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Abstract 

Existing single-cell RNA sequencing (scRNA-seq) methods rely on reverse transcription 
(RT) and second-strand synthesis (SSS) to convert single-stranded RNA into double-
stranded DNA prior to amplification, with the limited RT/SSS efficiency compromising 
RNA detectability. Here, we develop a new scRNA-seq method, Linearly Amplified 
Single-stranded-RNA-derived Transcriptome sequencing (LAST-seq), which directly 
amplifies the original single-stranded RNA molecules without prior RT/SSS. LAST-seq 
offers a high single-molecule capture efficiency and a low level of technical noise 
for single-cell transcriptome analyses. Using LAST-seq, we characterize transcriptional 
bursting kinetics in human cells, revealing a role of topologically associating domains 
in transcription regulation.

Background
Single-cell transcriptome analyses have been driven by the invention of scRNA-seq 
methods [1–5]. Recent technical advances have focused on improving the performance 
of digital counting by unique molecular identifiers (UMIs) [6–8], enhancing the cellular 
throughput while lowering the cost [9–17], optimizing individual steps in the protocol 
[8, 18, 19], and miniaturization [19–21]. The underlying chemistry, however, remains 
unchanged and depends on the same fundamental step of RT/SSS prior to the amplifica-
tion of single-stranded RNA (ssRNA) molecules. While RT remains reliant on reverse 
transcriptase, current scRNA-seq assays employ various SSS strategies with a limited 
efficiency, including the use of terminal transferase [1] or template switching [2, 3, 6, 8] 
to create cDNA priming sites for PCR, employing RNase H and DNA Pol to convert the 
RNA/cDNA hybrid to double-stranded DNA [4, 7] for in  vitro transcription, random 
annealing to the single-stranded cDNA for extension [22], or Tn5 tagmentation of the 
RNA/cDNA hybrid [23].
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Regardless of the specific protocol, the inevitable RT/SSS with a limited efficiency in 
existing scRNA-seq methods ultimately compromises the single-molecule capture effi-
ciency of the original RNA molecules. Low RNA capture efficiency can lead to measure-
ment inaccuracies (Additional file 1: Fig. S1a), undermining the ability to distinguish cell 
types with a subtle difference in the gene expression level. Low RNA capture efficiency 
also adds a high level of technical noise in the single-cell transcriptome data (Additional 
file  1: Fig. S1b), hindering accurate characterization of cell-to-cell variation and gene 
expression noise.

To address this limitation, we developed a new scRNA-seq assay called LAST-seq. 
Rather than relying on the inefficient RT/SSS prior to RNA amplification, LAST-seq 
directly amplifies the original ssRNA molecules in single cells in a linear fashion, achiev-
ing a high single-molecule capture efficiency and a low level of technical noise compared 
to existing scRNA-seq methods. Using LAST-seq, we characterized gene expression 
noise and transcriptional bursting kinetics, and investigated the regulation of transcrip-
tional activities by topologically associating domains (TADs) in human cells.

Results
Efficient T7 in vitro transcription of single‑stranded RNA templates

T7 in vitro transcription (IVT) of double-stranded DNA (dsDNA) templates to gener-
ate antisense RNA (aRNA) [24] has been widely used to achieve linear amplification 
in single-cell assays [4, 7, 25]. Here, we tested the efficiency of T7 IVT with a 20-nt 
ssRNA template as compared to a dsDNA template of the same sequence. When an 
18-bp dsDNA linker was included between the upstream T7 promoter and the down-
stream ssRNA template, we found that T7 IVT was also efficient (Additional file 1: Fig. 
S2a), consistent with a previous report that used a 14-nt single-stranded template [26]. 
Moreover, T7 IVT reactions showed equal efficiency regardless of the presence of vari-
ous modifications and structures at the junction site between the dsDNA linker and the 
ssRNA template (Additional file 1: Fig. S2a). Importantly, the length of aRNA generated 
during the IVT of ssRNA templates could exceed the 20-nt short distance, reaching up to 
200–500 nt before the final falloff of the elongating polymerase from the single-stranded 
template (Additional file 1: Fig. S2b). For the tested ssRNA templates, we observed more 
than 500-fold linear amplification ~ 250-nt downstream of the T7 promoter and close to 
zero-fold ~ 1000-nt downstream of the promoter (Additional file 1: Fig. S2c). The differ-
ent amplicon lengths and amplification fold between the tested ssRNA templates were 
likely due to their distinct template sequences, as the same phenomenon was reported 
for the canonical T7 IVT of double-stranded DNA templates [27].

Direct linear amplification of single‑cell RNA molecules in LAST‑seq enables a high 

detection sensitivity

Based on the observation that T7 IVT can directly amplify ssRNA templates, generating 
sufficiently long aRNA molecules with a reasonable linear amplification fold, we devel-
oped the LAST-seq assay as an RT/SSS-free method for single-cell RNA amplification 
and sequencing (Fig. 1a). First, the poly-A tail of each mRNA molecule in the single-cell 
lysate is annealed to the rU-dT overhang of a specially made LAST-seq primer (Addi-
tional file 1: Fig. S3). Next, the short patch of rA/dT hybrid is nicked and extended to 



Page 3 of 21Lyu and Chen  Genome Biology          (2023) 24:184  

attach a T7 promoter to the 3′-end of each mRNA molecule, which remains unchanged 
and in the original single-stranded status. Finally, T7 IVT of the ssRNA templates is per-
formed to directly and linearly amplify each original single-cell mRNA molecule into 
hundreds of aRNA copies, followed by single-cell transcriptome library preparation 
based on the bulk-level aRNA products.

