotypes resulting from a query matching a 
single reference haplotype will tend to be those of the matching haplotype, at least at 
the query variants and others nearby. As a result, the variant and genotype appended to 
form the new query will usually also correspond to the matching haplotype, and the new 
query will only be a longer exact match to that haplotype. An important corollary to the 
above insight is that this will not necessarily happen for an initial query which does not 
uniquely match a reference haplotype, since the logic described will not apply.

The sum of all this points to a reconstruction strategy similar to the original that does 
not require continuous dosage output: First, query sequences are constructed as before 
and run through imputation. Then, each query sequence is extended with a variant and 
genotype assignment from its own imputation output, and these new query sequences 
are run through imputation. In our implementation, we use for extension the variant 
with the highest MAF below some cutoff (defaulted to 0.6) within the range stretching 
some base pair distance to either side of the low-MAF variant, by default 50,000 base 
pairs. For each extended query, the resulting output is compared to the original query’s 
output, and queries for which the outputs differ are filtered out. Each remaining query 
proceeds to the next round, in which the original version of the query is extended using 
a different nearby variant, and filtering is repeated in the same way. In our implemen-
tation, we choose in each round the in-range variant with the highest MAF below the 
cutoff that has not already been chosen. This process is repeated for k rounds, specified 
as input to the attack, or until no queries remain. Any queries remaining after the speci-
fied number of rounds are predicted to match a single reference panel haplotype, and 
its output can be saved as such. In the language used to describe the “standard” method 
for haplotype reconstruction presented first, this “discrete genotype” method can be 
described in general as seeding and then iteratively extending and sieving, with a sieving 
mechanism that does not rely on dosage values.

The chosen number of rounds of extension k affects the number of incorrect recon-
structions that the attack makes. A greater number of rounds will catch and filter more 
of these errors, at the cost of increased running time, so the choice of k is a trade-off 
between priorities. We would not expect the same k to result in the same amount of 
error across the imputation tools, and in our experiments we found that different tools 
required different settings in order to achieve a similar quality of filtering (see the “Impu-
tation tools” below for specific settings). We generally observed that, once sufficiently 
high, the value of k did not have much effect on performance; in practice, an adversary 
could further optimize it based on the rate of reconstruction as it progresses.

Although we have not explored this idea in our work, imputing a subset of variants in 
a sample then checking whether the output is consistent with the input could be a use-
ful approach for distinguishing correctly reconstructed haplotypes from incorrect ones 
even in the fractional dosage output setting.

Rounds of interaction and input size limits

It is worth commenting on the number of times that the imputation software must be 
run in the execution of haplotype reconstruction. This aspect is relevant for an accu-
rate understanding of the risk posed to imputation servers, since the number of times 
imputation is run is, in practice, the number of times an adversary must upload data to 
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the server. We submit the query conformations on a single variant set (of 8) as a discrete 
unit for a run of imputation, and each following extension step requires an additional 
round of interaction. Thus, the overall number of rounds is at least as large as the num-
ber of rounds of extensions plus one (in our experiments at most 5 for standard recon-
struction, 15 or 30 depending on the imputation tool for the discrete-genotype version). 
Since each set of target variants is processed independently of other target sets, they 
can be explored by the attacker in parallel. This implies that the total number of rounds 
depends on the limit imposed by the server on the maximum size of the input; the larger 
the limit, the more target variant sets can be included in each input to reduce the total 
interaction rounds. As a reference point, the maximum input sample size of MIS is cur-
rently 50,000 [8]. Optimization in terms of query sequences required per reconstructed 
haplotypes, via adjustment of parameters (discussed briefly below), could further reduce 
the number of rounds of interaction required, but this optimization was not a priority of 
our investigation. For minimac, we note that including different sets of target variants in 
a single input file has a potential impact on the behavior of the imputation by enforcing 
the HMM computation on the missing sites of each query (corresponding to other target 
variant sets in the same file); however, the expected difference in probabilities is small, 
and thus we do not view this as a major limitation of the attack.

Haplotype reconstruction experiments

Datasets

For experiments carried out in 1000 Genomes Phase 3 (1KG) [17], we used phased data 
downloaded from the International Genome Sample Resource (IGSR). For full chro-
mosome experiments, the full 1KG chromosome 20 VCF data were used as a reference 
panel. For chunk experiments, the VCF was first subset variant-wise to the bounds of the 
chunk (using the same 20-Mbp chunks used by MIS and TIS), and this subset file was 
used as the reference panel.

