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Abstract 

Background: Comparative gene expression studies in apes are fundamentally 
limited by the challenges associated with sampling across different tissues. Here, we 
used single-cell RNA sequencing of embryoid bodies to collect transcriptomic data 
from over 70 cell types in three humans and three chimpanzees.

Results: We find hundreds of genes whose regulation is conserved across cell types, 
as well as genes whose regulation likely evolves under directional selection in one 
or a handful of cell types. Using embryoid bodies from a human-chimpanzee fused 
cell line, we also infer the proportion of inter-species regulatory differences due 
to changes in cis and trans elements between the species. Using the cis/trans inference 
and an analysis of transcription factor binding sites, we identify dozens of transcription 
factors whose inter-species differences in expression are affecting expression differ-
ences between humans and chimpanzees in hundreds of target genes.

Conclusions: Here, we present the most comprehensive dataset of comparative gene 
expression from humans and chimpanzees to date, including a catalog of regulatory 
mechanisms associated with inter-species differences.
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Introduction
Comparative functional genomic studies in primates reveal insight into the evolu-
tion of gene regulation and help us identify genes and pathways that are associated 
with species-specific traits [1–8]. In particular, studies of gene expression in humans 
and other apes allow us to identify regulatory changes that may be associated with 
human-specific adaptations [6, 9–11]. Comparative inter-species studies also allow 
us to identify patterns of regulatory variation that are consistent with the action of 
natural selection. Such patterns suggest functional importance and point to regula-
tory phenotypes that may affect fitness. The inference of fitness-related molecular 
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function is profoundly important, not only to studies that attempt to understand the 
mechanisms of evolutionary change, but also to studies of the genetic and gene regu-
latory basis for complex traits and diseases in humans [5, 8, 11–17].

One goal of comparative genomic studies in primates has been to characterize gene 
regulatory variation across a wide range of tissue types. Comparative genomic stud-
ies are not typically hypothesis-driven; rather, they aim to build comprehensive com-
parative catalogs that can be used to infer function, explore the evolution of different 
regulatory mechanisms, and establish hypotheses based on causal inference between 
genotypes and phenotypes [2–5, 7–9, 11]. Yet, more than two decades after the first 
genome-scale comparison of gene expression in humans and chimpanzees [18], com-
parative genomic data from apes remains limited to just a handful of tissue types [6].

For obvious ethical and practical reasons, only a small number of tissue types can 
be accessed from live humans, and direct experimentation in  vivo is impossible. 
While in  vivo studies are permitted in some primates, ethical considerations force-
fully apply to studies of apes, particularly to studies involving chimpanzees — our 
closest extant evolutionary relatives. Comparative studies in apes must therefore rely 
on opportunistic collection of post-mortem tissues. Efforts to collect a broad array of 
post-mortem tissues from humans have been quite successful [19], but comparative 
genomic studies in humans and chimpanzees have only examined about a dozen dif-
ferent tissues. Moreover, the sample size in nearly all comparative studies in apes is 
quite modest: most studies include just 4–6 donors from each non-human species [4, 
5, 7, 17, 20–33], and in some cases, only a single sample from the non-human species 
was available [18, 34–36]. In the handful of comparative studies that examine more 
than one tissue in apes, multiple tissues are rarely sampled from the same individuals 
[18, 23, 25, 27, 30, 33, 35, 37], resulting in a severe confounding of tissue and indi-
vidual effects on the observed variation in gene regulation (a confounding effect that 
is particularly severe due to the small sample size available from each tissue [7]).

Even if we had unlimited access to post-mortem frozen tissues from apes, we would 
still be unable to study dynamic gene regulation, let alone study how different tissues 
and cell types respond to environmental exposures. Induced pluripotent stem cells 
(iPSCs) from apes provide a way to study gene regulatory dynamics during differen-
tiation or in response to external perturbations [38], but the inefficiency of differen-
tiation protocols limits the number of individuals, cell types, and contexts that can 
be queried in a single experiment. Thus, the scope of comparative studies in apes has 
remained narrow: we are unable to study gene regulation in more than a few tissues 
from apes; we are generally unable to collect samples from enough individuals to map 
and study regulatory quantitative trait loci (QTLs) in non-human apes; we are unable 
to study the dynamics of gene regulation during development; and we are unable to 
study regulatory responses to evolutionarily and clinically relevant exposures.