We applied the LAST-seq assay to probe the transcriptome of single HEK293T cells. 
The LAST-seq assay showed a reasonable mapping rate (Fig.  1b), a high technical 

Fig. 1 Workflow and performance of LAST-seq. a Schematic showing each step of the LAST-seq protocol. b 
Mapping rates of the LAST-seq reads to different genomic regions. The standard error of the mean (SEM) error 
bar is calculated from 10 cells. c Technical reproducibility of the LAST-seq data determined by the Pearson’s 
correlation coefficient (PCC) between two replicates using 15-pg HEK293T-extracted total RNA as the input. 
d Correlation between the number of UMIs and sequencing reads in the LAST-seq data of the ERCC RNA 
spike-in. e Correlation between the number of UMIs and the sequencing reads in the LAST-seq data of single 
HEK293T cells. f Linear correlation between the number of sequencing reads in the LAST-seq data and the 
input copy numbers of the ERCC RNA spike-in. g Linear correlation between the number of UMIs in the 
LAST-seq data and the input copy numbers of the ERCC RNA spike-in. h Coefficient of determination (R2) of 
the linear regression in (f) and (g), from 10 samples. The statistical analysis was performed by Welch t-test 
(*p ≤ 0.05). i Number of detected genes in single HEK293T cells with various sequencing depths. The SEM 
error bar is calculated from 10 and 9 cells for LAST-seq and SMART-seq, respectively
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reproducibility (Fig.  1c and Additional file  1: S4a-b), and an expected 3′-end enrich-
ment of the sequencing read coverage (Additional file 1: Fig. S4c), thus not suitable for 
full-length scRNA-seq studies. Notably, using the ERCC RNA spike-in mix, no signifi-
cant amplification bias was detected between different RNA spike-in species (Fig. 1d), 
suggesting a generally uniform IVT linear amplification fold of ssRNA templates in the 
LAST-seq assay, regardless of the template sequence. Targeting the GAPDH transcript, 
we estimated the linear amplification in the LAST-seq assay to be a few 100-fold, in 
agreement with results from the arbitrary ssRNA templates (Additional file 1: Fig. S4d). 
Moreover, as predicted for the linear amplification, strong correlations were observed 
between the number of UMIs and the number of sequencing reads for transcriptomic 
RNAs (Fig. 1e), with the former showed a smaller variation than the later between tech-
nical replicates, demonstrating the benefit of counting UMIs to further remove ampli-
fication bias (Additional file 1: Fig. S4e). Not surprisingly, the input RNA spike-in copy 
number correlated well with the number of corresponding sequencing reads or UMIs 
(Fig. 1f, g), and the number of UMIs was slightly better than the number of sequencing 
reads to reflect the input copy number (Fig. 1h).

We then compared the performance of LAST-seq assay to existing scRNA-seq meth-
ods, particularly the widely used SMART-seq assay, using the commercially available 
SMART-seqV4 kit (Additional file 1: Fig. S4f ). After performing LAST-seq and SMART-
seq on flow-sorted single HEK293T cells, we observed a reasonable correlation between 
the single-cell transcriptome generated by the two methods (Additional file 1: Fig. S4g), 
suggesting that LAST-seq can recapitulate the results of SMART-seq. Next, we reasoned 
that elimination of inefficient RT/SSS steps by direct amplification of the original RNA 
molecules in LAST-seq could lead to a high detection sensitivity. Indeed, LAST-seq 
showed a better gene detectability than SMART-seq (Fig. 1i). The conclusion was fur-
ther supported by the RNA spike-in experiment, where LAST-seq also demonstrated a 
higher detection rate of the RNA spike-in, given the same input copy number of each 
spike-in species (Additional file 1: Fig. S4h-i).

LAST‑seq offers a high single‑molecule RNA capture efficiency

Another scRNA-seq method, CEL-seq [4], offers a higher detection sensitivity than 
SMART-seq in certain applications [28]. Similar to LAST-seq, CEL-seq also employs 
a linear amplification scheme, but CEL-seq’s linear amplification is performed on dou-
ble-stranded DNA templates after RT/SSS of the original ssRNA. Here, in addition to 
SMART-seq, we also evaluated the performance of LAST-seq side-by-side with CEL-
seq, using the improved CEL-seq2 protocol [7]. Since both methods utilize UMIs for the 
digital counting of detected RNA molecules, their single-molecule capture efficiencies 
can be quantified for a comparison.

First, we carried out RNA spike-in experiments as the gold standard to quantify the 
single-molecule capture efficiency of scRNA-seq assays, by spiking various RNA spe-
cies in the single cell to mimic the transcriptomic RNA molecules but with known input 
copy numbers (Fig. 2a). The single-molecule capture efficiency is reflected by the ratio 
between the detected copy number and the input copy number of each RNA spike-in 
species. In addition to the commonly used ERCC RNA spike-in mix [29], which con-
tains a ~ 24-nt poly-A tail on the 3′ end of each spike-in species, much shorter than 
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the poly-A tail of typical mRNA molecules in human cells [30] (Additional file 1: Fig. 
S5a), we also synthesized an alternative RNA spike-in mix (A60), which contains a 60-nt 
3′-end poly-A tail for each RNA spike-in species to mimic human mRNA molecules 
(Additional file 1: Fig. S5b). Estimated from both types of RNA spike-in mix, LAST-seq 
offered a similar or higher single-molecule RNA capture efficiency compared to CEL-
seq (Fig. 2b, c). However, the difference between different RNA spike-ins also indicated 
that single-molecule capture efficiency quantified by RNA spike-in experiments may 
be biased by the poly-A tail length [31] of the spike-in species. Specifically, the higher 
capture efficiency of LAST-seq for A60 RNA spike-in mix was likely due to enhanced 
annealing between the LAST-seq primer and the long poly-A tail, stabilizing the rA/dT 
hybrid for more efficient RNase H nicking and T7 promoter attachment.