All of Us (AoU) [3] Controlled Tier Dataset v5 was used for experiments with AoU 
data. The Asian American and Black or African American panels of the AoU were popu-
lated based on the value of the “RACE” column of the database only, including partici-
pants with values “Asian” and “African,” respectively, in the following way: for the Asian 
American panel, we started with all 3064 Asian American AoU participants with whole 
genome sequencing data; used Hail [27] to filter to only chromosome 20, filter to only 
biallelic variants, and filter out variants with greater than 10% missingness; phased the 
data using Eagle2 [28]; and finally, randomly sampled a subset of the desired 1250 sam-
ples. For the Black or African American panel, we used an identical process except that 
the data were downsampled to 5000 participants prior to phasing, because 5000 is con-
sidered sufficiently large for accurate phasing [28].

For the variant MAF values used in reconstruction, we used population-specific gno-
mAD allele frequency data [25] combined by weighted average to fit the demograph-
ics of each of these reference panels. For 1KG, these (relative) weightings were 99/2015 
for the Finnish allele frequency, 404/2015 for Non-Finnish European, 504/2015 for East 
Asian, 347/2015 for American Admixed/Latino, and 661/2015 for African/African 
American, where the numerators are the number of individuals in 1KG that fall into 
each group. 1KG also contains 489 South Asian samples, but the gnomAD v2 file used 
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included this population in the “other” category due to the small number of South Asian 
samples, so we opted not to directly account for this population. For the Asian American 
AoU panel, the weightings were 1/2 for the East Asian allele frequency and 1/2 for South 
Asian (gnomAD v3.1 used here does have a separate South Asian allele frequency). For 
the African American AoU panel, we simply used the gnomAD v3.1 African/African 
American allele frequency.

Imputation tools

Below are the details of our use of minimac4 [6] and the other three imputation tools 
that we tested: Beagle5.4 [19], IMPUTE5 [18], and PBWT [16].

minimac4 Version 1.0.3 (also known as v4.0.3) was used. It was run with the –minRa-
tio parameter set to 0.000001, –chunkLengthMb set to 140 (longer than chromosome 
20), and the –ignoreDuplicates flag. The package accepted our 8-variant queries in their 
haploid form, merely inserted into VCF format. For the discrete genotype reconstruc-
tion tests, the number of extension rounds was set to 15. Updates to minimac4 have 
been released since we first began our experiments (currently v4.1.2), but these updates 
do not change our conclusions. We verified by a small test that our code is easily adapted 
to reconstruct successfully using the newest version by simply changing command-line 
syntax for calling the package, reference panel file format conversion, and indexing of 
the query file. This software can be found at https:// github. com/ statg en/ Minim ac4.

Beagle5.4 Version 22Jul22.46e was used. The reference panel was first converted to 
the bref3 format before being passed to the package. The window parameter was set to 
110. The package accepted our queries in their haploid form in gzipped VCF format. The 
number of extension rounds in the reconstruction test was set at 15. This software can 
be found at http:// facul ty. washi ngton. edu/ brown ing/ beagle/ beagle. html.

IMPUTE5 Version 1.1.5 was used. According to its usage instructions, the reference 
panel was first converted to the imp5 format before being passed to the package. It was 
run with the –pbwt-depth parameter set to 32, –pbwt-cm set to 0.001, and the –neigh-
select flag. To comply with input requirements, queries were converted to diploid form 
when inserted into the VCF format by simply duplicating each allele. The reconstruc-
tion test was set to use 30 rounds of reconstruction, as it seemed a greater number was 
needed for satisfactory performance with this tool. This software can be found at https:// 
jmarc hini. org/ softw are/# impute-5.

PBWT Version 3.0 was used. The reference panel was first converted to the pbwt for-
mat before being passed to the package. To conform to input requirements, queries were 
converted into diploid form when inserted into VCF format by simply duplicating each 
allele. The first and last variants of the chromosome were also added to query VCF files, 
set to the reference allele, so that matches extending the whole length of the chromo-
some could occur, resulting in imputed genotypes over the entire length. The extension 
strategy used in the reconstruction test was modified slightly for this package because 
its algorithm is the most distinct from the others (not using an HMM), and as a result it 

https://github.com/statgen/Minimac4
http://faculty.washington.edu/browning/beagle/beagle.html
https://jmarchini.org/software/#impute-5
https://jmarchini.org/software/#impute-5
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required a little more targeted treatment: Each round, queries were extended with mul-
tiple variants chosen from different gaps in the query, rather than with just one variant. 
The test was set to use 30 rounds of reconstruction, as it seemed that a greater number 
were needed for satisfactory performance. This software can be found at https:// github. 
com/ richa rddur bin/ pbwt.