If we are ever to unleash the power of the comparative paradigm in apes, we require 
an in  vitro system that allows us to dynamically study gene regulation in dozens of 
different cell types and individuals, and in hundreds of different contexts. Here, we 
show that embryoid bodies (EBs) can potentially fulfill these requirements. EBs are 
dynamic, iPSC-derived organoids that contain spontaneously and asynchronously dif-
ferentiating cells from all three germ layers [39].
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We recently used single-cell RNA-sequencing (scRNA-seq) to characterize cellular 
and gene expression heterogeneity in a panel of human EBs, which revealed the presence 
of dozens of differentiating and terminal cell types from multiple different tissues [40]. In 
the present study, we applied scRNA-seq to EBs from three humans and three chimpan-
zees. Despite the small size of our sample, we were able to assemble a comparative cata-
log of gene expression data from more than 70 different cell types per species, including 
differentiating cell types that have never been accessible from frozen tissues. This catalog 
contains nearly an order of magnitude more cell types than have been examined before, 
and three times more comparative data from humans and chimpanzees than all previous 
studies combined.

Using gene expression data from EBs, we identify hundreds of genes that are differen-
tially expressed across dozens of cell types, as well as genes that are broadly conserved. 
We analyze tissue-restricted patterns of differential expression between the spe-
cies, implicating a handful of candidate genes that may underlie functional differences 
between humans and chimpanzees. In addition, we quantify the contribution of cis and 
trans changes to inter-species differences in gene expression using EBs derived from a 
fused human-chimpanzee iPSC line.

Results
Generation of human and chimpanzee embryoid bodies

We generated EBs from three human YRI (Yoruba in Ibadan, Nigeria) and three western 
chimpanzee iPSC lines that were previously validated [38, 41]. From each line, we estab-
lished EBs in three independent replicates (Fig. 1A and Additional file 1: Figure S1; see 
the “Materials and methods” section). We also included a single replicate of EBs from 
three additional human lines of European ancestry to confirm that inter-species differ-
ences are not population-specific.

We formed EBs in micropatterned plates and cultured them for 2 days before trans-
ferring them to suspension culture. On day 21, we dissociated EBs into single-cell sus-
pensions and collected single-cell transcriptomes using 10x Genomics scRNA-seq. To 
prevent systematic biases in transcriptomes due to differences in genome annotation, 
we aligned reads to a curated set of orthologous exons in the human and chimpan-
zee genomes. After filtering (see the “Materials and Methods”), we retained data from 
115,269 cells (a median of 5385 cells from each replicate) in which we detected the 
expression of a median of 3149 genes (Additional file 1: Table S1).

We first verified the presence of cells from the three germ layers in all samples by con-
sidering the expression of SOX17, HAND1, and PAX6 as markers for endoderm, meso-
derm, and ectoderm, respectively (Additional file  1: Fig. S2A). In all samples, we also 
identified cells expressing POU5F1 (Oct4), indicating the presence of undifferentiated 
cells (iPSCs). At low resolution, we identified 11 clusters of cells using Louvain clustering 
in Seurat (Additional file 1: Figure S2B). In all clusters, we found cells from both species, 
with most clusters showing a similar proportion of human and chimpanzee cells (Addi-
tional file 1: Figure S2B and Table S2). We confirmed that cell identity is the major driver 
of variation in expression (Additional file 1: Figure S2C).

To identify cell types within EBs, we considered human and chimpanzee gene expres-
sion data together with previously generated reference data containing cells from EBs, 
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human embryonic stem cells (hESCs), and primary fetal tissues [40, 42, 43]. We labeled 
each of our cells based on its relative position within this reference (Fig.  1B), which 
allowed us to partition cells into meaningful groups for subsequent analyses. In total, 
we identified 86 cell types present in both human and chimpanzee EBs (77 labels trans-
ferred from the reference and nine cell types identified de novo; see Additional file  1: 
Table S3). These represent undifferentiated cells, cells from each of the three germ lay-
ers, and cells that closely resemble extra-embryonic cell types (Fig. 1C). Cells from both 
species are well-distributed across all cell types (Fig. 1D, E).

Differential expression between humans and chimpanzees in 72 cell types

Next, we characterized differential expression (DE) between humans and chimpanzees 
in individual cell types. We excluded cell types that did not contain at least five cells in 
at least two replicates. We generated pseudobulk expression data for each of the remain-
ing 72 cell types and performed DE analysis using a linear mixed model implemented in 

Fig. 1 Human and chimpanzee embryoid bodies are composed of 86 cell types from all three germ layers. 
A Overview of experimental design. EBs were generated in three replicates of six to nine human and 
chimpanzee iPSC lines. After two days in micropatterned plates, EBs were grown in low-adherence plates 
for three weeks before dissociating to single cells and sequencing with 10x scRNA-seq. B UMAP projection 
of all human and chimpanzee single cells after reference alignment. Cells are colored and labeled with the 
reference-assigned cell type. C The UMAP in B colored by germ layer of each cell type. The UMAP in B with 
only D human or E chimpanzee cells
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DREAM [44]. In addition to modeling the effect of species, we included random effects 
for replicate and individual. At a 5% false discovery rate (FDR), we identified DE genes in 
70 cell types. Across all 70 cell types, we identified 59,940 instances of DE genes between 
humans and chimpanzees; 10,457 (72% of all tested) genes are DE between the species in 
at least one cell type, with a range of two (chromaffin cells) to 3712 (early ectoderm) DE 
genes in individual cell types (Additional file 1: Table S4 and Additional file 2: Data S1). 
Effect sizes (log2 fold-change in expression) for DE genes range from -8.9 to 8.4, with a 
mean absolute effect size of 1.4 (Additional file 1: Figure S3 and Figure S4).