Next, in order to evaluate the performance of both assays in capturing real transcrip-
tomic RNA molecules in single human cells, we performed LAST-seq and CEL-seq on 
flow-sorted single HEK293T cells. First, the number of UMIs reported by both assays 
showed a reasonable correlation (Fig. 2d and Additional file 1: Fig. S5c), suggesting both 
were able to reflect the general single-cell transcriptome. After further quantification of 
the number of UMIs, we found LAST-seq can detect more UMIs per gene than CEL-seq 
for the detected genes (Fig. 2e and Additional file 1: Fig. S5d), as well as more total UMIs 

Fig. 2 Comparison between LAST-seq and CEL-seq. a Experimental schematic to compare LAST-seq and 
CEL-seq in detecting RNA spike-in species and transcriptomic RNA molecules. b Capture efficiency of 
LAST-seq and CEL-seq using ERCC RNA spike-in as the input, with dots representing the average number 
of detected UMIs from 10 and 5 replicates for LAST-seq and CEL-seq, respectively. c Capture efficiency of 
LAST-seq and CEL-seq using A60 RNA spike-in as the input, with dots representing the average number 
of detected UMIs from 10 and 5 replicates for LAST-seq and CEL-seq, respectively. d Correlation of RNA 
level quantified by UMI numbers between LAST-seq and CEL-seq, both averaged from 10 single cells. 
Each dot corresponds to one gene. e Number of UMIs per gene comparison under various sequencing 
depths between LAST-seq and CEL-seq, both averaged from 10 single cells. f Number of total UMI per cell 
comparison under various sequencing depths between LAST-seq and CEL-seq, both averaged from 10 
single cells. The boxplot shows the median (center line), the 25/75 percentile (bounds), and the minimum/
maximum (whiskers). The statistical analysis was performed by the Welch t-test (**p ≤ 0.01, ***p ≤ 0.001, 
****p ≤ 0.0001)
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per cell (Fig. 2f and Additional file 1: Fig.S5e), indicating a high single-molecule capture 
efficiency of the original RNA molecules in single cells.

It is worth to note that despite LAST-seq can capture more copies of mRNA molecules 
per gene in single cells, the total number of genes LAST-seq can detect was compara-
ble to CEL-seq (Additional file 1: Fig. S5f ). We speculate that a small portion of genes 
may not be readily amplified by LAST-seq due to difficulties upon IVT of ssRNA tem-
plates with very few copies (Additional file 1: Fig. S5g), significant secondary structure, 
and/or a short poly-A tail, compromising the total number of genes it can detect. On 
the other hand, compared to LAST-seq and SMART-seq, CEL-seq seems to be more 
likely to amplify and detect other types of cellular RNA in addition to the mature mRNA 
(Additional file 1: Fig. S5h), resulting in an elevated level of intronic and intergenic reads 
(Additional file  1: Fig. S5i), which was also observed in previous studies [28, 32], and 
more prone to nonspecific genomic DNA amplification upon single-cell RNA amplifica-
tion and sequencing (Additional file  2: Table  S1), that will also contribute to the total 
number of genes it can apparently detect.

Finally, we concluded that LAST-seq has a higher efficiency than CEL-seq to capture 
the original mRNA molecules in single cells, while the two linear-amplification-based 
scRNA-seq methods seem to be comparable regarding the total number of genes they 
can detect.

Characterization of transcriptional bursting kinetics in human cells by LAST‑seq

Thanks to its high RNA capture efficiency, LAST-seq offered a lower level of technical 
noise and more accurate transcriptome-wide profiling of the cell-to-cell variation than 
the commonly used SMART-seq (Fig. 3a), enabling a better performance in the quantita-
tive study of gene expression noise. Here, we used LAST-seq to characterize cell-to-cell 
variation in human cells, quantify gene expression noise of individual genes, and derive 
transcriptional bursting kinetics for further investigation in the context of 3D chromatin 
organization.

First, we designed experiments to quantify gene expression noise from the observed 
cell-to-cell variation, which consists of three components, technical noise of the scRNA-
seq method, extrinsic noise from various types of heterogeneity among the cell popu-
lation, and intrinsic noise mainly from transcriptional bursting (Additional file  1: Fig. 
S6a). By using LAST-seq instead of previous scRNA-seq assays, we lowered the level of 
technical noise. By isolating individual cells from a single-cell clonal expansion popula-
tion sharing the same genetic and epigenetic profile, and flow-sorting single G1-phase 
human cells gated for a narrow range of cell size and DNA content (Fig. 3b), we mini-
mized the extrinsic noise within a homogenous cell population in terms of genetic/
epigenetic background, cell size, and the cell cycle stage. Consequently, the remaining 
cell-to-cell variation experimentally observed was primarily due to the intrinsic noise 
(Fig. 3c), driven mainly by transcriptional bursting dynamics with only a minor contri-
bution from RNA degradation kinetics [33].

Next, based on the two-state model of transcriptional bursting (Fig. 3d), we used the 
Poisson-Beta distribution curve fitting to derive the bursting parameters [33] of indi-
vidual genes from the corresponding intrinsic noise profile (Fig.  3e). We filtered out 
genes deviating from the curve fitting (Additional file 1: Fig. S6g), reasoning such genes 
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either have a high level of technical noise, or have transcription dynamics that cannot 
be approximated by the two-state model [34, 35], thus unsuitable for downstream study 
of bursting kinetics. Moreover, since the bursting activities of two alleles are often inde-
pendent and unsynchronized [36], a haploid human cell line (eHAP) [37] was used in 
this study to avoid the need of separating allelic transcripts.

Finally, we characterized the transcriptional bursting parameters in human cells, 
including burst frequency and burst size (Fig. 3f ). In addition to the expected Koff > Kon 

Fig. 3 Characterization of transcriptional bursting kinetics in human cells by LAST-seq. a Technical noise 
plotted by the distribution of coefficient of variation (CV) of each mRNA species from 10 samples (LAST-seq) 
or 16 samples (SMART-seq). b Workflow of single-cell transcriptome analyses by LAST-seq to minimize 
the extrinsic noise. c Gene expression noise profile of haploid human cells. The red line represents the 
theoretical level of technical noise. d Two-state model of transcriptional bursting. e Examples of curve fitting 
to derive transcriptional burst parameters from the intrinsic noise of gene expression. f Transcriptome-wide 
distribution of burst frequency and burst size for human genes. g Correlation between the expression 
noise and burst frequency. h Correlation between the expression level and burst size. i Distribution of burst 
frequency and burst size for human genes located in A (n = 3465) and B (n = 645) compartments. The 
statistical test of (a) and (i) was performed by two-sided Kolmogorov–Smirnov test (**p ≤ 0.01, ****p ≤ 0.0001)
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for most genes (Additional file  1: Fig. S6b), we observed a strong negative correlation 
between expression noise and burst frequency (Fig. 3g), but not burst size (Additional 
file 1: Fig. S6c-e). We also found a positive correlation between expression level and burst 
size (Fig. 3h), but not burst frequency (Additional file 1: Fig. S6f ), for highly expressed 
genes. Oppositely, the expression level of lowly expressed genes was more correlated to 
burst frequency rather than burst size (Fig. 3h and Additional file 1: Fig. S6f ).

