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Abstract 

Existing single nucleotide polymorphism (SNP) genotyping algorithms do not scale 
for species with thousands of sequenced strains, nor do they account for conspecific 
redundancy. Here we present a bioinformatics tool, Maast, which empowers popula-
tion genetic meta-analysis of microbes at an unrivaled scale. Maast implements a novel 
algorithm to heuristically identify a minimal set of diverse conspecific genomes, then 
constructs a reliable SNP panel for each species, and enables rapid and accurate 
genotyping using a hybrid of whole-genome alignment and k-mer exact matching. 
We demonstrate Maast’s utility by genotyping thousands of Helicobacter pylori strains 
and tracking SARS-CoV-2 diversification.

Background
Many bacterial and viral species now have thousands of sequenced genomes in pub-
lic databases, and these numbers are rapidly increasing, fueled by technologies such as 
metagenome assembly, high-throughput culturing, and single-cell genome sequencing. 
For many species, genome collections harbor immense genetic variation [1, 2]. Single 
nucleotide polymorphisms (SNPs) are genomic positions that vary between genomes 
of the same species with a minimum minor allele frequency (e.g., 1%). Vertically inher-
ited SNPs in conserved genes are commonly used to reconstruct phylogenies and study 
biogeography [3, 4], while SNPs in pathogenicity loci and antibiotic resistance genes are 
leveraged for surveillance of medically important strains [5–7]. Compared to multilo-
cus sequence typing methods, whole-genome SNP genotyping generally enables greater 
phylogenetic resolution [8]. Comparing genomes based on a pre-defined set of SNPs is 
also more computationally scalable than using whole-genome nucleotide identity [9] and 
thus especially well-suited for the analysis of large genome collections.

SNPs are often identified from whole genome sequences. For example, Parsnp [10] 
constructs multiple sequence alignments of high-quality genome assemblies and iden-
tifies variable positions directly from the alignments. An alternative method is to call 
SNPs from sequencing reads without genome assembly. For example, Snippy (https:// 
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github. com/ tseem ann/ snippy) identifies SNPs from the alignment of short reads to a ref-
erence genome and kSNP [11] identifies SNPs using informative k-mers found on short 
reads, contigs, or genome assemblies. Assembly-free genotyping and k-mer matching 
are usually faster but less accurate than genotyping SNPs from whole-genome align-
ments [12]. With all of these strategies, SNPs of interest can be extracted using thresh-
olds on the minor allele frequency (MAF), site prevalence, or protein-coding change 
across a set of strains.

Despite the variety of SNP genotyping methods, a rapid increase in the number of 
sequenced microbial genomes presents a computational challenge for existing tools. 
Sequence alignment is the major obstacle to analyzing so many genomes, though kSNP 
also remain largely untested with thousands of strains. A second challenge is the fact 
that many species have a high level of genome redundancy [13], especially when a biased 
sample of clonally related genomes has been sequenced, which is common for clinically 
important pathogens that are under intensive surveillance (e.g., PulseNet [14] and NCBI 
Pathogen Detection). This redundancy masks the diversity of unevenly sampled species, 
and it means that strains from poorly sampled lineages contribute little to the discovery 
of SNPs, especially when a relatively high MAF threshold is used. Redundancy also alters 
the meaning of MAF and site prevalence; frequency in the sampled genomes is not a 
good estimate of frequency in the population. Together, these two challenges limit the 
utility of SNP genotyping methods for many microbial species.

To address this gap, we present Maast (Microbial agile accurate SNP Typer) for 
accurate genotyping of orders of magnitude more microbial strains than other state-
of-the-art methods. Our key innovation is an algorithm to pick a minimal set of maxi-
mally diverse genomes. Only these genomes are used for SNP discovery which reduces 
genomic redundancy and computational cost. We also implement a hybrid method 
combining whole-genome alignment and optimized k-mer exact match for genotyping 
SNPs in either assembled genomes or unassembled whole-genome sequencing (WGS) 
libraries. Maast performs SNP genotyping faster and more accurately than existing 
methods but sometimes misses rare variants present in genomes not selected for SNP 
discovery. We apply Maast to a large collection of previously sequenced Helicobacter 
pylori (H. pylori) strains and summarize the biogeographic patterns of this species across 
the globe. We also show that Maast can efficiently track the evolution of SARS-CoV-2 
during the COVID-19 outbreak. Maast is available as open-source software with both 
source code and documentation freely accessible on GitHub (https:// github. com/ zjshi/ 
Maast).

Results
The Maast SNP genotyping pipeline

Maast is an open-source bioinformatics pipeline written in Python and C +  + that fully 
automates SNP calling and genotyping for microbial species. Maast has two compo-
nents: (1) constructing a reference panel of SNPs for a microbial species using a reduced 
set of non-redundant genomes (Fig. 1a and b, Additional file 1: Figure S1), and (2) ultra-
fast, in silico genotyping of reference SNPs from large scale genome collections. Geno-
typing can be performed using draft genome assemblies or unassembled short or long 
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Fig. 1 Schematic design of Maast. Maast consists of four major components. a Tag genomes and 
centroid genomes are selected based on Mash distances. A novel algorithm, called DynaCC, is used to 
automatically choose the genome clustering threshold based on each species’ level of genomic redundancy 
(see the “Methods” section). b A panel of common SNPs is constructed for each species using multiple 
whole-genome alignment. c SNPs in non-tag genomes or other input genomes are genotyped using single 
whole-genome alignment. d SNPs in short reads are genotyped using k-mer exact matching
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reads (Fig. 1c, d and Additional file 1: Figure S2) and can be applied to any microbial 
species, such as bacteria, archaea, viruses, or microbial eukaryotes.

In the first step of the pipeline, Maast rapidly builds a reference SNP panel from 
a diverse, non-redundant subset of input genome assemblies using MUMmer. The 
genome subset is identified using pairwise genetic distances and a dynamic graph algo-
rithm that we developed and called DynaCC (Dynamic Connected Component search; 
Additional file 1: Figure S3). DynaCC aims to identify a minimal set of genomes that cap-
tures the maximum number of common SNPs with MAF above a user-specified value. 
It does this heuristically in order to accelerate the computation, and hence the result-
ing “tag” genomes are not provably a minimal set. From the tag genomes, Maast selects 
one centroid tag genome to be used as a species reference. Maast then aligns all other 
tag genomes to the reference using MUMmer, constructs a multiple sequence alignment 
(Additional file 1: Figure S2), and uses a standard SNP calling workflow (“Methods”) to 
generate the SNP panel at the user-specified MAF and prevalence (% of genomes con-
taining either SNP allele).