We explored the extent to which genes show inter-species DE in more than one cell 
type. To account for incomplete power to detect DE (given that we have only three indi-
viduals per species), we used Cormotif [45] to jointly analyze data from all 72 cell types 
simultaneously. This allowed us to share information across cell types, improving the 
power and accuracy of DE analysis. We identified 13 correlation motifs (cormotifs) of 
DE across cell types (Additional file 1: Table S5 and Additional file 2: Data S1). At a pos-
terior probability of 95%, we identified between 27 and 7095 DE genes in each cell type, 
with a median of 2718. 10,783 genes (74%) were DE in at least one cell type (Additional 
file 1: Table S4). Compared to the underpowered single-tissue analysis, the mean num-
ber of cell types in which each gene was classified as DE increased from 4.1 to 14.7.

Examining the Cormotif results (Fig.  2A), we found that the two largest classes of 
genes are those that are DE between species in all cell types (cormotif 11) and those that 
are not DE in any cell type (cormotif 1). These patterns of DE could indicate different 
degrees of selective constraint. Indeed, we found that the number of cell types in which a 
gene is classified as DE between species is significantly associated with coding sequence 
similarity between humans and chimpanzees (Fig. 2B; p = 2.7 ×  10−6). The ratio of non-
synonymous to synonymous coding mutations across mammals (dN/dS) and the loss-
of-function observed/expected upper bound fraction (LOEUF) [46] are also positively 
associated with the number of cell types in which a gene is classified as DE (Fig. 2C, D; 
dN/dS p =  10−13; LOEUF p <  10−15). We also found that the average effect size correlates 
positively with LOEUF and dN/dS and negatively with coding identity (Additional file 1: 
Figure S5). These observations are consistent with the notion that broad gene expres-
sion differences between humans and chimpanzees are generally associated with relaxa-
tion of evolutionary constraint. For a subset of broadly DE genes, it may be the case that 
directional selection has favored a new regulatory pattern. In support of this, we found 
that genes targeted by human accelerated regions (HARs) are also DE in a greater num-
ber of cell types (Fig. 2E; p = 3.7 ×  10−5).

Genes with conserved expression levels across all cell types are of particular interest, 
as they may shed insight on core functions in both species. Yet, the identification of these 
genes is confounded by statistical power. To confidently classify these genes, we filtered 
non-DE genes by their absolute expression levels (Fig.  2F). We classified hundreds of 
non-DE genes across all cell types, even at relatively stringent filters. For example, non-
DE genes with at least 100 UMIs in at least 10 cell types in both species are enriched 
for core cellular processes, including protein transport and mRNA processing, splicing, 
and transport (Additional file 1: Table S6). As an alternative method of identifying non-
DE genes across species, we assessed the probability that each gene has an effect size 
smaller than 0.5 (“Materials and methods” section; Additional file 2: Data S1). Again, we 
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identified hundreds of genes with minimal changes in expression between species across 
dozens of cell types (Additional file 1: Figure S6).

Beyond genes that are DE in no cell types or all cell types, many of the remaining DE 
cormotifs have tissue-specific patterns. Inter-species DE in specific tissues could be 
driven by tissue-specific expression patterns, where genes may be DE everywhere they 
are expressed. In other cases, a gene may have acquired DE in a restricted set of cell 
types, despite being expressed in additional cell types. To examine these possibilities, 
we considered the expression levels of the genes in each cormotif across all cell types 