Moreover, we analyzed bursting parameters for genes located in A and B compart-
ments, which are physically separated in the 3D chromatin organization of human cells 
[38]. We found that genes located in the A compartment showed a slightly higher overall 
burst frequency, but not a larger burst size, compared to genes located in the relatively 
inactive B compartment (Fig. 3i), in agreement with a higher expression noise in more 
repressed chromatin previously observed by single-molecule FISH in a few genes [39].

Role of topologically associating domains (TADs) in burst frequency modulation 

and temporal coordination of transcription activities

Hi-C analysis of human 3D chromatin organization showed the widespread exist-
ence of topologically associating domains (TADs) as self-interacting genomic regions 
[38]. Despite their evolutionary conservation across species and cell types that indi-
cates a functional relevance [40, 41], the function of TADs remains to be fully defined 
[40, 42–48]. Although no major changes in gene expression level were observed upon 
genome-wide TAD disruption and rearrangement [43–46], some specific TADs have 
been demonstrated to regulate gene expression [40, 47, 48]. Here, we hypothesized that, 
instead of regulating gene expression level, TADs might modulate transcriptional burst 
frequency and thus influence gene expression noise and cell-to-cell variation upon cell 
fate determination [49]. This hypothesis was based on the strengthened and more fre-
quent enhancer-promoter interactions (EPI) between elements within the same TADs 
[50] and the observation that enhancers mostly modulate burst frequency instead of 
burst size [33, 51, 52].

To test this hypothesis, we analyzed transcriptome-wide burst frequencies derived 
from our LAST-seq data. Since the TAD-related EPI is just one factor among many 
other TAD-independent factors affecting gene expression [53] and burst frequency [54], 
the burst frequency of individual genes will not demonstrate a striking TAD relevance. 
Consequently, burst frequencies of many genes must be analyzed together to reveal the 
potential role of TADs with enough statistical power. Indeed, for genes located within 
the same TADs (Fig. 4a), we calculated their variability in burst frequencies (Fig. 4b) and 
found a smaller burst frequency variation than the control group of randomly picked 
genes (Fig. 4c). The smaller burst frequency variation cannot be explained by in cis prox-
imity of the genes located within the same TADs, since genes located across the same 
TAD boundaries, which are also proximal in cis, showed a much larger burst frequency 
variation (Fig. 4c). To further confirm the TAD dependence of the observed difference 
in burst frequency variations, we knocked out the cohesin loader complex subunit SCC4 
(Additional file 1: Fig. S7a), globally weakening and disrupting TADs in the still viable 
human haploid cells [55] (Additional file 1: Fig. S7b). Similar to reports in other cell types 
[44, 45], ~ 10% of the genes showed significant changes (> twofold) in the expression level 
upon cohesin loss and TAD disruption (Additional file 1: Fig. S7c). As predicted by our 
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hypothesis, TAD disruption eliminated the burst frequency variation difference between 
genes located within the same TADs and genes across TAD boundaries (Fig. 4d). We did 
not use the degron system to disrupt TADs, since EPIs were found to be insensitive to 
such acute short-term depletion of cohesin or CTCF [56].

We then asked whether TADs, in addition to modulating the burst frequency, also 
temporally coordinate the transcription activities of genes located within them. We 
measured the temporal correlation of transcription activities between a pair of genes by 
calculating the Spearman’s rank correlation coefficient (SCC) between the gene pair’s 
mRNA transcript level in single cells, with a positive SCC suggesting a positive temporal 
correlation (Fig. 4e). From the single-cell transcriptome data generated by LAST-seq, we 

Fig. 4 Role of TADs in burst frequency modulation and temporal correlation of transcription activities. a 
Schematic showing genes located within TADs and across TAD boundaries. b Burst frequency variations in 
groups of genes. Each dot represents the burst frequency of one gene, and the coefficient of variation (CV) 
of the burst frequencies is calculated as the ratio of the standard deviation to the mean. c, d Burst frequency 
variation in groups of genes located in the same TADs, across TAD boundaries, and randomly picked from 
the transcriptome (Random). The boxplot shows the median (center line), the 25/75 percentile (bounds), 
and farthest points within 1.5 times the interquartile range (whiskers). The statistical test was performed by 
two-sided Wilcoxon test (****p ≤ 0.0001). e Examples of positive and negative correlation of RNA level in 
single cells by calculating the Spearman’s rank correlation coefficient (SCC). f, g Distribution of SCC values for 
gene pairs located in the same TADs, across TAD boundaries, and randomly picked from the transcriptome 
(Control). The statistical test was performed by two-sided Kolmogorov–Smirnov test (**p ≤ 0.01, ***p ≤ 0.001). 
h Model showing burst frequency modulation within TADs and temporal correlation of transcription in the 
boundary
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found no difference in the SCC distribution between gene pairs located within the same 
TADs and randomly picked gene pairs (Fig. 4f ), suggesting a lack of temporal coordina-
tion of the transcription activities for genes located within the same TADs. This could 
be due to a lack of temporal coordination between multiple EPIs within the same TADs 
or between the EPI formation and the transcription activity of the corresponding gene 
[50, 57, 58]. Interestingly, we observed a TAD-dependent shift of the SCC distribution 
toward positive values for gene pairs located across the same TAD boundaries (Fig. 4f, 
g), indicating some mechanism temporally coordinate the transcription of genes across 
the same TAD boundaries (Fig. 4h).

Finally, we propose a model that TADs may have a role in modulating transcriptional 
burst frequency, likely via TAD-enhanced EPIs, leading to a smaller burst frequency var-
iation for genes located within the same TADs (Fig. 4h).