Attack settings

For all haplotype reconstruction experiments, we used query variant sets of 8 variants 
(1 low-MAF variant, 7 high-MAF), low-MAF cutoff of 0.005 (variant considered low-
MAF if it had MAF below this value), high-MAF cutoff of 0.2 (MAF above this value 
required), minimum genetic distance variant spacing of 0.001 cM, and maximum spac-
ing of 0.0035 cM. While this parameter setting was effective for all our experiments, we 
did not prioritize optimization, and hence further exploration may lead to better param-
eter choices with a higher reconstruction performance.

Discarding all rare variants in the reference panel (e.g., below an MAF cutoff of 0.01 
or 0.005) to reduce the effectiveness of the low-MAF variant in the query slows recon-
struction, but only to a limited extent, as shown in Additional file 1: Fig. S17. For exam-
ple, we see in this figure that around 20% of the reference panel is reconstructed for 
both the 0.005 and 0.01 MAF thresholds, in contrast to 30% without filtering using the 
same number of queries. For all experiments using the standard fractional-dosage ver-
sion of reconstruction, we only considered queries constructed in the middle 80% of the 
chromosome (in base position), as we found that this was a simple measure that would 
reduce error due to boundary effects (see Additional file 1: Supplementary Note 1 for 
more details).

Accommodating MIS/TIS query requirements in practice

Although we ran our primary experiments directly on imputation packages, rather than 
against real imputation servers (for ethical reasons, as we discuss in the main text), in 
the early stages of testing, we checked whether our queries would be accepted by MIS, 
imputing against the 1KG reference panel. We found that two slight adjustments, com-
pared to the code used in our experiments, were required for our queries to pass MIS 
quality control (QC). First, only single-nucleotide polymorphisms (SNPs) were accepted 
by MIS, with any indels filtered out. This is easily addressed by limiting to only SNPs the 
variants that the attack uses to form queries. Second, QC filtered out monomorphic sites 
(where all samples have the same allele). This requirement could be addressed to ensure 
no query variants are filtered out for this reason by including in any attack input file a 
dummy query which is the inverse (allele at every site flipped) of one of the real queries. 
In summary, we found that none of the input requirements used in practice by MIS pre-
cluded reconstruction in the way we have described, and we were able to successfully 
impute on the server from a sample of our constructed queries as of July 28, 2023. TIS 
is based on the same software as MIS and has the same QC requirements, so the same 
statement applies, though we did not run any queries on TIS to avoid reconstructing 
from any reference panel to which we did not already have access.

https://github.com/richarddurbin/pbwt
https://github.com/richarddurbin/pbwt
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Probabilistic inference algorithm for haplotype linking

The output of our reconstruction attack, performed on an imputation server such as 
MIS or TIS that utilizes chunking, is a collection of decoupled haplotype chunks of 
unknown origin. However, since the recent genetic lineage of each individual is likely to 
be reflected across chunks, having access to the genetic sequence of a relative of an indi-
vidual can enable linkage of reconstructed haplotypes to reveal a portion of the individu-
al’s genome. Here, we describe the probabilistic algorithm we developed to demonstrate 
accurate linkage of haplotypes from the same individual.

Capturing haplotype‑diplotype relatedness via semi‑kinship (SK) coefficients

To link reconstructed haplotypes, we need a way to quantify the genetic relatedness of 
each compared to diploid samples in an external set of potential relative genomes (the 
“relative set,” versus the “target set” of reconstructed haplotypes). A common measure 
of the genetic relatedness of two samples is the kinship coefficient, φ [29]. The kinship 
coefficient of two samples i and j is generally defined as the probability that a random 
allele chosen from i and a random allele chosen from j at the same locus are identical by 
descent (IBD). Formally, it can be defined as φ = k1/4 + k2/2 , where k1 is the probability 
that the samples share one IBD allele at a randomly chosen locus and k2 is the probability 
that the samples share two IBD alleles. However, this definition assumes that the two 
samples being compared are diploid. To quantify the relatedness of a haploid sample to 
a diploid one, we formulated the semi-kinship (SK) coefficient, φ1/2 , which we define as 
φ1/2 = k1/2 . The SK coefficient extends the notion of kinship coefficient to the haploid 
setting; it is the probability that an allele from a haploid sample and a randomly chosen 
allele from a diploid sample at the same locus are IBD.

Obtaining a SK value for each (chunk-length) pair of target set haplotype and rela-
tive set diplotype required computing k1 for the pair, and to this end, we ran both sets 
together through GERMLINE2 [30], which computes IBD segments for every pair of 
haplotypes. The k1 value was calculated by dividing the total genetic length (in centimor-
gans) shared IBD with either haplotype in the relative set sample by the total centimor-
gan length of the chunk.