We assessed whether the Maast strategy of subsampling reduced our power to detect 
SNPs on a benchmark dataset of 146 common bacterial species from the human gut, 
each with at least 200 high-quality genomes (Additional file  2: Table  S1). These spe-
cies have different levels of intraspecific diversity (Additional file 1: Figure S4), genomic 
redundancy (Additional file  1: Figure S5a), and SNP density (Additional file  1: Figure 
S5b). Overall, we found that the number of SNPs identified with Maast tag genomes 
(> 1% MAF) was equal to or greater than the number of SNPs identified using the full 
set of genomes (Fig. 2a, b), with high overlap between the approaches (median = 87.9%, 
Fig.  2c). Our results demonstrate that more genomes do not necessarily lead to the 
discovery of more common SNPs (> 1% MAF). The presence of many highly related 
genomes also leads to biased estimation of SNP frequencies in the overall population 
and may reduce SNPs discovered at a given MAF threshold (Fig. 2d, e, f, S6). These anal-
yses highlight that the Maast strategy of subsampling captures the most common genetic 
variation and successfully represents genomes from poorly sampled lineages (Additional 
file 1: Figure S7, S8). Users also have the option to run Maast with all genomes rather 
than tag genomes, which may enable more of the SNPs present in pairwise genome com-
parisons to be included in the SNP panel, especially for rare SNPs present in less diver-
gent pairs of genomes (Fig. 2d, Additional file 1: Figure S8), but at the cost of greater 
computational requirements. Maast, run using either tag genomes or all genomes, 
misses many variable sites between pairs of genomes (Additional file 1: Figure S7, S8), 
because these are largely rare variants whereas Maast was designed to capture common 
SNPs above a MAF threshold.

In the second step of the pipeline, Maast performs reference based in silico genotyping 
of common, bi-allelic SNPs in genomes, which may be non-tag genomes from the initial 
reference collection or totally new genomes. Like other methods that genotype using a 
single reference genome, Maast cannot genotype sites that are absent from the reference 
genome, and in its current implementation, Maast also does not aim to genotype rare 
SNPs or SNPs with more than two alleles. The workflow can be executed using genome 
assemblies or unassembled WGS reads. For genome assemblies, Maast aligns each query 
genome to the centroid genome for that species using MUMmer and directly genotypes 
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Fig. 2 SNP genotyping of 146 human gut bacterial species using tag genomes. a and b SNP discovery 
comparison of Maast with all genomes (gray), only tag genomes (green), and a random set of genomes 
equal in number to the tag genomes (brown) shows that more genomes do not lead to the discovery of 
more SNPs. Each box in a summarizes the number of SNPs across 146 species. Each point in b represents 
a species, with black lines connecting the data for the same species. For computational efficiency, only 
the 1000 highest quality genomes were included for species with > 1000 genomes. c Comparison of SNPs 
discovered by Maast with all genomes versus only tag genomes. Each bar represents a species, with the 
height of a bar showing the number of SNPs discovered exclusively with all genomes (gray), exclusively 
with tag genomes (green), or by both approaches (beige). Arrows point to eight example species (from left 
to right): Faecalibacterium prausnitzii_K (species id: 101300), Akkermansia muciniphila (102454), Akkermansia 
muciniphila_B (102453), Succinivibrio sp000431835 (100412), Sutterella wadsworthensis_B (101361), 
Phascolarctobacterium faecium (103439), Alistipes shahii (100003), and Anaerotignum sp000436415 (100177). 
Species label color indicates whether this species has a high (red) or low (blue) level of tag-only SNPs, 
which is estimated as a fraction of all SNPs that are discovered with tag genomes and not with all genomes. 
d SNP sites missing from a small percentage of genome assemblies as they fall below the user-specified 
prevalence threshold due to being absent in a group of redundant genomes. Connected dots represent 
example species in c with a high proportion of tag-only SNPs. The proportion of tag-only SNPs drops if 
the MAF cutoff for calling SNPs with all genomes is lowered from 0.01 (orange) to 0.001 (green). Most of 
the SNPs only discovered with tag genomes (tag-only SNPs) are due to MAFs below the 1% threshold in 
all genomes. e For each of the four species where tag genomes and all genomes called different numbers 
of SNPs (Faecalibacterium prausnitzii_K, Phascolarctobacterium faecium, Alistipes shahii, and Akkermansia 
muciniphila_B), we further investigated the source of this discrepancy by defining a set of true population 
SNPs. To do so, we built a phylogenetic tree and used it to sample genomes so that they covered the 
species diversity but came from different subpopulations (essentially removing bias from over-sampling of 
subpopulations with redundant genomes). SNPs called using this set of genomes were defined as the true 
SNPs for the population. We ran Maast on each species using tag genomes or using all genomes to call SNPs 
with a 1% MAF threshold. For each species, tag genomes capture a higher number of the true SNPs than do 
all genomes, suggesting that redundant genomes bias MAF estimation and reduce SNP calling sensitivity. 
f The single largest genome cluster is larger for species with many tag-only SNPs compared to those with 
fewer. The largest genome clusters were compared between species from c with high (red axis tick) and 
low (blue axis tick) levels of tag-only SNPs. For three of four species with more SNPs discovered in the 
tag-only analysis, the largest cluster contains more than half of all genomes, implying a high level of genome 
redundancy that biases MAF estimation and leads to an undercount of SNPs. Height of bars shows the total 
number of genomes in a species and the proportion colored in purple indicates the size of the single largest 
genome cluster of that species. Every two adjacent species have a similar total number of genomes
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alleles for each of the reference SNPs. For WGS reads, Maast performs exact matching 
between k-mers extracted from the sequencing reads and a database of k-mers covering 
each SNP in the reference panel that has been curated to only include k-mers that do 
not occur anywhere else in the entire reference genome collection of tag and non-tag 
genomes (Additional file 1: Figure S2). The algorithm leverages the fact that most query 
k-mers have no chance to match sck-mers in the database. It screens subsequences of 
colex-ordered k-mers up front, which is faster and more RAM-efficient than using a 
hash table (“Methods”). This strategy is an extension of our previous method GT-Pro 
[15] for genotyping SNPs in metagenomic sequencing libraries, specifically optimized 
for WGS of microbial isolates.

Maast is orders of magnitude faster than existing tools

We evaluated the computational performance of Maast with kSNP3 and Parsnp, 
two other commonly used methods for microbial SNP calling. All methods were run 
for a single bacterial species, Agathobacter rectalis (Additional file  3: Table  S2), using 
500, 1000, or 5000 randomly sampled genome sequences (Methods). Only SNP calling 
was benchmarked, and not downstream steps such as tree building. Surprisingly, both 
kSNP3 and Parsnp failed to run through all the A. rectalis genomes. kSNP3 was manu-
ally terminated after running for a maximum allowed time (48 h) and consuming more 
than 1 TB disk space, while Parsnp failed to run even for 1,000 genomes, apparently due 
to high intraspecific genetic diversity. To check that these results were not specific to A. 
rectalis, we ran both tools on two other human gut species (Additional file 3: Table S2): 
Alistipes putredinis (n = 3646) and Bacteroides_B dorei (n = 3170) and obtained the same 
result. We conclude that, to our knowledge, Maast is the only tool able to call SNPs in 
species with thousands of diverse genomes.

To evaluate computational performance when genomic divergence is more limited 
and in the absence of structural variation, we simulated 5000 whole genome sequences 
of A. rectalis by randomly introducing SNPs across a representative genome (“Meth-
ods”). While Parsnp ran to completion, kSNP3 again exceeded our 48-h maximum time 
window. Overall, Maast was 6.3 to > 127-fold faster than Parsnp and 31 to > 127 fold 
faster than kSNP3 (Fig.  3a). In addition, Maast required only 7.2  GB of RAM to pro-
cess the 5,000 genomes, which was substantially less than what Parsnp used to process 
100 genomes and similar to what kSNP3 used to process 1000 genomes (Additional 
file 4: Table S3). Maast also only used a moderate amount (~ 1.2 GB) of disk space. We 
attribute Maast’s high speed and RAM efficiency mainly to the strategy of subsampling 
genomes for SNP discovery. Other factors included compact data structures and parallel 
processing. These results demonstrate that Maast can easily run on a personal computer.