Fig. 2 Sharing of differential expression across cell types. A Heatmap of correlation motifs across cell types. 
Cells are shaded according to the posterior probability of differential expression for each cormotif and cell 
type. Columns are clustered by mean gene expression. Inferred germ layers are given in Data S1. Boxplots of 
B Percent coding identity, C dN/dS, or D LOEUF in genes that are DE in zero or increasingly large numbers of 
cell types at posterior probability 0.5. E Boxplot showing the distribution of the number of cell types in which 
genes are DE for HAR targets and non-HAR target genes. F The number of non-DE genes remaining, requiring 
the specified absolute expression cutoffs in at least the given number of cell types. UMAP from Fig. 1B is 
colored to show the G posterior probability of DE for genes in cormotif 13 or H the expression of genes in 
cormotif 13 relative to other cell types (z-score, “Materials and methods” section). Boxplots show expression 
relative to humans in select cell types for I TCF7L2 or J SCG3. Adjacent heatmaps show the median expression 
across all samples from both species
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and compared them to patterns of DE (Fig. 2G, H and Additional file 1: Figure S7). We 
focused on cormotifs exhibiting tissue-specific DE where the genes are highly expressed 
but conserved in other cell types. We then identified genes with cell type-restricted 
acquisition of DE (see the “Materials and methods” section). We identified 3906 genes 
(27%) that are broadly expressed but show cell-type-specific DE between humans and 
chimpanzees (Additional file 3: Data S2).

Tissue-restricted DE could underlie important functional differences between humans 
and chimpanzees. For instance, the transcription factor (TF) TCF7L2 is a WNT modula-
tor associated with human psychiatric and metabolic disorders [47]. TCF7L2 is broadly 
expressed in EBs, but inter-species DE is restricted to neuronal subtypes, where it may 
underlie inter-species differences in neurodevelopment (Fig. 2I and Additional file 1: Fig-
ure S8A-B). Another example is SCG3, an obesity-associated gene [48] for which inter-
species DE is restricted to a few cell types, including acinar (pancreatic) cells (Fig. 2J and 
Additional file 1: Figure S8C-D). This cell-type-specific pattern could underlie inter-spe-
cies differences in digestive activity.

Generation of EBs from tetraploid human‑chimpanzee hybrids

Next, we sought to further characterize mechanisms of inter-species DE. To quantify the 
contribution of cis versus trans regulatory divergence to inter-species differences in gene 
expression, we sequenced single EB cells from a human-chimpanzee fused stem cell line 
[13, 49]. We generated 65,247 fused single-cell transcriptomes from three replicates. 
Upon mapping these cells to the reference data, we observed cells from all 86 previously 
identified cell types (Fig. 3A). We identified DE genes in each cell type using a paired 
Wilcoxon signed-rank test. At a 5% FDR, we observed DE in 67 cell types, with 13,842 
genes classified as DE in at least one cell type (Additional file 1: Table S4).

Fused tetraploid cells contain the complete genome of both the human and chimpan-
zee parental lines; thus, genes from both species share the same trans environment. We 
estimated the proportion of gene expression divergence due to cis by comparing the 
change in gene expression observed between human and chimpanzee alleles in the tetra-
ploid cells, to the change in gene expression observed between the original human and 
chimpanzee diploid cells (Fig. 3B). Inter-species gene expression differences that cannot 
be explained by cis are assumed to be driven by changes in trans. Thus, our measure-
ment of changes in trans includes differences in the intra- and extra-cellular environ-
ment, as well as noise and measurement error. Systematic differences in cell composition 
between species could potentially create different signaling and metabolic environments 
and confound our trans estimates. To test this, we fit a linear mixed model including 
covariates for cell type proportion in each sample (“Materials and methods” section). We 
found that cell type composition explains only a small percent of variation and does not 
significantly affect our estimates of effect size (Additional file 1: Figure S9A-B).

On average, we estimated that 70% of inter-species changes in gene expression are 
due to changes in trans elements (Fig. 3C), though as we pointed out, measurement 
error is expected to contribute to this estimate. Indeed, when we restrict this analy-
sis to the 1000 tests with the lowest error in the estimate of effect size, the propor-
tion of trans regulation is decreased, as expected, to 62% (Fig.  3C). We found that 
changes in trans elements are associated with larger effect sizes (Fig. 3D; p <  10−15). 
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We generally expect trans changes — particularly pleiotropic changes that affect mul-
tiple cell types — to be deleterious, and therefore, rare. However, a trans change that 
affects only one cell type is more likely to persist. Consistent with this expectation, 
we found that trans changes are depleted from genes that are broadly DE between the 
species — that is, the number of cell types in which a gene is classified as inter-species 
DE is negatively correlated with the proportion of DE that is explained by differences 
in trans (Fig. 3E, F; p <  10−15).

We proceeded by arbitrarily classifying DE genes as cis if the mean estimated cis pro-
portion across DE cell types was greater than 75%, or trans if the estimated cis pro-
portion was less than 25%. We found that cis genes are associated with higher coding 
sequence divergence (Fig. 4A; p = 2 ×  10−6), higher dN/dS ratios (Fig. 4B; p = 0.01), and 
higher LOEUF (Fig. 4C; p =  10−15) relative to trans genes. Trans genes are significantly 
enriched for functions related to development and morphogenesis (Additional file  1: 
Table S7), and for many miRNA and TF binding motifs (Additional file 1: Table S8), the 
latter of which suggests a link between changes in expression and upstream regulators. 
For instance, CLDN4 has a trans DE proportion of 93% and is a predicted target of the 
TF CEBPA. Consistently, the pattern of DE across cell types for these two genes is highly 
correlated (Fig. 4D, E and Additional file 1: Figure S10; ρ = 0.88, p = 0.007).