Discussion
Here, we developed LAST-seq as a new scRNA-seq method with its unique chemistry 
bypassing the inefficient RT/SSS prior to RNA amplification. Thanks to the direct lin-
ear amplification of the original ssRNA molecules in single cells, LAST-seq offers a high 
single-molecule RNA capture efficiency and a low level of technical noise for single-cell 
transcriptome analyses. LAST-seq’s superior capture efficiency benefits the study of 
gene expression noise and transcriptional bursting, enables the detection of minor RNA 
level differences between individual cells, and elevates the overall quality of single-cell 
transcriptome data. In addition, direct amplification of the original ssRNA molecules 
without prior RT/SSS provides an alternative for applications other than scRNA-seq, 
such as in situ RNA sequencing or low-quality RNA library preparation and sequencing, 
where the result may be improved by avoiding the inefficient RT/SSS on crosslinked or 
damaged RNA.

We evaluated the performance of LAST-seq against two representative scRNA-seq 
methods, SMART-seq as the most widely used method, and CEL-seq as another highly 
sensitive method based on linear amplification. For SMART-seq, we used its most 
advanced commercially available kit (SMART-seqV4) optimized from the chemis-
try of SMART-seq2 [5]. For CEL-seq, we used its most updated protocol of CEL-seq2 
[7]. Recent development led to a new version of SMART-seq incorporating UMIs for 
the digital counting of RNA copies, SMART-seq3 [8], as well as its miniaturization to 
achieve a high cellular throughput, SMART-seq3xpress [20] and FLASH-seq [19], that 
are not widely available at the moment.

We estimate the reagent cost per cell for scRNA-seq to be similar between LAST-seq, 
SMART-seq, and CEL-seq, when performed in tubes or wells. In terms of the cellular 
throughput, the current version of LAST-seq is limited by the manual pipetting capabil-
ity on 96-well or 384-well plates. We anticipate LAST-seq to be further optimized and 
miniaturized in microfluidic droplets, improving its performance while enhancing its 
cellular throughput, similar to the scaling-up efforts already made for RT/SSS-depend-
ent scRNA-seq methods, such as the 10X Chromium instrument based on the chemis-
try of SMART-seq2 but with UMI attachment, the Drop-Seq technology [11] based on 
SMART-seq2, and the inDrop sequencing [10] based on CEL-seq.
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In this study, LAST-seq was applied to profile the transcriptome of single human 
cells, followed by the estimation of transcriptional burst parameters of individual genes. 
Although a common practice, using the two-state model of transcriptional bursting to 
derive burst parameters from single-cell data is a simplification [59] and could lead to 
inaccuracies. Furthermore, when studying the role of TADs in modulating burst fre-
quency for genes located with the same TADs, only those TADs containing enough 
number of genes with reliably estimated burst parameters were included in our analy-
sis. As a result, the conclusion may not be generally applicable to all the TADs iden-
tified in the human genome, especially the ones containing few expressed genes were 
excluded. Future single-cell studies are needed to further elucidate the role of TADs in 
regulating transcriptional bursting and to investigate the observed temporal correlation 
of transcription activities for genes located across the same TAD boundaries. Single-cell 
RNA-seq with a reduced level of technical noise offered by LAST-seq, combined with a 
high cellular throughput, will be a useful approach to address these questions.

Conclusions
LAST-seq is a new scRNA-seq method offering a high single-molecule RNA capture 
efficiency and detection sensitivity. Instead of performing RT/SSS before RNA amplifi-
cation, LAST-seq directly and linearly amplifies the original ssRNA molecules in single 
cells without prior conversion to double-stranded DNA templates. Utilizing its reduced 
level of technical noise, we applied LAST-seq to study gene expression noise and tran-
scriptional bursting in human cells, revealing a role of TADs in the regulation of tran-
scriptional bursting and the temporal coordination between transcription activities.

Methods
Cell culture

HEK293T cells (ATCC) were cultured in complete DMEM medium (Gibco) containing 
4.5  g/L glucose and 2  mM L-glutamine (Gibco), supplemented with 10% Fetal Bovine 
Serum (FBS) (Sigma-Aldrich) and 100 μg/ml penicillin–streptomycin (PS) (Gibco). The 
eHAP haploid human cells (Horizon discovery Ltd, Cat # C669) [37] were cultured in 
IMDM medium (Gibco) supplemented with 10% FBS and 1% PS. Upon subcloning, hap-
loid human cells were enriched by flow-sorting based on cell size and cultured in the 
presence of 10 μM 10-Deacetylbaccatin-III (Selleckchem) to maintain the haploid status 
[60]. HEK293T was not authenticated. eHAP haploid human cell line was authenticated 
by DNA content staining.

Gene editing

The crRNA targeting SCC4 (Additional file 2: Table S2) was designed by the IDT Alt-R 
Custom Cas9 crRNA Design Tool and annealed to the tracrRNA to form the 100 μM 
crRNA::tracrRNA duplex, followed by a 20-min room-temperature incubation to assem-
ble with the purified Cas9 nuclease (IDT) in a 5 μl reaction volume consisting of 2.1 μl 
PBS, 1.2  μl crRNA::tracrRNA duplex, and 1.7  μl Cas9 nuclease. The resulting Cas9/
gRNA complex was then electroporated into 0.5 million eHAP cells by the SE Cell 
Line 4D-NucleofectorTM X Kit L (Lonza) using the built-in EN-138 program. After a 
48-h incubation, successful SCC4 knockout (KO) was detected by the genome-editing 
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detection kit (IDT). Single haploid human cells were then flow-sorted based on cell size 
into 96-well plates and cultured for 10 days for single-cell clonal expansion. PCR geno-
typing was then performed using half of the cells from each clonal population, with veri-
fied SCC4 KO clones further cultured in 6-well plates, before the final validation of the 
successful KO by Western blot.

PCR genotyping

Cells were washed in PBS and resuspended in 10 μl QuickExtract DNA Extraction Solu-
tion (Lucigen). The cell lysate was then incubated at 65 °C for 10 min, 98 °C for 5 min, 
followed by PCR using Q5 High-Fidelity Master Mix and 0.5 μM corresponding primers 
(Additional file 2: Table S2). The PCR products were analyzed by 10% DNA polyacryla-
mide gel electrophoresis.