We also evaluated the computational performance of Maast when calling SNPs in 
WGS reads. As a benchmark, we selected 63 whole genome sequencing samples of 
Bacteroides uniformis from the Culturable Genome Reference (CGR) study (“Meth-
ods”, Additional file  5: Table  S4, mean = 2.38 million reads per sample). Performance 
was compared with Snippy as well as an assembly-based strategy using a combination 
of SPAdes and MUMmer. Maast was ~ 19–24 fold faster than these methods (Fig. 3b, d) 
taking < 2  s to process each WGS sample and requiring 11.8 GB RAM. Altogether, we 
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conclude that Maast greatly accelerates SNP genotyping in both assemblies and short 
reads and is friendly to personal computing devices.

Maast SNP genotypes are highly accurate

To validate the accuracy of Maast SNP genotypes, we first compared Maast to Parsnp 
and kSNP on 1000 A. rectalis genomes with simulated SNPs (“Methods”). Erroneous 
alignments can in theory produce both incorrect genotypes (false positives) and miss-
ing genotypes (false negatives). False positives were only observed for kSNP (Additional 
file 6: Table S5) while false negatives were very low for Maast (n = 1) and Parsnp (n = 4) 
but much higher for kSNP (n = 5073). These results suggest that Maast is at least as 
accurate as currently available methods.

To evaluate the genotyping accuracy of Maast on short reads, we compared Maast 
to Snippy by running both tools with their default settings on Illumina short reads 
simulated from 45 isolate genomes of a single species (B. uniformis, Additional file  5: 
Table S4, 15 x coverage per genome). For each method, predicted genotypes were com-
pared to a set of ground truth genotypes determined from whole-genome alignment of 
the 45 isolate genomes to the Maast reference genome. Across simulations from the 45 
isolates, the median SNP positive predictive value (PPV) was very high for both methods 

Fig. 3 Evaluation of Maast computational performance and accuracy. a Comparison of genome genotyping 
speed between Maast, Maast without redundancy collapsing (Maast + NRC), kSNP3, and Parsnp. All methods 
were run on 500, 1000, and 5000 simulated A. rectalis genomes. b Comparison of short-reads genotyping 
speed between Maast, Snippy, and SPAdes. All three methods were run on 63 strains of B. uniformis, whose 
whole genome sequencing reads (~ 150 million) were downloaded from the Culturable Genome Reference 
(CGR) study. The y-axis of both a and b indicates elapsed seconds of running in log scale. Fewer elapsed 
seconds indicate better performance (faster processing speed). c–f Comparison of Maast and Snippy 
genotyping accuracy at non-reference alleles of SNPs in the Maast SNP panel, based on short reads c, d 
simulated from isolate genomes with sequencing error (15 x coverage) and e, f downloaded from isolate 
whole-genome sequencing projects. Both Maast and Snippy were run with default settings. c, e Positive 
predictive value (PPV; 1- false discovery rate) comparison, where false discoveries are genotype calls that do 
not match the genome. d, e Sensitivity from the simulations in c and downloaded reads in e. Sensitivity is 
the probability of detecting genotypes present in the genome. Color of points in c–f indicates whether the 
data comes from tag genomes (black) or not (red). Samples colored in red are regarded as novel to Maast 
databases. g, h Maast genotype concordance between g genome and short reads or h genome and long 
reads. In g, strain population structure of H. pylori was reconstructed using SNPs from 473 strains. Each strain 
has a whole genome sequence (WG) and a short read sample (SRA) as indicated in the stacked color rings. In 
h, the population structure of H. pylori was reconstructed from 4 strains with whole genome sequence (WG) 
and long reads (SRA). * kSNP3 and Parsnp runs > 48 h on 5000 genomes and were manually terminated, and 
we plot a runtime of 48 h with the note that no output was produced
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(Maast median = 99.72%, Snippy median = 99.38%; Fig. 3c and Additional file 1: Figure 
S9a). Meanwhile, the sensitivity of Maast was consistently higher (median = 93.2%) com-
pared to Snippy (median = 54.3%) (Fig. 3d, Additional file 1: S9c and S10), since Maast is 
less subject to false negatives due to reference bias [13] and coverage filtering (i.e., mini-
mum 1 × by default compared to minimum 10 × for Snippy). Because simulated reads 
may capture less contamination and sequencing errors than real WGS data, we repeated 
the evaluation with 63 short read libraries of the same species downloaded from the 
CGR study (B. uniformis, Additional file 5: Table S4). Compared to Snippy, Maast had 
slightly higher PPV (Maast median = 99.74%, Snippy median = 98.65%) and much higher 
sensitivity (Maast median = 93.3%, Snippy median = 61.7%) (Fig. 3e, f, Additional file 1: 
S9b, d, and S11). Higher sequencing coverage (100 x) or using paired-end reads only 
resulted in minor changes to the genotyping accuracy of both Maast and Snippy (Addi-
tional file 1: Figure S11, 12, and 13). We conclude that Maast is a more accurate and sen-
sitive tool compared to Snippy, reflecting the advantages of 31-mer exact matching over 
read alignment for SNP genotyping, especially for sequencing data with relatively more 
contamination or sequencing errors.

In addition, we compared Maast to a powerful pangenome SNP calling method, Cor-
tex [16], with the 45 B. uniformis strains. We used the Maast reference genome plus four 
additional, randomly selected genomes to generate the Cortex index. We observed that 
Cortex calls ~ 2.5 times more variants than does Maast. However, the runtime of Cor-
tex was 250 times longer than Maast. We also found that genotyping results generated 
by Maast and Cortex were highly concordant: > 93% of the SNPs called by Maast were 
also called by Cortex. Thus, more SNPs can be discovered with pangenome methods 
compared to methods like Maast that use a single reference genome. But this additional 
power for SNP discovery comes at a large computational cost that prohibits applications 
to genotyping thousands of strains.

Maast reveals global genetic structure of 3178 H. pylori isolates

To demonstrate its scalability and utility, we leveraged Maast to analyze 3178 H. pylori 
whole-genome sequences from 39 countries across six continents (Fig. 4a, Additional 
file 1: Figure S8, Additional file 7: Table S6, Additional file 8: Table S7). These included 
isolates from five animal species in addition to humans (Additional file 1: Figure S14). 
Overall, we identified 74,962 common SNPs in the core genome of H. pylori using 
Maast (“Methods”), which was > 10 times more than a recent study [17]. Using these 
genotypes, we measured genetic distance between strains across continents and by 
host species, sex, and disease status (Fig. 4b, Additional file 1: Figure S15, S16). We 
observed clear associations between H. pylori genotypes and geography (Fig. 4b and 
c) which supported the finding that H. pylori has distinct populations across the globe 
[18]. Within the same continent, H. pylori strains from the same host species were 
more similar than those from the different host species (p-value < 2.2e − 16, Wilcoxon 
rank sum test). Interestingly, we observed H. pylori strains from different host species 
but the same continent were more similar than those from human hosts living in dif-
ferent continents (Fig. 4e). This is likely due to H. pylori populations being highly het-
erogenized across continents, suggesting geography is a transcending factor over host 
species. We also observed that genetic distances between H. pylori strains were on 



Page 9 of 22Shi et al. Genome Biology          (2023) 24:186  

average lower (p-value = 2.27e − 13) between pairs of healthy human hosts compared 
to diseased pairs (Fig. 4f and Additional file 1: Figure S17), implying greater genomic 
commonality between non-pathogenic H. pylori strains.