In order to more broadly explore the link between changes in expression and upstream 
regulators, we identified a set of 179 sequence motifs (of 610 from [50]) that are enriched 
in the promoters of trans genes (hypergeometric test; FDR ≤ 0.05). These 179 motifs 

Fig. 3 Allele-specific expression in tetraploid hybrid cells partitions differential expression into cis and trans 
components. A UMAP of hybrid cells after projection onto the space of Fig. 1B. B DE gene effect sizes in the 
hybrid vs. the effect sizes across humans and chimpanzees (for genes DE at p < 0.001). C Boxplot of estimated 
cis proportion in the top 1000 tests with the lowest estimate of standard error versus all other genes. D 
Empirical cumulative distributions of effect size (log2 fold-change from DREAM) for tests with high cis 
proportion (> 0.75), low cis proportion (< 0.25), or neither. E Boxplot of distribution of cis proportion for genes 
DE in increasingly large sets of cell types at posterior probability > 95%. F Boxplot of cis proportion for genes 
DE in more than 80% of tested cell types (at posterior probability > 95%) or all other genes
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correspond to binding sites for 127 TFs, 66 of which are expressed in at least three 
cell types in EBs, and are DE between the species in at least one cell type (Additional 
file 4: Data S3). In cases where these TFs drive inter-species DE, we expect the magni-
tude of DE of the downstream gene target to be correlated with that of the upstream 
TF gene. Indeed, when we correlated the pattern of inter-species DE of each TF with 
every gene that contains the respective binding motif in its promoter, 54 TFs showed 
significant enrichment of smaller p-values than expected (Pearson r; Fisher’s combined 
test; FDR ≤ 0.05; Additional file  4: Data S3). The inter-species DE pattern of these 54 
TFs showed a nominally significant correlation with 3580 putative targets (Pearson r; 
p ≤ 0.05; Additional file 4: Data S3). At a more conservative 10% FDR, there are still 511 
genes whose inter-species DE pattern significantly correlates with 44 TFs (Additional 
file 4: Data S3).

Discussion
We used EBs to create the most comprehensive comparative catalog of gene expres-
sion levels in humans and chimpanzees to date, including single-cell data from 86 
developing and mature cell types across multiple germ layers and tissues. Impor-
tantly, the EB model system allowed us to generate each of these cell types from every 
human and chimpanzee individual using uniform processing, such that we did not 
confound cell type with individual, species, or processing method in our analysis. Our 
balanced study design allowed us to explore gene regulatory divergence at an unprec-
edentedly high cellular and temporal resolution.

Fig. 4 Genes with high cis proportion show evidence of relaxation of constraint. Boxplot showing the 
distribution of A percent coding identity B dN/dS or C LOEUF for genes with a high, moderate, or low cis 
proportion. Boxplots showing diploid expression relative to mean human expression in select cell types for 
D CLDN4 or E CEPBA. Adjacent heatmaps show the median diploid expression across all samples from both 
species
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We confirmed that gene regulatory divergence is ubiquitous across cell types, even 
in closely related species. More than two thirds of tested genes are DE in at least one 
cell type, and in the majority of cell types, there are hundreds to thousands of DE 
genes between the species. We identified thousands of genes that are DE in a subset 
of the cell types in which these are expressed, which suggests that there are quite a 
few functional changes in tissue-specific gene regulation between the two species.

We were somewhat surprised to find a large subset of genes whose expression is 
conserved in all of the cell types we were able to study. We did not expect such a large 
fraction of genes to be regulated in a similar way in humans and chimpanzees in over 
70 different cell types, as this requires that the regulation of these genes is of sufficient 
functional importance in all of these cell types to evolve under relatively strong con-
straints. Of course, it is possible that with data from more individuals, we would find 
that a subset of the “generally conserved” genes are in fact DE between the species in 
some of the cell types; nevertheless, this observation is intriguing and suggests that 
we should reconsider our assumptions regarding the degree of context-specific gene 
regulation.