Formal definition of the haplotype linking problem

In formally presenting our linking algorithm here and in the following, we consider the 
problem with respect to linking chromosome-length haplotypes, for simplicity. It is 
straightforward to modify the algorithm to link chunks rather than full chromosomes, as 
we did for our main linking experiment.

Let N be the number of haplotypes reconstructed in the target set, T be the number 
of individuals in the target set, and M be the number of diplotypes in the relative set. 
We use S ∈ [0, 1]N×M to denote the observed SK values between every haplotype-diplo-
type pair between the target set and the relative set. The SK values are based on true 
(unobserved) genetic relationships between each pair of individuals j ∈ [T ] and ℓ ∈ [M] , 
which we represent using the variable rj,ℓ ∈ A := {∅, 1, 2, 3+} . Note that [n] := {1, . . . , n} 
for an integer n. ∅ represents unrelated individuals, while other values of rj,ℓ represent 
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the degree of relatedness, with 3+ corresponding to the 3rd degree or higher relatives 
(up to the 5th degree in our experiments to distinguish from unrelated). Let R ∈ AT×M 
be the matrix whose elements correspond to rj,ℓ’s.

The goal of the haplotype linking problem is to find a mapping g : [N ] �→ [T ] ∪ {∅} , 
such that for each j ∈ [T ] , the set g−1(j) := {i : g(i) = j} corresponds to a set of target 
haplotypes that belong to the same individual j. We consider g−1(∅) to be haplotypes 
that could not be linked with sufficient confidence. Also, we require that g(·) not assign 
more than two haplotypes of the same chromosome to the same target individual.

Probabilistic generative model

To infer the mapping g(·) based on the observed SK values S, where g in turn reveals 
which haplotypes are likely to originate from the same individual, we first formulate a 
probabilistic model that induces a distribution over S given a mapping g, then obtain a 
maximum likelihood estimate of g conditioned on S. We define the probabilistic model 
below, illustrated in Additional file 1: Fig. S9A.

We first let θi,j ∈ {0, 1} for i ∈ [N ] and j ∈ [T + 1] be the parameters defining g(·) . We 
will use g�(·) to clarify its dependence on {θi,j} , where g�(i) = j if and only if θi,j = 1 
for j ∈ [T ] , and g�(i) = ∅ if and only if θi,T+1 = 1 . The probabilistic model is then fully 
specified by the variables � , R, and S, where only S is observed. The generative process 
follows a two-step procedure: we first sample the latent variables rj,ℓ for each j ∈ [T ] and 
ℓ ∈ [M] from a prior distribution p(rj,ℓ) , which we allow to be controlled by an experi-
mental variable. We then sample each si,j from p(si,j|rg�(i),j) when g�(i)  = ∅ , which 
represents the conditional distribution over the SK value for a given pair of individu-
als (g�(i), j) of a known relatedness degree rg�(i),j . When g�(i) = ∅ , we instead sample 
si,j from p∅(si,j) , a background distribution over the SK value given an unknown pair of 
individuals. These conditional distributions can be readily estimated in advance based 
on an auxiliary dataset that includes related individuals or theoretically derived based 
on a population genetic model (e.g., [31]). Thus, we consider them fixed during the infer-
ence described in the following.

Expectation‑maximization (EM) formulation for maximum likelihood estimation

Our probabilistic model induces a distribution over S, conditioned on � and R. For sim-
plicity, we view � as model parameters without a prior, and R as latent variables with an 
input prior. We adopt the Expectation-Maximization (EM) formulation for optimizing 
� with respect to the expected log-likelihood of the model in the presence of unobserved 
variables in R, defined by the optimization problem

where � is subject to the constraints of a valid mapping, i.e., unique assignment of each 
haplotype to an individual and inclusion of at most two haplotypes per individual for 
each chromosome. A local optimum for this problem can be obtained by alternating 
between two optimization steps: (1) an E-step, where the posterior distribution over R in 
iteration t, denoted p(R|S;�(t)) , is computed based on the current parameter estimates 
�(t) ; and (2) an M-step, where updated parameters �(t+1) are obtained by maximizing 
the expected log-likelihood

maximize� L(�; S) := ER[log p(S,R;�)],
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where the expectation is taken with respect to the posterior estimated in the previous 
E-step. It can be shown that this procedure returns a non-decreasing objective after 
every update and converges to a local optimum [32].