Next, we analyzed 478 H. pylori isolates downloaded from NCBI (Additional file 9: 
Table S8) to assess whether we would obtain the same results using Maast with unas-
sembled sequencing reads instead of whole genome sequences (“Methods”). For these 
strains, we observed the expected similarity between isolates and their unassembled 
WGS reads, except for a few highly similar isolates which cannot be distinguished 
based on common SNPs (Fig. 3g and Additional file 1: Figure S18). Next, we extended 
this analysis to four distinct H. pylori strains that had both whole genome assembly 
and long-read data. We found perfect clustering of assemblies with the long-read data 
from the same strain (Fig. 3h). Altogether our evaluation suggests that the two Maast 
genotyping workflows, although using distinct algorithms, are highly concordant. 
This means that genomic data from different sources can be pooled for analysis with 
Maast without assembly or other preprocessing.

Fig. 4 Global genetic structure of H. pylori genomes. a Geographic distribution of 3068 H. pylori strains across 
39 countries with color indicating the number of strains from each country. b Strain population structure of 
H. pylori strains reconstructed from their Maast SNP genotypes. Stacked color rings indicate the host species 
(inner), continent (middle), and human host disease status (outer). c–f Comparison of genetic distances 
between pairs of strains from c same versus different continent, d same versus different host species within 
the same continents, e human versus other host species, and f control vs diseased human hosts. In e, genetic 
distances are calculated between pairs of strains from the same continent where one is from a human host 
and the other is from the indicated host species (left) or between pairs of strains from human hosts from 
different continents (blue box at right). The H. pylori strains that infected Rhesus monkeys were inoculated 
[19] and thus excluded
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Maast enables fast tracking of SARS‑CoV‑2 variants

To apply Maast for global pathogen surveillance, we analyzed 37,096 SARS-CoV-2 (SC2) 
strains, including 8734 isolate genome assemblies and 28,362 WGS read samples, col-
lected from 60 countries over a span of ~ 200 days (downloaded from NCBI on July 19, 
2020, Additional file 10: Table S9, Additional file 1: Figure S19, S20). Maast was able to 
process the data in < 9  h with 36 threads and a peak RAM use of 20  GB on an AWS 
EC2 instance (r5.16xlarge). Analyzing patterns in these genotypes, we first observed a 
clear divergence of SC2 strains relative to strain NC_045512 which was one of the first 
sequenced SC2 strains (Fig. 5a). Furthermore, we found that genetic distance between 
SC2 strains was slightly lower within countries than between countries (Figure  S21). 
Within-country genetic distance differed across countries, likely due to differences in 
temporal adjacency of samples (Fig. 5b and Additional file 1: Figure S22). However, we 
also observed exceptions where geographically adjacent countries with similar temporal 
sampling patterns had different levels of within-country genetic distance, such as Poland 
and Germany (Fig.  5b and Additional file  1: S22), suggesting other underlying factors 
such as single versus multiple introduction sources. To track the differentiation of SC2 
strains, we next used SC2 SNPs to perform dimension reduction and observed chang-
ing subspecies genetic structure over time with the emergence and fading of SC2 strain 

Fig. 5 Application of Maast to track SARS-CoV-2 diversification from Dec 2019 to July 2020. a Genetic 
distances of SARS-CoV-2 strains over time compared to one of the earliest SARS-CoV-2 strains (Accession 
#: NC_045512). b Median genetic distance of SARS-CoV-2 in a country is strongly correlated with average 
sampling day gap. c Subspecies structure of SARS-CoV-2 over time. Each dot is a SARS-CoV-2 strain, colored by 
sampling month with other time points in gray. Dimension reduction and visualization were performed with 
UMAP. Nearby samples in UMAP space have similar genotypes
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clusters (Fig. 5f ). These results suggest that Maast is computationally efficient and accu-
rate enough to be used to monitor the dynamics of the genetic structure of emerging 
pathogens at a global scale.

Discussion
In this study, we present Maast, a new software tool for discovering SNPs in conspe-
cific genomes that also includes pipelines for genotyping the panel of discovered SNPs 
in sequencing reads (long or short) and genome assemblies. In terms of SNP discovery, 
Maast is faster than existing methods due to our DynCC algorithm that identifies a sub-
set of diverse genomes that can be used for the computationally intensive step of com-
paring all pairs of genomes without losing sensitivity. In fact, using these tag genomes 
improves our ability to identify SNPs at a given MAF and prevalence in the broader 
population by reducing bias due to uneven sampling of sequenced genomes. In terms 
of SNP genotyping, Maast uses less RAM and disk than existing methods while being 
about two orders of magnitude faster due to a combination of efficient data structures 
and novel genotyping algorithms for both genomes and unassembled reads.

The computational efficiency and accuracy of Maast enables a broad array of poten-
tial applications. In this study, we demonstrated how Maast could be used to study the 
genetic structure of H. pylori, a bacterial species with strong biogeographic patterns. We 
also used the early months of the SARS-CoV-2 pandemic as a case study to illustrate that 
Maast could be applied to emerging viral pathogens. Maast’s ability to process thousands 
of genomes makes it a useful tool for tracking microbial evolution in real time. By con-
structing and maintaining a SNP panel and k-mer database for any medically important 
species over time, Maast can be applied to rapidly genotype thousands of new samples 
without the need for genome assembly, enabling new variants to be monitored as they 
spread. Beyond these applications, Maast is also ideally suited for population genetic 
investigations of any species with many assembled or unassembled genome sequences. 
Its genotypes can be utilized to measure rates and patterns of selection, recombination, 
drift, and migration among lineages of a species.

Despite its advantages, Maast has several limitations. One challenge for SNP discov-
ery is that Maast, like Parsnp and other methods requiring whole genome sequences, 
cannot be applied to species with very few high-quality assembled genomes. This is a 
common scenario for uncultured prokaryotic species plus many eukaryotes and viruses 
beyond the best-studied pathogens, although metagenome-assembled genomes and sin-
gle-cell sequencing methods are closing this gap [20–22]. The main trade-off of Maast’s 
genotyping algorithm is that it uses SNPs discovered in an initial collection of assem-
bled genomes and hence may fail to detect novel variants in short reads or genomes, 
including rare variants and SNPs that are common in lineages not well-represented in 
the SNP panel. This can be problematic in some settings, such as tracking the evolution 
of closely related pathogenic strains. Pangenome methods [16, 23] have the potential to 
overcome this limitation, because they utilize more of the accessory genome. However, 
our benchmark using the Cortex algorithm demonstrated that the computing require-
ments of current pangenome implementations do not permit analysis with datasets of 
the scale explored in this study. Accelerating these algorithms is an exciting area for 
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future research. In the meantime, Maast enables large-scale applications to uncover the 
vast genetic structure of Earth’s microbiomes using common SNPs.