Turning our attention to regulatory mechanisms, the use of fused cell lines allowed 
us to assess the relative contribution of cis and trans changes to regulatory evolution 
– an approach that has not been feasible in primates until recently. We found that 
cis changes are common and can impact any number of cell types, as expected given 
the potential for spatial and temporal specificity of cis elements. Our observation that 
trans changes are associated with inter-species DE in fewer cell types than cis changes 
may seem counterintuitive, because one expects cis changes to be more specific than 
changes in trans. However, trans changes are more likely to be associated with pleio-
tropic deleterious outcomes than changes in cis. Thus, while trans changes are likely 
more exposed to negative selection, they may persist if their impact is restricted to 
a small number of cell types and thus drive the observed correlation between the 
breadth of DE and the proportion of trans.

We also found that fused lines help to identify putative regulatory relationships 
between genes. By combining correlated patterns of DE across cell types with bind-
ing motif enrichment in the promoters of trans-regulated DE genes, we demonstrated 
that CEBPA may drive tissue-specific differential expression of CLDN4. We extended 
this analysis to identify 54 differentially expressed TFs that may have highly pleio-
tropic effects. These TFs have tissue-specific DE patterns that are nominally corre-
lated with target genes, representing approximately a third of all DE genes. Of these 
54 TFs, however, only 11 have an estimated cis proportion greater than 50%. This 
indicates that there are more upstream drivers of DE that are not detected through 
this approach. While this analysis was restricted to promoters, future studies includ-
ing chromatin accessibility data could extend the motif search into cis regulatory ele-
ments. Similarly, this work was restricted to counts of polyadenylated transcripts, and 
thus cannot assess the role of alternative regulatory mechanisms such as splicing or 
microRNA expression. Future studies in hybrids could explore the contribution of 
these alternative mechanisms to cis and trans differences in expression.

Collectively, our work validates EBs as a powerful model system for comparative 
studies of gene expression in humans and chimpanzees. The EB system confers several 
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advantages over existing models. First, the use of EBs sidesteps the many pitfalls of 
working with frozen tissues, which have severely limited the scope of comparative stud-
ies in primates. Frozen tissues from non-human apes must be collected opportunisti-
cally, making it difficult to sample broadly across tissues, obtain samples from more than 
a handful of individuals per species, and design unbiased studies that are balanced with 
respect to species, tissue, and individual [7]. Moreover, frozen tissues cannot be used to 
study how gene regulation changes over time or in response to external perturbations. 
While iPSC-derived cell types and organoids provide a way to explore gene regulatory 
dynamics in vitro [12, 14, 16, 49, 51], EBs can be used to efficiently generate multiple cell 
types with a fraction of the effort it takes to differentiate a single iPSC line. Indeed, EBs 
permit the study of gene regulation across dozens of cell types, individuals, developmen-
tal time points, and environmental exposures, which will allow future studies to explore 
gene regulatory divergence in apes in greater detail than has been possible thus far.

In particular, gene expression response phenotypes have not been widely explored 
in apes, even using in vitro models. Understanding how human and chimpanzee cells 
respond to external perturbations can reveal how gene regulatory divergence affects 
transcriptional responses that are relevant to human-specific traits and diseases and 
may reveal functionally important genes and pathways that affect fitness. In a previ-
ous study, we examined the immune response to infection in primary monocytes from 
humans, chimpanzees, and rhesus macaques [29]. We observed that while the regula-
tory response to bacterial infection is largely conserved between species, the regulatory 
response to viral infection is often lineage-specific. For example, we found chimpanzee-
specific immune signaling pathways to be enriched for HIV-interacting genes, which 
could explain why HIV-infected chimpanzees exhibit relatively strong resistance to 
AIDS progression [52].

More recently, we used iPSC-derived cardiomyocytes from humans and chimpanzees 
to examine inter-species differences in response to hypoxia, a symptom of myocardial 
ischemia [12]. Despite differences in myocardial ischemia risk, heart development, and 
other cardiovascular traits between the two species, we observed that the response of 
human and chimpanzee cardiomyocytes to hypoxia was largely conserved. We also 
found that hypoxia-induced transcription factors bind more frequently to conserved 
hypoxia response genes than to chimpanzee-specific hypoxia response genes, suggesting 
that changes to transcription factors or their binding sites might underlie inter-species 
differences in hypoxia (and possibly, differences in myocardial infarction risk). In each of 
these studies, we identified functionally important genes and mechanisms by comparing 
the transcriptional responses of a single cell type to a disease-relevant exposure. The EB 
model system makes it possible to perform similar studies in dozens of cell types at once, 
including transient, developmental cell types that are not accessible from adult tissues.

In summary, EBs are a powerful in vitro model system that can be used to address a 
number of outstanding questions in primate comparative genomics. Our initial explo-
ration of human and chimpanzee EBs resulted in the first comparative database of cis 
and trans regulatory divergence between the species, which includes gene expression 
data from more than 70 human and chimpanzee cell types. Future studies will take full 
advantage of this model by including additional human and chimpanzee cell lines, by 
studying how cis and trans changes interact to drive adaptation and divergence, and by 
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exploring divergent transcriptional responses to biomedically relevant perturbations 
between the two species.