Belief updates for relatedness profiles (E‑step)

We first describe the computation of p(R|S;�) given � . Recall that � defines a mapping 
g� from reconstructed haplotypes to the target individuals. The posterior belief over 
each rj,ℓ can be computed separately as follows:

In other words, the distribution over rj,ℓ is proportional to its prior probability multi-
plied by the product of probabilities of generating the observed SK values between each 
haplotype assigned to individual j given by the current linkage � , including all chromo-
somes, and individual ℓ in the relative set.

Minimum‑cost network flow algorithm for linkage optimization (M‑step)

The M-step represents a combinatorial problem of matching haplotypes to individuals 
that maximize the likelihood of the given probabilistic model. We introduce a network 
flow algorithm to efficiently perform this optimization. First, note that the expected log-
likelihood objective can be expanded as

which is a linear combination of the model parameters � . To further simplify, given the 
output of the E-step, i.e., p(rj,ℓ|S;�) , consider precomputing the following quantity

for each i ∈ [N ] and j ∈ [T + 1] . Then, the optimization problem for the M-step can be 
alternatively expressed as the integer linear program

where chr(i) indicates the chromosome of the reconstructed haplotype (considering only 
22 autosomes for simplicity).

ER∼p(R|S;�(t))[log p(S,R;�
(t+1))],

p(rj,ℓ|S,�) ∝ p(rj,ℓ)

i∈g−1
� (j)

p(si,ℓ|rj,ℓ).

�

i∈[N ]









�

j∈[T ]

θi,j ·
�

ℓ∈[M]

Erj,ℓ∼p(rj,ℓ|S;�)

�

log p(si,ℓ|rj,ℓ)
�



+ θi,T+1 ·
�

ℓ∈[M]

p∅(si,ℓ)



,

πi,j :=

{∑

ℓ∈[M] Erj,ℓ∼p(rj,ℓ|S;�)

[

log p(si,ℓ|rj,ℓ)
]

if j ∈ [T ],
∑

ℓ∈[M] p∅(si,ℓ) if j = T + 1,

maximize�
∑

i∈[N ]

∑

j∈[T+1]

θi,jπi,j ,

subject to θi,j ∈ {0, 1}, ∀i ∈ [N ], j ∈ [T + 1],
∑

j∈[T+1]

θi,j = 1, ∀i ∈ [N ],

∑

i∈[N ]

1{chr(i) = c} · θi,j ≤ 2, ∀j ∈ [T ], c ∈ [22],
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We solve this problem using a minimum-cost network flow algorithm as follows and 
as illustrated in Additional file 1: Fig. S9B. We introduce N source nodes (one for each 
reconstructed haplotype), each with a supply of 1, and 22 sets of T + 1 sink nodes (one 
set per chromosome), each with a maximum capacity of 2, except for the last sink node 
of each set, which represents no match (hence not subjected to a capacity constraint). 
Each source node is connected to all T + 1 sink nodes in the set corresponding to the 
chromosome of haplotype i (i.e., chr(i) ). The cost of each edge between the source i and 
the sink j (in the corresponding chromosome set) is set to −πi,j . It is straightforward to 
see that the minimum-cost flow on this graph corresponds to a solution to the above 
problem with the integer domain constraint ( θi,j ∈ {0, 1} ) removed as a relaxation. The 
amount of flow on each edge in the solution between the source i and the sink j (in the 
corresponding chromosome set) is taken as θi,j . Once all EM iterations have been com-
pleted, we finally round the solution to obtain an approximate integer solution; we note 
that in our experiments the optimal solution always coincided with an integer solution.

Construction of an initial solution

Here, we describe the preliminary steps used to generate an initial linking prediction to 
be input into the algorithm.

Step 1: Chaining adjacent chunks by extending the sequence via imputation We first 
attempt to form short chains of adjacent chromosome chunks from the same individ-
ual by imputing the target set chunks against the relative set and trying to match the 
imputed dosages with the genotypes of reconstructed haplotypes in adjacent chunks. 
More specifically, we do the following: (1) for each chunk, we try to “extend” it by imput-
ing (using minimac4) against the relative set over a region that extends one chunk in 
each direction (where possible; for a chunk at the start or end of a chromosome, the 
region only extends in one direction). (2) For each boundary between chunks, we con-
sider a window extending 500 Kb in each direction and, for each pair of target set chunks 
across the boundary, compute a score which attempts to capture their likelihood of being 
from the same individual. This score is computed by comparing the actual genotypes of a 
chunk with the imputed dosages of the adjacent chunk in the pair at every variant in the 
window, as the number of variants for which the dosage difference is above some thresh-
old (we use 0.5). (3) At each boundary, pairs of chunks are linked if they are each other’s 
sole closest match (by minimum score) and their score is sufficiently low (we use ≤ 5). (4) 
Chains are formed by simply joining linked pairs with a chunk in common.