Conclusions
Maast is an open-source software tool that provides a highly efficient method for dis-
covering and genotyping common, bi-allelic SNPs using either whole-genome sequences 
or unassembled sequencing reads. It includes a novel algorithm that dynamically col-
lapses thousands of genomes into a diverse, representative set of tag genomes that can 
be used to discover the most common SNPs with reduced computational resources and 
less bias than using all genomes for a species. This SNP discovery method is combined 
with a genotyping strategy that is a hybrid of whole-genome alignment and k-mer exact 
matching. Maast’s genotyping method achieves higher speed and accuracy than exist-
ing tools, scaling up population genetic analysis to an unrivaled number of strains com-
pared to state-of-the-art methods. We have demonstrated that Maast could efficiently 
reconstruct the genetic structure of H. pylori and track SARS-CoV-2 variants during the 
COVID-19 outbreak, applications that involved thousands of strains across the globe. 
As the number of species with multiple high-quality, near-complete genome sequences 
continues to grow, Maast is poised to catalog this vast genetic variation.

Methods
Maast overview

Maast is an open-source bioinformatics tool for fast and accurate SNP genotyping from 
conspecific genome assemblies and sequencing reads. The development of Maast is 
motivated by the following observations: (1) redundant genomes are common in genome 
databases and these contribute little to SNP discovery while imposing a computational 
burden, (2) the level and pattern of redundancy vary across species, (3) the choice of 
reference genome affects SNP discovery, and (4) for sequencing reads, genotyping by 
assembly first or read alignment does not scale with increasing amounts of data.

Maast implements a catalog-first-genotype-later scheme. It was designed in order 
to enable genotyping to be scaled up for very large populations. Maast also synchro-
nizes microbial genotyping for both genome assemblies and sequencing reads. The key 
innovations of Maast are its efficiency and novel workflow. We note that the underly-
ing algorithms in this workflow leverage previously existing methods for whole genome 
alignment and k-mer exact matching.

Maast takes a set of intraspecific genomes as input and has the following major steps 
per species: (1) estimates the pairwise genomic distance between genomes and identi-
fies genome clusters, (2) collapses clusters to a single tag genome per cluster, (3) picks a 
centroid genome as reference genome, (4) performs multiple whole-genome alignment, 
constructs consensus genome and calls SNPs to generate a SNP panel, and (5) lever-
ages the SNP panel to perform in silico genotyping for genome assemblies or sequencing 
reads.

Pairwise genomic distance calculation

Maast estimates the genomic distance between a pair of genomes using Mash [24] (ver-
sion 2.2). Mash distance can be used to approximate whole-genome average nucleotide 
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identity (ANI) between similar genomes (e.g., conspecific genomes). For input genomes, 
Maast first builds 20-mer profiles or Mash sketches using its “sketch” subcommand with 
default parameter except for option “-s 5000” (Additional file 1: Figure S1). Next, Maast 
calls the “dist” subcommand in Mash with default options to compute pairwise genomic 
distances.

Identify genome clusters and tag genomes

Maast automatically determines the number of genome clusters (n) based on the user-
defined minor allele frequency (MAF): n = 1/MAF. By default, SNPs are defined as 
genomic sites with MAF > 1%. In this case, at least 100 genomes are required to enable 
an effective resolution of 1%, that is 1 in 100 genomes has the minor allele. With higher 
MAF thresholds, fewer genomes are needed, and vice versa.

We implemented a dynamic graph algorithm (Dynamic Connected Component search 
(DynaCC)) in Maast to identify tag genomes based on pairwise Mash distances. The goal 
is to identify a minimal set of genomes that captures as much genetic variation as pos-
sible through a heuristic search. DynaCC starts with a complete graph where nodes are 
genomes and edges are weighted by distance. The algorithm applies a distance cutoff 
(d-cut) strategy to prune edges, where pairs of genomes (edges) with a distance higher 
than a d-cut are deemed sufficiently dissimilar and removed. By applying a stringent 
d-cut, many edges are deleted, which reduces the complete genome graph to connected 
components and isolated nodes. By doing so, Maast avoids loading a complete con-
nected graph into RAM as well as performing operations on it, which would be compu-
tationally expensive when the number of genomes is large. A connected component here 
is analogous to a genome cluster which is defined as a maximum set of nodes in which 
a path exists between every pair of nodes, and a path is a sequence of edges which joins 
a pair of nodes. The algorithm identifies tag genomes as a union of hub genomes from 
connected components and all isolated nodes, and by default, it chooses a hub genome 
as the genome with the most edges in a connected component (i.e., the highest degree 
centrality after filtering out edges below the distance cutoff). Maast also allows users to 
identify hub genomes using weighted edges through the flag “–edge-weighted” as well as 
more sophisticated node centrality estimation methods (such as eigenvector centrality, 
closeness, information, betweenness, and load centrality) through the flag “–tag-central-
ity”. Users can also run Maast using all genomes, rather than with tag genomes, as long 
as they have sufficient computing power given the number of genomes.

Next, we sought to implement an algorithm that solves the problem of identifying ~ n 
tag genomes from N genomes, where N > n. Since the level and pattern of redundancy 
within species vary, an identical d-cut can result in detected n (n′) drastically different 
across species. When n′ is lower than the target n, SNPs are called with a de facto higher 
MAF, resulting in a lower sensitivity for detecting SNPs. When n′ is much higher, the 
benefit of computing efficiency will diminish. It is also unrealistic to predict a static d-cut 
per species, due to the unknown diversity of input genomes. Here DynaCC searches and 
determines an optimal d-cut per species dynamically with respect to the input genomes. 
It first uses a range factor (rf; default 1.2) designating a critical range of n (n to n*rf ) 
that is acceptable, since the exact n may never exist in the search space. It then applies 
an initial d-cut (default 0.01) and if n′ is lower than n, it searches the lower bound of 
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d-cut with an exponential decay by a factor of 10 until an n′ higher than n is found or 
a hard bound (default 0.000001) is reached. Between the initial d-cut and lower bound, 
the algorithm performs a binary search until an n′ falling in the critical range is found 
or the maximum searching step (default 10) runs out. When no optimal n′ is found, the 
algorithm settles with a suboptimal n′ which is both higher than and nearest to n. The 
resulting n′ tag genomes are used for the downstream workflow.