Materials and methods
Samples

In this study, we included six human and three chimpanzee iPSC lines. The three human 
lines were derived from unrelated individuals from the Yoruba population in Ibadan, 
Nigeria (YRI) as part of the International HapMap Collection. These lines were repro-
grammed from lymphoblastoid cell lines and characterized in [41]. Two of these lines 
are female (18,511, 18,858) and one is male (19,160). We included three additional fibro-
blast-derived human iPSC cell lines characterized in [38]. Two of these lines are female 
(H28834, H21792) and one is male (H28126). We included three fibroblast-derived 
chimpanzee iPSC lines, also characterized in [38]. These also included two females 
(C40280, C3651) and one male (C3649). We obtained the tetraploid human/chimpanzee 
hybrid iPSC line (HLI-25) from Dr. Hunter Fraser.

iPSC maintenance

We maintained feeder-free iPSC cultures on Matrigel Growth Factor Reduced Matrix 
(CB-40230, Thermo Fisher Scientific) with StemFlex Medium (A3349401, Thermo 
Fisher Scientific) and Penicillin/Streptomycin (30002Cl, Corning). We grew cells in an 
incubator at 37 °C, 5%  CO2, and atmospheric  O2. Every 3–5 days thereafter, we passaged 
cells to a new dish using a dissociation reagent (0.5 mM EDTA, 300 mM NaCl in PBS) 
and seeded cells with ROCK inhibitor Y-27632 (ab120129, Abcam). Cells have been rou-
tinely screened for mycoplasma (ATCC 30-1012 K and Thermo Fisher M7006).

Embryoid body formation and maintenance

We formed EBs using the STEMCELL AggreWell™400 protocol according to the man-
ufacturer’s directions. Briefly, we generated a single-cell suspension of iPSCs by incu-
bating them for 5 to 13 min with 300 mM NaCl in PBS, followed by gentle pipetting. 
We seeded iPSCs into an AggreWell™400 24-well plate at a density of 1000 cells per 
microwell. We cultured the aggregates in AggreWell™ EB Formation Medium (05893, 
STEMCELL) with ROCK inhibitor Y-27632 for 24 h. After 24 h, we replaced 1 mL of 
the media with fresh EB Formation Medium. After another 24 h, we harvested the EBs 
and placed them on an ultra-low attachment 6-well plate (CLS3471-24EA, Sigma) in E6 
media (A1516401, Thermo Fisher Scientific). We replaced the media every other day for 
the next 19 days, for a total of 21 days of EB culture.

We formed EBs on three separate days. On the first day, we included all six human 
lines and all three chimpanzee lines. For the next two experimental replicates, we 
included all three chimpanzee lines, but only the three YRI human lines.

Embryoid body dissociation

On day 21 post-formation, we dissociated EBs into a single-cell suspension. We washed 
the cells in PBS (Corning 21–040-CV) and then incubated them in 1 mL of AccuMax 
dissociation reagent (STEMCELL 7921) for 10  min at 37  °C. After 10  min, we gently 
pipetted the EBs for 30 s using a clipped p1000 tip. We repeated this every 5 min until 
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we achieved a single-cell suspension, up to a maximum of 35  min. Next, we stopped 
dissociation by adding 5 mL of ice-cold E6 media. We then filtered cells using a 40 μm 
strainer (Fisherbrand 22–363-547). We washed the cells three times using ice-cold 
PBS + 0.04% BSA. Prior to running the cells on the 10X Chromium controller, we mixed 
the cells together, including an equal number of cells from each individual.

Library preparation and sequencing

We generated scRNA-seq libraries using the 10X Genomics 3′ scRNA-seq v3.0 kit. We 
targeted 10,000 cells per lane of the 10X chip. In the first replicate, with nine individuals, 
we initially collected nine 10X lanes (~ 90,000 cells). For the remaining two replicates we 
collected four 10X lanes (~ 40,000 cells). In total, we generated nine libraries from the 
first replicate and four from each of the next two replicates. We performed all sequenc-
ing using 100 bp paired-end sequencing on a HiSeq 4000 at the University of Chicago 
Functional Genomics Core Facility. For replicate 1 libraries, we initially pooled libraries 
1–2 and 6–9 and sequenced on one lane, and pooled libraries 1 and 3–5 on another lane. 
Our preliminary analysis indicated that library 2 was of poor quality and we excluded 
it from further analyses. Libraries 3, 4, and 5 contained fewer cells than expected, but 
otherwise appeared to be good quality. We re-pooled the eight remaining libraries using 
half the amount of libraries 3–5 to account for lower library complexity. We sequenced 
this pool on eight lanes of the HiSeq 4000. We also pooled and sequenced libraries from 
replicates 2 and 3 on one lane each of the HiSeq 4000. After preliminary analysis, we 
performed an additional six and four lanes of sequencing on the HiSeq400 for replicate 2 
and replicate 3 libraries, respectively. For each replicate, the number of sequencing lanes 
was chosen such that we obtained 50% saturation as assessed by 10X cellranger software.