Step 2: Grouping chunks with identical relatedness patterns We separately form groups 
of target set chunks in the following way: we first threshold the SK values at a fixed con-
stant 1/(29/2) and group haplotypes that have identical relatedness patterns with respect 
to the individuals in the relative set, discarding any sets smaller than 5 haplotypes. 
Then, we threshold the SK values of the ungrouped haplotypes again at a lower value 
of 1/(213/2) , adding to existing groups or creating new ones based on the relatedness 
pattern, and again discard sets smaller than 5 haplotypes. (The higher and lower thresh-
olds above correspond to expected lower bounds for 3rd and 5th degree relationships, 
respectively [33].) Groups are capped to include at most two haplotypes per chunk, as 
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the intent is to predict the haplotypes of a diploid individual. This capping is executed 
for each group by finding the relative with the strongest relationship by SK value to any 
haplotype in the group, then selecting up to two haplotypes per chunk with the highest 
SK value with that particular relative.

Step 3: Combining the solutions from steps 1 and 2 We finally combine the information 
from the two steps above to get an initial prediction to be input into the linking algo-
rithm, in the following way: the chunks in a chain formed in step 1 above are assigned 
to a group (representing a single individual of origin) if more than half of the chunks in 
the chain are in a corresponding group produced by step 2. We are, in effect, connecting 
chains formed in the imputation step using SK information.

Implementation details

We implement the EM algorithm described above, using the NetworkX Python package 
[34] for the network flow implementation of the M-step. We initialize � before the ini-
tial E-step using the preliminary steps described above in the “Construction of an initial 
solution” section.

We set T to the number of individuals represented in the target set; a precise value 
of T is not required in practice, as long as it is sufficiently large, because our algorithm 
includes a no-match state which allows some of the target individuals to have an empty 
set in the output if the quality of the match is not high.

We estimate the conditional distribution over the SK values for each relatedness 
degree, including the background distribution, based on a global set of related pairs of 
individuals from our dataset. While in a real attack scenario these distributions would 
be estimated from an independent source of information, we adopted this approach due 
to a lack of another large dataset with a sufficient number of relatives; note that these 
distributions are not expected to be dataset-specific and are instead based on the funda-
mental properties of the recombination process. To further establish that the algorithm 
could successfully leverage SK distributions based on an external dataset, we conducted 
an additional experiment in which we split our dataset sample-wise into two equal-
sized, non-overlapping groups, estimating distributions from one group and running the 
haplotype linking algorithm on the other. We found that the algorithm performed with 
comparable success (Additional file 1: Fig. S19).

Haplotype linking experiments

Data

We tested our haplotype linking program using genetic data from 2,000 AoU partici-
pants, including 100 pairs of related individuals (20 pairs each of 1st through 5th degree 
relatives) and randomly sampled 900 pairs of unrelated individuals. For the primary link-
ing experiment with chunks, all 44 haploid autosomal chromosomes from one individ-
ual in each pair were split into chunks using a chunk length of 20M base positions and 
included in a target set (for a total of 310,000 haploid chunks, shuffled to obscure the 
individual of origin), with the other individual in each pair assigned to the relative set. 
For the additional experiment linking full chromosomes, the only difference is that the 
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target set consisted of chromosome-length haplotypes that were not further divided into 
chunks.

Computing SK scores

To prepare the GERMLINE2 input, the target set and relative set samples were com-
bined into a single file. GERMLINE2 was run on this input file in haploid mode (option 
-h), with a minimum match length of 2.5 cM (option -m), and with a minimum minor 
allele frequency of 0.01 (option -f ). Other options were left in their default settings.

Inference algorithm settings

The initial prediction taken as input by the algorithm was produced by the preliminary 
steps described above (see the “Construction of an initial solution” section). See Addi-
tional file 1: Fig. S10 for the results of step 1 and Additional file 1: Fig. S11 for the results 
of steps 2 and 3. Since step 1 produced very little error, combining it with the output of 
step 2 resulted in an initial prediction with relatively few errors (compared to the output 
of step 2 alone) to provide as input to the linking algorithm.