Western blot

Cells were washed in PBS and lysed in 30 μl RIPA buffer (Thermo Fisher Scientific) con-
taining protease inhibitor cocktail (Sigma-Aldrich). The cell lysate was then mixed with 
10 μl Laemmli Sample Buffer (Bio-Rad) for a 5-min 95°C incubation, followed by 10% 
SDS-PAGE and transfer to nitrocellulose membrane for immunoblotting analysis. Anti-
Scc4 antibody (Abcam, ab183033) and anti-beta actin antibody (Abcam, ab8227) were 
used as primary antibodies, and Goat Anti-Rabbit IgG H&L (Abcam, ab6721) was used 
as the secondary antibody.

Preparing single‑stranded RNA templates for T7 IVT

To make short ssRNA templates for T7 IVT, 50 μM each of sense strands and anti-sense 
strands (Additional file 2: Table S2) were mixed in equal molar number in the anneal-
ing buffer (20  mM Tris-Ac pH 8.3, 50  mM NaCl, 2  mM EDTA pH 8.0), incubated at 
95°C for 3 min, and slow cooled down to 25°C. To make long ssRNA templates for IVT, 
dsDNA templates containing a T7 and T3 promoter with a 30-nt poly-T element were 
cloned from the PUC18 (template for T1.2K) and LD220 (template for T2.2K), respec-
tively (Addgene). RNAs were then generated by IVT of the dsDNA templates, followed 
by DNase I treatment and RNA column purification (NEB), and finally annealed to the 
linear primer (Additional file 2: Table S2) by a 5-min 70°C denaturation step and imme-
diate cool-down on ice. After the RNA column purification, the annealed products were 
converted to the final long ssRNA templates for T7 IVT, by a 1-h 37°C incubation with 
RNase H and Klenow Fragment  exo− in the presence of dNTP and RNase Inhibitor, fol-
lowed by column purification. To make transcriptomic ssRNA templates for IVT, total 
RNA extracted from the HEK293T cells was annealed to the linear primer and converted 
to the final ssRNA templates, following the same procedure used for the preparation of 
long ssRNA templates for T7 IVT.

IVT of single‑stranded RNA templates

To perform IVT on ssRNA templates, 10  ng ssRNA templates were mixed with 20  μl 
IVT solution (1X RNA Pol Reaction Buffer, 2.5  mM NTPs, 5 U/μl T7 RNA polymer-
ase, 1 U/μl RNase Inhibitor, 0.01% Triton X-100) for incubation at 37°C for up to 16 h. 
IVT products were RNA column purified, DNase I treated, and resolved by 10% urea 
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PAGE or 1.5% agarose denaturing gel electrophoresis, or quantified by RT-qPCR using 
corresponding primers (Additional file 2: Table S2) and the Verso 1-step RT-qPCR Kit 
(Thermo Fisher Scientific) on the QuantStudio 5 Real-Time PCR System (Applied Bio-
systems) with the Delta-Delta Ct method. The assembled IVT reaction without any 
incubation was used as the negative control.

Total RNA and genomic DNA extraction

Total RNA was extracted from HEK293T cells using the Total RNA Miniprep Kit (NEB) 
with an on-column DNase digestion step. Genomic DNA was extracted from HEK293T 
cells using the genomic DNA purification Kit (NEB). The total RNA and genomic DNA 
were Nanodrop quantified. RNA integrity was determined using the Agilent 2100 
Bioanalyzer.

Synthesis and digital quantification of the A60 RNA spike‑in species

Specific regions of 24 ERCC spike-ins with a T7 promoter attachment were synthesized 
(IDT) and amplified using a forward primer annealing to the T7 promoter and a reverse 
primer containing 60 Ts (Additional file  2: Table  S4). The resulting dsDNA templates 
were subject to T7 IVT, and the transcribed RNAs were quantified using the Qubit RNA 
HS Assay Kit (Invitrogen) and the Bioanalyzer RNA 6000 Pico Kit (Agilent). The 24 RNA 
spike-in species were then diluted and mixed into the A60 RNA spike-in mix (Additional 
file 2: Table S5). For digital quantification, the A60 RNA spike-in mix was converted to 
cDNA by oligo-dT60 primed reverse transcription and quantified by the QX200 Droplet 
Digital (ddPCR) system using the QX200 EvaGreen Supermix (Bio-Rad), Droplet Gen-
eration Oil (Bio-Rad), and the corresponding primers (Additional file 2: Table S4). The 
copy number of each A60 RNA spike-in species is reported in Additional file 2: Table S5.

Single‑cell isolation

Single-cell suspensions of HEK293T cells and eHAP human haploid cells were made by 
trypsin dissociation. HEK293T cells were stained by the Zombie Green dye (BioLeg-
end) to exclude dead cells. The eHAP cells were stained by both 10 μg/ml Hoechst33342 
(Invitrogen) and the Zombie Green dye at 37  °C for 15  min to label live haploid and 
G1-phase cells. Single cells were then flow-sorted into 96-well plates with 2  μl lysis 
buffer in each well, using the BD FACSAria Fusion.

LAST‑seq assay

Cellular barcode design

The 6-nt cellular barcodes were designed using the DNABarcodes R package [61] allow-
ing a minimal hamming distance of 3. Barcodes that anneal to the T7 promoter sequence 
were also eliminated. 80 cellular barcodes were selected (Additional file 2: Table S3).

Preparing the LAST‑seq primer

The LAST-seq primer was made by the ligation between a hairpin module and an rU-dT 
module. The hairpin module consists of a looping region, a T7 promoter, a PCR han-
dle, and the UMI and cellular barcode (CB) region. The rU-dT module consists of a 
complementary linker and an rU-dT tail with a 3′-end dideoxycytidine (ddC) blocker 
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(Additional file  1: Fig. S3a). Following a heating and cooling program for the hairpin 
module to form a loop itself, the hairpin module was annealed and ligated with the 
rU-dT module at 16°C for 30 min in a 20 μl E. coli DNA ligase reaction (Additional file 1: 
Fig. S3b). The ligation product was then purified by 10% urea polyacrylamide gel elec-
trophoresis (Additional file 1: Fig. S3c). Specifically, a small piece of polyacrylamide gel 
containing the ligation product was soaked in 400 μl 300 μM NaOAc, incubated on dry 
ice for 15 min and at room temperature for 4 h with a rotator, and ethanol precipitated. 
Finally, the purified LAST-seq primer was quantified by Nanodrop.