DynaCC presents two advantages for clustering whole genome sequences compared 
to other clustering tools, such as CD-HIT, vsearch, and MMSeqs2. First, DynaCC lever-
ages a fast approximation of ANI, making it better suited for processing a large number 
of whole genome sequences. For example, we ran DynaCC, CD-HIT, vsearch (UCLUST 
equivalent), and MMSeqs2 on 3,646 whole genomes of Alistipes putredinis (Species 
ID: 101302). All programs were run in an identical computing environment (AWS EC2 
r5.16xlarge) for a maximum of 48 h. DynaCC successfully divided these genomes into 
110 clusters in ~ 3  min, while the same task took MMSeqs2 ~ 4  h. Both CD-HIT and 
vsearch ultimately did not run through the task: the CD-HIT main program was ter-
minated by signal 11 (reached 498 GB RAM cap) and vsearch did not complete within 
48 h. Second, DynaCC is more efficient at dividing whole genome sequences into a fixed 
number of clusters. Other algorithms will usually take one single distance (or similarity) 
cutoff as input and use this same cutoff across all species to divide genome sequences 
into a smaller untargeted number of clusters. DynaCC automatically searches a large 
space of cutoffs around a target minimum number of clusters (i.e., tag genomes) and 
finds an  optimal cutoff per species to generate at least the targeted number of clusters. 
For example, DynaCC automatically divided genomes of A. putredinis (n = 3646) and A. 
rectalis (n = 5214), two example species in Additional file 1: Figure S5, into ~ 100 clus-
ters (110 clusters for A. putredinis and 106 for A. rectalis), while using a static genomic 
distance cutoff of 0.01 resulted in 46 genome clusters for A. putredinis and 2650 clusters 
for A. rectalis. In contrast, MMSeqs2 by default generated 3646 A. putredinis clusters 
and 5214 A. rectalis clusters, barely collapsing any redundant genomes. Thus, DynaCC 
rapidly prunes a large set of genomes to a fairly consistent target size across diverse and 
heterogeneous species. We implemented a method with this behavior because we found 
that it enabled efficient downstream SNP calling.

Identify the centroid of tag genomes

The choice of reference genome is important to SNP discovery. Maast objectively picks 
a reference genome for each species as the centroid of tag genomes. Maast calculates 
all pairwise genomic distances between tag genomes using Mash. For simplicity, the tag 
genome with the lowest average L-1 distance to all other tag genomes is selected as the 
centroid genome for the species. Maast also allows users to select the centroid genome 
using L-2 and L-Inf distance. By default, Maast uses the centroid genome as the refer-
ence genome for multiple sequence alignments as well as SNP calling. Unless otherwise 
mentioned, we used the centroid genome for each SNP analysis in this study.

Multiple sequence alignment and SNP calling

For each species, we performed whole-genome alignment by aligning each intraspe-
cific genome to the centroid or otherwise specified reference genome using MUMmer 
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[25] (version 4.0.0beta2) with the default parameters. Unreliable and repeat-induced 
alignments were removed using the delta-filter program from MUMmer with options 
‘-q -r’ and the remaining alignments were then extracted using the show-coords pro-
gram with default parameters. To promote the quality of multiple whole-genome 
alignment, we removed regions that are overly short (< 500 bp) or poorly aligned (align-
ment ANI < 95% of whole-genome ANI). Maast horizontally concatenates all qualified 
alignments and calls SNPs as sites with the following characteristics: 1) two or more 
nucleotides, 2) present in at least a user-supplied percentage of genomes (prevalence 
threshold, default ≥ 90%), and 3) minor allele frequency greater than a user-supplied 
value (default ≥ 1%). Finally, Maast organizes the called SNPs into a panel and outputs it 
in a standard VCF format. We note that Maast does not identify insertion and deletion 
variants (INDELs) or structural variants, even though it produces a multiple sequence 
alignment in a multi-FASTA format.

Maast in silico genotyping of SNPs

For genome assemblies, Maast leverages the SNP panel from upstream steps to perform 
genotyping. Maast aligns each query genome, which could be non-tag genomes from 
SNP discovery or other additional input genomes, to the centroid genome using MUM-
mer (version 4.0.0beta2) with consistent quality control steps and parameters identical 
to those used in SNP calling. For each SNP in the panel, Maast then searches all best 
alignments to locate the genomic position of the SNP. If the genomic position of a SNP 
is found in an alignment, Maast reads and reports the allele on the query genome; other-
wise, Maast reports the SNP as missing.

For sequencing reads, Maast uses a k-mer exact matching algorithm for efficient and 
accurate genotyping. Maast leverages the SNP panel to extract short unique genomic 
regions (k-mers) as probes for detecting alleles that distinguish highly similar genomes 
and uses these k-mers to rapidly genotype reads. For k-mer extraction, Maast identifies 
any 31-base SNP-covering k-mers (sck-mers) that cover (in any of the 31 bases) each 
of the SNP alleles. We chose 31 for k based on analyses in our previous study. For each 
SNP, Maast first extracts all possible 31-mers containing the SNP site from the repre-
sentative genome (sck-mers for reference allele). Next, Maast extracts sck-mers by 
sliding a fixed-size window along the multiple sequence alignment. At any given posi-
tion, the window allows extraction of n sck-mers, where n equals the number of rows 
in the multiple sequence alignment (i.e., the number of aligned genomes). Next, Maast 
reduces these n sck-mers to m unique sck-mers (m ≤ n) and selects the one from these 
m with the highest frequency across the n genomes. INDELs near (within 30 bp of ) a 
SNP could affect the number of sck-mers extracted. Maast accounts for three scenarios: 
no INDELs, INDELs at one side of a SNP site, and INDELs at both sides of a SNP site. 
When no INDELs are present, all 31 sck-mers will be extracted (note that the SNP site 
can be at any base on a 31-mer). When INDELs only occur at one side of a SNP site, 1 
to 30 sck-mers will be extracted, depending on the location of the nearest INDEL to the 
SNP site. In rare cases where two or more INDELs flank a SNP site, no sck-mers will be 
extracted. To exclude sck-mers from repetitive genomic regions, Maast searches every 
candidate sck-mer in all input genomes, not only tag genomes, and removes those that 
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occur anywhere else in any genome. We retrieved the reverse complements of all sck-
mers. In this way, for every SNP site, there will be up to 62 sck-mers targeting the refer-
ence or alternative allele.

To facilitate efficient storage and match of sck-mers, we use 64-bit integers to rep-
resent the sck-mers with 00 for “A,” 01 for “C,” 10 for “G,”and 11 for “T”and discarded 
the sck-mers with wildcards (e.g. “N”). We sort sck-mers in colex order which is essen-
tially a reflection of lexicographic order that reads a sequence from the right to the left 
(versus left to the right). For example, given a set of unsorted sequences, {“214”, “123”, 
“134”, “125”}, the corresponding lexicographic order is {“123”, “125”, “134”, “214”} and the 
colex order is {“123”, “214”, “134”, “125”}. Colex order enables fast matching of suffixes, 
because related suffixes are near each other in a list. Specifically, we build an l-index to 
quickly locate all sck-mers that share a given suffix by simply pointing to the first and last 
entries for each suffix. This is possible because sck-mers that end with a suffix s of length 
l will occupy consecutive entries in the colex sorted list. We empirically selected l = 36 
as default. For each input read, Maast first breaks it down into 31-mers and encodes 
them into 64-bit integers. Our goal is to find exact matches of these 31-mers with sck-
mers and the following exact-match algorithm is implemented: (1) look up query suffix 
in the l-mer index, if found, (2) examine all sck-mer entries identified by the l-mer index 
one by one and report exact matches. After generating all k-mers in each metagenomic 
sequencing read, Maast recruits an L-bit index (L-index; last L bits/suffix of encoded 
k-mer) to locate a bucket of pre-sorted sck-mers in the database containing all possi-
ble exact matches to the full k-mer. The algorithm invokes a sequential search for exact 
matches between the full k-mer and only the sck-mers in this bucket. We note that both 
alleles may be detected for one SNP site due to the presence of more than one strain, 
de novo mutations, or sequencing errors in the sample. In the default output of Maast, 
if multiple alleles are detected, the counts of both alleles will be reported. Further pro-
cessing of the alleles is delegated to downstream analysis. Throughout this study, we 
assumed there was only one dominant strain per sample and when multiple alleles were 
detected for a SNP site within one sample, we proceeded with the major allele (allele fre-
quency > 0.5) and ignored the minor allele for all analyses unless otherwise mentioned. 
The count of reads matching an allele will be incremented by one as long as at least one 
k-mer was detected in the read being processed.