The target haplotypes were first filtered to reduce the size of the linking problem to 
only consider the haplotypes related (by SK threshold 1/(213/2) ) to a relative set sample 
related to other target haplotypes. The prior probability p(r = ∅) that a pair of individu-
als is unrelated was set to 0.9, with the remaining probability divided uniformly among 
the other degrees. For conditional distributions over SK values for different degrees of 
relatedness, we used empirical distributions in the form of histograms with 25 equal-
sized bins spanning (0, 1], plus an additional bin at zero. We used a combined distribu-
tion to represent the 3rd, 4th, and 5th degree relationships together. For the distribution 
over SK values given an unrelated pair, we used a point mass at zero set to a probability 
of 0.95, plus a Gaussian distribution at the empirical mean and with adjustable standard 
deviation set to 0.1. Our results for this experiment are based on a single iteration of the 
algorithm, as further iterations did not lead to significant changes in the solution. Only 
linked sets of at least five haplotypes were included in the output.

For the chromosome linking experiment (Additional file 1: Fig. S12), step 1 of the pre-
liminary linking steps (see the “Construction of an initial solution” section) was not rel-
evant, so the initial prediction taken as input by the algorithm was the output of step 2. 
The target haplotypes were first filtered in the same way as in the chunk linking experi-
ment. The same prior was used for relatedness degrees. For the conditional distributions 
over SK values for the different relatedness degrees, we used Gaussian distributions set 
to the empirical means and standard deviations (here based on chromosome-wise rather 
than chunk-wise SK values), after observing that the distribution of SK values more 
closely follow a Gaussian at the level of chromosomes. As before, we used a combined 
distribution to represent the 3rd, 4th, and 5th degree relationships together. For the dis-
tribution over SK values given an unrelated pair, we used a Gaussian distribution at the 
empirical mean and with adjustable standard deviation set to 0.0175, which led to a bet-
ter balance between correctly linking haplotypes while minimizing the number of errors 
in this setting. We ran the algorithm for 10 iterations on initial groups including at least 
10 haplotypes as input, and reported only linked sets of at least five haplotypes that show 
significant relatedness to at least one relative set sample ( p(r = ∅) ≤ 0.99).
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Theoretical analysis of haplotype linking practicality

In this part of our work, we sought to evaluate how plausible it is that an adversary 
would have access to the relatives required for haplotype linking to be effective. To 
accomplish this, we used a population genetic model (see details below), which is 
essentially an extension of the one used by Erlich et al. [14], to estimate the probabil-
ity that a given reference panel individual has relatives of different degrees in some 
external genomic database (Additional file 1: Fig. S13). We then combined these esti-
mates with our results from the haplotype linking experiment to quantify the propor-
tion of reference panel genomes an adversary might be able to reconstruct with access 
to a genomic database of a particular size.

Population genetic model

What we aimed to obtain is, for each relationship degree 1st- through 5th-degree, the 
probability of one or more detectable relatives of a target, of that degree, being in a 
database. For any degree including more than one type of relationship, this is approxi-
mated by a sum of probabilities, one for each relationship.

We consider relatives for each of these degrees to be only up to one generation 
apart. For example, a target’s grandaunt or granduncle is a 3rd-degree relative but 
is two generations from the target, so this type of 3rd-degree relationship is not 
accounted for. We believe this to be reasonable because databases leveraged for link-
ing are likely to be relatively contemporary with the target, given the newness of most 
genetic databases, and therefore relatives more than one generation apart would be 
relatively uncommon. This would make these omitted probabilities quite low. In addi-
tion, the inclusion of these probabilities would only strengthen our estimates of the 
number of relatives that would be available to an attacker. Potentially, an attacker’s 
ability to leverage relatives a greater number of generations apart will increase over 
time, as current databases become dated. All this said, it is straightforward to extend 
our model to consider a wider range of relationships.

The assumptions and derivations of our model are based on the work of Erlich 
et al. on identity inference using long-range familial search [14], in which the authors 
explored a similar question of how many relatives of a person can be expected in a 
public genealogy database. Our model differs by the addition of probability formulas 
for each particular degree of relative, 1st through 5th degree, and by the inclusion of 
particular relationships (siblings, parent-child) not accounted for by the generalized 
formulas in their model.

The assumptions of the model are as follows: 

1. The model is a monogamous Wright-Fisher model [35, 36]. The current generation 
of the population consists of N males and N females, paired into N couples. Each 
individual in the current generation draws its parental couple randomly from the 
couples in the previous generation.

2. Each couple has r offspring (2.5 in our analysis), so the size of the population g gen-
erations before the current one is N (g) = N (r/2)−g.

3. We consider only diploid individuals and the autosomal chromosomes.
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4. The database contains the data of R total individuals from the model population, all 
of whom are from the most recent generation and the previous one, represented in 
proportion to the relative sizes of those generations.