Single‑cell lysis

Single cells were flow-sorted into 96-well plates with 2 μl lysis buffer in each well, con-
taining 0.1% Triton X-100, 2 nM LAST-seq primer, 0.1 U/μl RNase Inhibitor, 0.5 mM 
dNTP, 60 pg RNA carriers, and the RNA spike-in (1 μl 1:1000,000 diluted ERCC spike-in 
or 1:20,000 diluted A60 spike-in). The plate was then sealed with aluminum film (Milli-
poreSigma), briefly spun down, and lysed at 65°C for 5 min before placing on ice.

Linear amplification of the single‑stranded RNA molecules by T7 IVT

The single-cell lysate was evaporated at 30°C for 25 min by Eppendorf Vacufuge, resus-
pended in 10 μl (for 10 cells pooling) or 2.5 μl (for 80 cells pooling) buffer containing 
1X NEBuffer2, 0.3 mM dNTP, 1 U/μl RNase Inhibitor, 0.02 U/μl RNase H, and 0.3 U/μl 
Klenow Fragment  exo−, incubated at 37°C for 30 min and then kept on ice. Single-cell 
lysates from 10 or 80 cells were then pooled into one DNA LoBind tube and purified by 
0.5X beads (Aline Bioscience, C-1005–5/50) and 1.3X buffer. Next, the beads were rehy-
drated in 25 μl T7 IVT buffer containing T7 RNAPol Reaction Buffer, 1.25 mM NTP, 1 
U/μl RNase Inhibitor, 5 mM DTT, 5 mM  MgCl2 and 2.5 U/μl T7 RNA Polymerase. After 
incubation overnight at 37°C for up to 16 h, the aRNA products were purified using 0.8X 
beads and 1X buffer, with final elution using 7 μl of nuclease-free water.

Library preparation of the amplified products

Six microliters of aRNA products were mixed with 0.5  μl 10  mM dNTP and 0.5  μl 
25  mM random primers, heated at 70°C for 2  min and cooled on ice, assembled into 
a reverse transcription reaction containing 2 μl 5X first-strand synthesis buffer, 0.25 μl 
20 U/μl RNase Inhibitor, 0.25 μl 0.4 M DTT and 0.5 μl 200 U/μl SuperScript IV (Inv-
itrogen), and incubated at 23°C for 10 min, 50°C for 15 min, 80°C for 10 min. The RT 
products were PCR amplified for 8 cycles by the Q5 High-Fidelity Master Mix and P5/P7 
primers, followed by 0.9X beads purification (Aline Bioscience). The purification prod-
ucts were further PCR amplified, beads purified, and eluted in 11 μl 0.1 × TE to get the 
final library for Illumina sequencing (Additional file 1: Fig. S8).

SMART‑seq
Single-cell mRNAs were amplified by the SMART-seqV4 ultra-low input RNA kit 
(Takara) according to the user manual. Briefly, the single-cell or single-cell lysate was 
distributed into individual PCR tubes containing 5 μl PBS. The lysis buffer containing 
spike-ins was added to the tube, followed by heating and cooling for single-cell lysis. 
mRNAs were converted into cDNA by the SMARTScribe reverse transcriptase and were 
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amplified by 17 cycles of PCR. Libraries were generated using the NEBNext Ultra II 
DNA library prep kit.

Calculation of the detection rate
LAST-seq and SMART-seq were applied to single-cell lysate containing 1  μl ERCC 
(1:1,000,000) spike-in. For each spike-in species, we determined whether it was detected 
or not for each well. The ratio of “detected wells” to “total wells” was calculated as the 
detection rate. The sliding window strategy (zoo v.1.8.9 [62]; window size = 9; step = 1) 
was used to smoothen the data by taking a sliding mean of the detection rates.

CEL‑seq
CEL-seq libraries were generated in accordance with the CEL-seq2 protocol [7]. Briefly, 
10 single cells or cell lysates were distributed into 10 PCR tubes containing 1.2 μl lysis 
buffer with 0.5 μl 1:500,000 diluted ERCC spike-in or 1:10,000 diluted A60 spike-in. PCR 
tubes were heated at 65 °C for 5 min and quickly cooled on ice to lyse cells and anneal to 
the poly-A tail. After reverse transcription and second-strand synthesis, the cDNA from 
the 10 cells was pooled, bead purified, and in vitro transcribed for 13 h. The IVT prod-
ucts were then fragmented by heating and converted to cDNA by reverse transcription, 
followed by 15 cycles of PCR amplification and 2 rounds of bead purification.

Genomic DNA contamination
Total RNA and genomic DNA were extracted from HEK293T cells. LAST-seq and CEL-
seq were performed on 100 pg total RNA and 60 pg genomic DNA, following the proto-
cols above. For LAST-seq, 13 cycles of PCR were used to amplify the final libraries from 
total RNA and genomic DNA. All libraries were quantified by Qubit dsDNA HS Assay 
Kit (Invitrogen). The library yield was presented in Additional file 2: Table S1.

Calculation of minimum free energy
The cDNA sequences of selected genes were downloaded from the Ensembl database by 
BioMart. ViennaRNA [63] and customized scripts were used to calculate and extract the 
minimum free energy, respectively.

Sequencing
Libraries were sequenced on an Illumina NextSeq 550 instrument with a High Out-
put v2.5 reagent kit (Illumina). For LAST-seq and SMART-seqV4 libraries, read1 was 
sequenced for 50 bases, and read2 was sequenced for 25 bases. For CEL-seq libraries, 
read1 was sequenced for 25 bases, and read2 was sequenced for 50 bases.

Sequencing data processing
The sequencing data was converted to fastq format by bcl2fastq v2.20, followed by reads 
trimming using cutadapt v 1.15 [64] with parameters ‘–nextseq-trim = 20 -m 22:14’. The 
zUMIs v.2.9.7 [65] pipeline was used for alignment (GRCh38.p13/annotationv33 and 
ERCC spike-in reference), subsampling, and reads/UMI counting. Reads with more than 
one base below Phred 20 base call scores in the UMI sequence were discarded. UMIs 
were collapsed by sequence identity. Reads were subsampled to an equal depth for data 
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of LAST-seq, SMART-seq, and CEL-seq. Reads mapped to exons were used for down-
stream analysis.