The output format of in silico genotyping is similar for both genome assemblies and 
sequencing reads. It uses a concise table-shaped format for its output, in which every 
row represents a bi-allelic SNP site. Each row has exactly 8 fields: species, SNP ID, con-
tig, contig position, allele 1, allele 2, and coverage of allele 1 and coverage of allele 2. 
Currently, the algorithm only supports bi-allelic SNPs which are the vast majority of the 
SNPs.

UHGG whole genome sequences and species

We downloaded genome sequences from the Unified Human Gastrointestinal Genomes 
[2] (UHGG) at http:// ftp. ebi. ac. uk/ pub/ datab ases/ metag enomi cs/ mgnify_ genom es as of 
September 2019. The UHGG database is a very large collection of gut microbial whole 
genome sequences, which are originally from both isolate assemblies and metagenome-
assembled genomes (MAGs). The inclusion of MAGs from diverse human populations 

http://ftp.ebi.ac.uk/pub/databases/metagenomics/mgnify_genomes
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and geographic locations is critical for capturing natural genetic variation within human 
gut species. From the UHGG database, we selected 146 species, each with 200 or more 
high-quality (completeness >  = 90% and contamination rate <  = 5%) whole genome 
sequences, which accounted for a total of 109,365 genomes. Twenty-nine of them had 
more than 1000 genomes, and Escherichia coli_D (species id: 102506) had the most 
genomes (n = 6645).

Comparing Maast to related methods

We compared Maast to several other methods in a series of simulations and data analy-
ses designed to evaluate different aspects of computational performance and accuracy. 
For SNP calling in whole genome sequences, we included two methods, Parsnp and 
kSNP, which represented two distinct methods. Parsnp reports SNPs in the coordinates 
of the specified reference genome, and kSNP does not. We selected ParSNP as opposed 
to other methods for calling SNPs through multiple whole genome alignment, such as 
Mugsy [26] and Mauve [27], due to its improved computing performance and similar 
accuracy [10]. For SNP calling in short reads, we included Snippy, a representative of a 
widely used three-step workflow: short reads first are aligned to reference genomes (read 
mapping), mapped reads are then piled up for counting coverage per site (pile-up), and 
SNPs are called from site coverage profiles (SNP calling). Specifically, Snippy (https:// 
github. com/ tseem ann/ snippy; June 2020) uses BWA mem [28] (version 0.7.17-r1188) for 
read mapping, samtools [29] (version 1.12) to sort and filter BAM files, and freebayes 
[30] (version v1.3.5) for pile-up and SNP calling. Here, we chose Snippy for comparisons 
and analyses as it was recently reported to be the best method overall among methods 
that follow a similar strategy [31]. To control for possible biases in using the Maast tag 
genomes as representative genomes, we instead used the UHGG representative genomes 
with all methods unless otherwise specified.

In all comparisons, we ran Maast, Parsnp, kSNP, and Snippy with default parameters 
except for a flag of “-c” for Parsnp to indicate all genomes are from the same species. 
For all paired-end samples, we processed only forward reads (fastq 1) for the simplicity 
of comparison and analysis. We skipped a sample if it did not have a forward read sam-
ple as extracted from a SRA file using fastq-dump in the SRA toolkit. However, we note 
that using the reads of both directions can effectively increase the coverage, which thus 
should be recommended especially for species with low abundance.

Computing performance evaluations

We compared Maast with kSNP3 and Parsnp to evaluate its computing performance on 
SNP calling with whole genome sequences. We downloaded a total of 5214 high-qual-
ity genomes for one of the most well-sequenced bacterial species, Agathobacter rectali, 
from UHGG genome colletion (Additional file 3: Table S2). We randomly sampled 500, 
1000, or 5000 genome sequences and ran all three methods on these genome sequences 
to assess the scalability of these methods. Since both kSNP3 and Parsnp failed to run 
through all the A. rectalis genomes, we downloaded high-quality genomes from UHGG 
for two other well-sequenced species, i.e., 3646 genomes for Alistipes putredinis and 
3170 genomes for Bacteroides_B dorei (Additional file  3: Table  S2), and repeated the 
evaluation with both species to ensure the observed issue was not limited to a single 

https://github.com/tseemann/snippy
https://github.com/tseemann/snippy
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species. To enable the comparison between Maast, Parsnp, and kSNP as well as the 
performance evaluation of each method, we simulated genomes to control the level of 
genomic divergence within a species. For the simulation, we took a random genome 
(UHGG id: GUT_GENOME143713) from Agathobacter rectalis as a simulation tem-
plate and randomly selected 10,000 genomic positions on the template to be SNP sites. 
For each simulated genome, 10% of the SNP sites (1000 SNPs) were randomly selected 
to be non-reference alleles, which we inserted in silico. For simplicity, we only simulated 
bi-allelic SNPs. To evaluate the scalability of the methods, we used three levels of input 
size (500, 1000, and 5000 genomes).

To evaluate SNP genotyping in short reads, we downloaded a total of 63 samples of 
short reads for an arbitrary species (Bacteroides uniformis) from the Culturable Genome 
Reference (CGR) study [32]. Each sample provided a distinct sequenced strain of that 
species. Altogether these samples accounted for a total of ~ 150 million reads.

We evaluated the computing performance of Maast and other tools on an AWS EC2 
instance with the following specifications: AWS r5.16xlarge, 32 physical CPU cores (64 
vCPU), Intel 8175  M CPU @ 2.50  GHz, 512  GB RAM and EBS gp2 RAID array pro-
viding 13,600 Mbps bandwidth. We measured both speed and peak RAM consumption 
using the GNU time (version 1.7) command with option “-v”.

To ensure a fair comparison between different methods, all methods were run on all of 
the input data with the same reference genome whenever one was used. Only the step of 
SNP calling was evaluated; if a method had downstream steps such as SNP tree-building 
we did not benchmark these. Each method was run using all cores of an environment 
whenever possible.

We manually terminated the running of any tool after both tools had been running 
over a designated maximum running time window (48 h) and had not finished. When 
terminated, we estimated the speed of Parsnp and kSNP with the maximum time use of 
48 h and projected peak RAM use linearly as a function of the number of genomes.