5. A target individual belongs to the most recent generation. This means, for example, 
that hypothetical cousins once removed of the target in a younger generation are 
not accounted for-they are assumed not to exist, given the Wright-Fisher assump-
tion and the target being in the current generation. This simplifying assumption is 
motivated by the fact that the auxiliary database available to an attacker is likely to 
have been collected earlier than the up-to-date reference panels typically leveraged 
by imputation servers.

6. The target individual’s genome is compared to those of all R individuals in the data-
base, and IBD segments are detected from these comparisons. It is assumed that IBD 
segments must have length at least m Morgans in order to be detectable. And for a 
relationship to be determined with confidence, at least s segments must be detected. 
In our analysis, m = 0.06 (6cM) and s = 2.

For the full model derivations, see Additional file 1: Supplementary Note 2.

Applying the model to estimate the probability of a relative match in an auxiliary database

In calculating actual probabilities for relatives of the different degrees, we used the same 
values for m, s, and r as did Erlich et al.: m = 0.06 (6 cM), s = 2 , and r = 2.5 (as noted 
above, m is the minimum detectable length in Morgans of an IBD segment, s is the mini-
mum number of segments that must be detected in order to determine a relationship 
with confidence, and r is the number of offspring produced by each couple in a gen-
eration). The probabilities actually depend only on the proportion of the population in 
the external database relative to the overall population, not on the precise sizes of the 
population (N) and database (R) independently, so in the implementation we set the pro-
portion directly with a range of possible values. The resulting probabilities for different 
proportions are plotted in Additional file 1: Fig. S13.

We note that the model must be applied with caveats, given its simplifying assump-
tions. For example, inherent in the Wright-Fisher model are the assumptions of a homo-
geneous population and discrete non-overlapping generations. In addition, when we 
apply our formulas to estimate the proportion of reference panel individuals who would 
have relatives in an external database, we are assuming that the reference panel indi-
viduals come from the same population as the external database individuals to which 
they are compared. While our theoretical analysis is likely to deviate from reality to an 
extent dependent upon the precise attack scenario and databases that are available to an 
attacker, we view our analysis as establishing a plausible evidence, based on a standard 
population genetic model, for the success of haplotype linking strategy.

Computing the empirical distribution of haplotype linking performance

In order to estimate the proportion of individuals and their genomes we would expect 
an adversary to be able to link given an nth-degree relative (Fig. 3B), we began with the 
linked set data produced by our haplotype linking experiment, which we translated (for 
each degree) into an empirical distribution over proportion of genome linked. Note that 
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here proportion of genome is in terms of the base pair (bp) lengths of the linked chunks, 
which we believe is more appropriate for quantifying the reconstructed genome than 
the number of linked chunks. We then generated a smoothed probability density func-
tion (PDF) estimation from each degree’s empirical distribution using the package bde 
[37] for bounded density estimation (we used the “jonesCorrectionMuller94Boundar-
yKernel” function). Each smoothed PDF was converted into a CDF, which represents the 
probability of linking genome proportion ≥ g . The curves in Fig. 3B show the probability 
value of the CDF on the x-axis, with the corresponding genome proportion on the y-axis, 
and each point (p, g) on the curve indicates that at least proportion g of the genome can 
be linked for proportion p of the samples according to our empirical estimates.

Synthesizing model and empirical results to estimate linking performance in practice

 To summarize an adversary’s ability to perform haplotype linking with recovered refer-
ence panel haplotypes (Fig. 3C), we combined our model probabilities (Additional file 1: 
Fig. S13) and the smoothed curves described above (Fig.  3B) as follows. First, assum-
ing independence of the model probabilities for different degrees, we computed for each 
degree the probability of a reference panel individual having a closest relative of that 
degree in the relative set (so as not to double-count individuals with more than one rela-
tive). Then, we calculated the expected proportion of the reference panel having a closest 
relative of each degree, which is equal to the probability of a single reference panel indi-
vidual having a closest relative of that degree, assuming independence among individu-
als. To obtain the curves in Fig. 3C, we then computed, for each genome proportion g 
(on the y-axis), the total proportion of samples (on the x-axis) for which more than g of 
genome could be linked according to our previous empirical estimates. This is achieved 
by (i) retrieving the sample proportion for each degree corresponding to the threshold g 
from the curves shown in Fig. 3B, (ii) multiplying these values by the expected propor-
tion of the reference panel having a closest relative of each degree (which converts the 
values to proportions of the entire reference panel), and (iii) summing the resulting sam-
ple proportions across degrees. We repeated this calculation for several different relative 
set sizes, i.e., considering relative sets including different proportions of the underlying 
population.
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