Modeling the technical noise of LAST‑seq
Given the single-molecule capture efficiency of LAST-seq, the quantification of mRNA 
level (X) observes the binomial distribution (B) as follows:

where n denotes the original mRNA level, and p denotes capture efficiency of a single 
mRNA molecule.

The coefficient of variation (CV) represents the technical noise which was computed 
as follows:

where np equals the observed expression level on average. We assumed p = 0.35 as the 
capture efficiency to generate the plot.

Transcriptional bursting kinetics
Single haploid human cells (eHAP) were sequenced to an average depth of ~ 4.6 M reads 
per cell. Empty wells (exon reads < 50,000) and wells with potential contamination (exon 
mapping rate < 50%) were eliminated. One hundred forty-eight WT and 153 SCC4 KO 
eHAP cells were used for downstream analysis. After the batch effect removal by Com-
Bat-seq [66], an established script [33] (https:// github. com/ sandb erg- lab/ txbur st) was 
used to infer the parameters of transcriptional bursting kinetics from the single-cell 
RNA-seq data. Specifically, the two-state model of transcriptional bursting was used to 
simulate the theoretical distribution of the mRNA copy number in individual cells for 
each gene. After reaching the steady state between transcriptional bursting and mRNA 
degradation, the theoretical distribution of the mRNA copy number for each gene in 
single cells, captured at a time snapshot by the scRNA-seq assay, will observe a Poisson-
Beta distribution. The parameters of the Poisson-Beta distribution will reflect transcrip-
tional bursting parameters including Kon, Koff, and Ksyn. As a result, bursting parameters 
could be derived by fitting the mRNA copy number distribution of each gene observed 
by single-cell RNA-seq into the theoretical Poisson-Beta distribution, using the maxi-
mum likelihood inference to generate the best estimates of transcriptional bursting 
parameters Kon, Koff, and Ksyn for each gene. Since all the parameters were estimated 
in the unit of a constant mRNA degradation rate, the final burst frequency (Kon) is still 
in the unit of the mRNA degradation rate while the final burst size (Ksyn/Kon) is not. 
Since the variability in the mRNA degradation rates of individual genes does not con-
tribute much to the estimated bursting parameters [33], a universal mRNA degradation 
rate constant was used in our estimation. The estimated bursting parameters are already 
relatively stable when use the single-cell transcriptome data from a random half of the 
sequenced cells, suggesting enough statistical power to estimate bursting parameters 
given the cell numbers used in our study. Finally, transcriptional bursting parameters 
were estimated for 5156 genes in the WT haploid human cells and 4435 genes in the 
SCC4 KO haploid human cells (Additional file 1: Fig. S6g).

X ∼ B(n, p)

CV = (1− p)/np

https://github.com/sandberg-lab/txburst
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Hi‑C data analysis
The processed haploid human cell Hi-C contact matrix and A/B compartment data 
were downloaded from the 4D Nucleome Data Portal, contributed by Erez Lieberman 
Aiden Lab [67]. TADs were called by HiCExplorer3.7.2 [68] at 100 K bin size resolu-
tion. The TAD boundary was defined as the 5% region of the two neighboring TADs 
spanning across the boundary. The A/B compartment data was converted to the 
bedgraph format by bigWigToBedGraph from UCSC. Gene coordinates were com-
pared to the location of TADs, TAD boundaries, and A/B compartments by BEDOPS 
v2.4.40 [69]. Genes completely covered by those 3D genomic features were used for 
downstream analysis. To compare the Hi-C matrix between the WT cells and SCC4 
KO cells, data from Benjamin D. Rowland lab [55] was visualized by JuiceBox [70].

Comparison of expression levels
To evaluate the transcriptomic changes after SCC4 knockout, the R package BASiCS 
[71] was used to identify genes with differential expression level. Genes with < 0.1 
mean expression level were excluded. A 5% expected FDR was used for the statistical 
test.

Coefficient of variation (CV) of burst frequency
To compare the burst frequency variation of genes in the context of TADs, we calcu-
lated the CV of burst frequency for groups of genes located within the same TAD or 
across the same TAD boundary. The CV was calculated by:

where σ denotes the standard deviation, and µ denotes the mean.
In WT eHAP1 cells, CVs were computed in 59 TADs, each containing at least 8 

genes, and 37 TAD boundaries, each containing at least 4 genes. In SCC4 KO cells, 
CVs were computed in 37 TADs and 32 TAD boundaries, under the same criterion 
of gene number. For the control of randomly picked genes across the transcriptome, 
we computed the CV for a random group of genes, with the group size equal to the 
median gene number in the selected TADs (10 genes) or TAD boundaries (5 genes). 
Finally, to compare the CVs of burst frequency for genes located within TADs, across 
TAD boundaries, and randomly picked control, in both WT and SCC4 KO cells, we 
performed 10,000 bootstraps and plotted the distribution of the median value of the 
CVs for comparison.

Calculation of the Spearman’s rank correlation coefficient between gene pairs
Genes with extremely low expression levels (< 2 transcripts per cell on average) were 
excluded. The transcript level of each gene was normalized by the total number of 
UMIs for each individual cell, in order to normalize the global cell-to-cell variation 
due to the residue extrinsic noise. Correlation coefficients between the mRNA tran-
script levels of gene pairs were calculated, for all gene pairs located in TADs and TAD 
boundaries containing at least a pair of genes. For the control, correlation coefficients 

CV =

σ

µ
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were calculated between the mRNA levels of gene pairs randomly selected from the 
transcriptome. In WT eHAP1 cells, correlation coefficients were computed between 
16712871, 6711, and 987 gene pairs, for the control, for genes in 551 TADs, and for 
genes across 249 TAD boundaries, respectively. In SCC4KO cells, correlation coef-
ficients were computed between 17508403, 7297, and 1064 gene pairs, for the control, 
for genes in 560 TADs, and for genes across 250 TAD boundaries, respectively.
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