For the example species of Bacteroides uniformis, the end-to-end runtime breakdown 
of Maast is ~ 7  min for picking tag genomes and generating SNP panel, ~ 13  min for 
building sck-mer database, and ~ 19 min for genotyping 2746 whole-genome assemblies 
or ~ 90 s for genotyping 63 samples of whole-genome sequencing short reads.

Accuracy evaluation of SNPs from simulated and downloaded reads

To evaluate the accuracy of SNP genotyping by Maast in short reads and to compare 
it to Snippy, we simulated reads from whole genome sequences. For these simulations, 
we downloaded a total of 45 isolate genomes for a species (Bacteroides uniformis) from 
the CGR study. These genomes were cultivated from fecal samples of healthy humans 
and characterized as non-redundant and high-quality draft genomes. We used InSili-
coSeq [33] (version 1.4.2) with the options “–model HiSeq” to simulate up to 5.3 mil-
lion reads per genome with Illumina length and error characteristics. This generated two 
paired-end read files each containing ~ 1 million 126 bp-long reads from each genome. 
For simplicity, we proceeded only the forward reads. We used genome coverage of 15 x 
for simulations by randomly drawing reads from the simulated metagenomes. The num-
ber of reads required for a level of coverage c was estimated by the following formula: 
number of reads = c × genome length / 126. For example, to provide a 15 x coverage for 
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a genome with a size of 6 M bp, a rough number of 714,285 (15 × 5,000,000/126) 126-
bp reads are needed. To complement the simulations above, we extended the accuracy 
analyses to the reads simulated from the same genomes at 100 × coverage as well as the 
63 samples of short reads used in the computing performance evaluation. For these anal-
yses, the reads were processed as both paired-end reads, in which forward and reverse 
reads were both supplied and aligned as pairs, and as single-end reads, in which forward 
and reverse reads were merged and supplied as a single file.

To ensure a fair comparison, we ran Maast and Snippy on both the simulated and 
downloaded reads with default parameters and the same high-quality reference genome 
(i.e., UHGG species representative genome) which was arbitrarily selected. We did 
not use the centroid genome as the reference genome here to control possible biases. 
Our evaluations focused on the correct identification of SNPs and on the accuracy of 
the alleles in the typed SNPs. For each strain, ground truth genotypes were determined 
by aligning the whole sequence of that strain to the reference genome. We focused our 
evaluations on the SNPs that were potentially able to be genotyped by both Maast and 
Snippy, i.e., SNPs in the Maast panel. True positives (TP) and false positives (FP) were 
the correct and incorrect genotypes compared to ground truth; false negatives (FN) 
were sites with no genotype or an incorrect genotype. In this way, we conveniently cal-
culated the Positive predictive value (PPV) as the ratio between the sum of TP sites and 
the sum of all reported sites and the sensitivity as TP/(TP + FN) or the ratio of TP sites 
to the total number of sites in the Maast SNP panel. These values were calculated for 
each method on non-reference sites only as Snippy only reported them.

Reconstruction of genetic structure of H. pylori

To show Maast is powerful for exploring genetic structure within microbial species, 
we downloaded a total of 3524 whole genome sequences of H. pylori from NCBI and 
PATRIC [34] websites as of March 2021. We kept 3428 high-quality genomes (com-
pleteness >  = 90% and contamination rate <  = 5%) as determined using checkM, which 
included 1672 and 1756 genomes from NCBI and PATRIC, respectively (Additional 
file 7: Table S6). We ran the SNP calling module of Maast with default parameters (site 
prevalence > 0.9 and MAF > 0.01) on the whole genome sequences, resulting in 107 tag 
genomes and a panel of 275,116 SNPs. We then ran the database building module of 
Maast with default settings and generated a sck-mer database with 3,566,180 sck-mers 
and 74,962 SNPs that were covered by at least one sck-mer.

Next, we sought to determine whether the common SNPs discovered and typed by 
Maast could be used for biogeographic analyses of diverged H. pylori strains. To maxi-
mize the number of strains in this analysis, we downloaded an additional 1522 short-
read samples from NCBI SRA as of April 2021, each representing a distinct strain. We 
then combined these short-read samples together with 1756 PATRIC genomes to form 
one of the largest H. pylori strain collections (n = 3178) to date with diverse host and 
geographic information (Additional file  8: Table  S7). We did not include NCBI whole 
genome sequences due to less richness in metadata. We ran Maast on these strains and 
used the RAxML [35] algorithm to calculate pairwise genetic distance as well as con-
struct a phylogenetic tree based on concatenated alleles of SNP sites genotyped. We 
uploaded the resulting RAxML tree file to the iTol [36] website for visualization. To 
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account for possible bias due to less covered SNPs, we applied two filters to both the 
SNPs and strains: (1) we excluded a SNP from this analysis if it was present in fewer than 
5 strains, and (2) we excluded a strain if it had < 1000 genotyped SNPs or < 50% of total 
SNPs genotyped.

To further validate consistency between Maast SNP genotyping of whole genome 
sequences and short reads, we identified 478 H. pylori strains that had both raw whole-
genome sequencing reads and assembled genomes available in NCBI records (Additional 
file 9: Table S8). We used similar steps to run Maast on these strains and reconstructed a 
phylogenetic tree.

Tracking early outbreak of SARS‑CoV‑2

We analyzed SARS-CoV-2 strains from the early outbreak. In contrast to the long evo-
lutionary history of H. pylori, genomic tracking of SARS-CoV-2 was quite recent and 
extensive, which provided a good example to evaluate how well Maast could be used 
to track the genetics of a burst of highly similar genomes. We downloaded a total of 
37,096 SARS-CoV-2 strains from diverse geographic regions (Additional file  1: Figure 
S19), including 8734 whole genome sequences from the NCBI SARS-CoV-2 Data Hub 
as well as 28,362 short read samples available from the NCBI SRA as of July 2020 (Addi-
tional file 10: Table S9). As expected, the Mash distances between SARS-CoV-2 genomes 
were extremely low due to the short evolution history (Additional file 1: Figure S20). To 
effectively differentiate these strains, we included rare SNPs in this application by run-
ning Maast with site prevalence > 0.95 and MAF > 0.001 on the whole genome sequences 
of SARS-CoV-2, which resulted in 1077 tag genomes and a panel of 1114 SNPs. With 
Maast, we built a sck-mer database, which included 128,416 sck-mers and 1045 SNPs 
that were covered by at least one sck-mer. Then, we genotyped SNPs for the rest of the 
strains with Maast and computed SNP-based genetic distance and a RAxML tree as in 
the H. pylori analysis.

To visually track the genetic change of SARS-CoV-2 over time, we identified the major 
allele (allele with the highest frequency across strains) of each SNP, generated a binary 
matrix of major allele presence/absence per strain, and performed dimension reduction 
on this matrix with UMAP (umap package version 0.2.3.1) in R. We plotted all strains 
in the resulting UMAP coordinates. We visually identified 1,073 outliers (< 3% of total 
strains) and removed them from the plot. To account for possible bias due to less cov-
ered SNPs, we applied two filters to both genomes and metagenomes: (1) we excluded 
a SNP in both genomes and metagenomes if it was present in fewer than 5 metagen-
omes, and (2) we excluded a metagenome if it had < 1000 genotyped SNPs or < 50% of 
total SNPs genotyped.
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