Orthologous exon reference generation

In order to make quantitative comparisons across species that are not biased by differ-
ences in mapping annotation quality across species, we generated a database of orthol-
ogous exons. We followed the general approach of [28, 53] but updated this database 
to use the most recent version of the chimpanzee genome assembly (Clint_PTRv2/pan-
Tro6). Briefly, we mapped the human genome annotation (hg38/Ensembl98) onto the 
chimpanzee genome using three separate BLAT steps. First, we used BLAT on every 
protein-coding human exon to identify the ortholog in chimpanzees. We kept exons that 
had at least 80% sequence identity. For exons with multiple locations at greater than 80% 
sequence identity, we retained the exon that shared the most neighboring exons (within 
100 kb) with the original reference. We also removed exons with indels greater than 20% 
of the exon length. Next, we used BLAT to map these chimpanzee exons back to the 
human genome. We retained exons mapped back to their original location in humans. 
Finally, we used BLAT to map the chimpanzee exons to the chimpanzee genome. We 
retained exons that map back to the original location in the chimpanzee. The resulting 
reference contains 1,077,831 orthologous exons from 19,787 genes.
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Alignment, species assignment, demultiplexing, filters, and normalization of human 

and chimpanzee libraries

We compiled three separate references using the cellranger mkref command from 
10 × Genomics: one human, one chimpanzee, and one combined human and chimpan-
zee reference. Each reference was generated using the appropriate species annotation 
from the orthologous exon database described above. We used cellranger count to map 
reads to each of these three references. We used the combined genome reference to 
assign species to each barcode. We assigned a cell barcode to a species if greater than 
90% of uniquely mapping reads mapped to that species’ genome.

We used demuxlet to assign each droplet to an individual [54]. We used genotypes 
for NA19160, NA18858, and NA18511 from the 1000 genomes project [55]. Genotypes 
for human and chimpanzee individuals H21792, H28126, C3649, C3651, and C40280 
were obtained from Dr. Gregory Wray. We generated genotype calls for the remaining 
individual, H28834, using RNA-sequencing data from [20] and the GATK best-practices 
pipeline for calling genotypes from sequencing data.

We filtered the data to remove droplets that had fewer than 1,000 genes detected. We 
also removed droplets where mitochondrial reads represented more than 20% of total 
reads or fewer than 0.1% of total reads. We processed the data using the SCTransform 
pipeline from Seurat [56] using 5000 variable genes and obtained Pearson residuals for 
all genes.

Reference integration and cell type assignment of human and chimpanzee cells

We have previously reported a joint reference containing cells from human EBs [40] as 
well as cells from a fetal cell atlas [42] and human embryonic stem cells (hESCs) [43]. We 
mapped the human and chimpanzee cells onto this reference. Briefly, we embedded the 
human and chimpanzee cells in the principal component (PC) space of the joint refer-
ence. Next, we used Harmony [57] to correct the PCs of the human and chimpanzee 
datasets while holding the reference PCs fixed.

In order to assign cell type identities from the fetal cell reference, we first assigned 
cluster midpoints (by taking the mean of each harmony-corrected PC) for each cell type 
in the fetal cell atlas as well as hESCs. We then assigned a cell identity to each cell in 
the human and chimpanzee EB dataset by finding the closest reference cluster midpoint 
by Euclidean distance. This resulted in a substantial proportion of cells (47%) that were 
assigned to hESCs, meaning they more closely resembled undifferentiated cells than 
anything within the fetal reference. These cells represent both undifferentiated cells and 
immature or transient developing cell types not present in either reference. To assign 
identities to these cells, we performed unsupervised clustering using the Louvain algo-
rithm (in Seurat, using resolution 0.1). This resulted in 9 new cell types. We then reas-
signed every human and chimpanzee EB cell using the fetal cell reference midpoints, as 
well as midpoints for each of these 9 de novo cell types.

Alignment, filters, normalization, and cell type assignment of hybrid libraries

We performed two separate alignments of the tetraploid human-chimpanzee hybrid cell 
lines using cellranger count. We aligned all of the data to the standard human reference 
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(2020-A, obtained from 10 × Genomics) as well as the combined orthologous exon ref-
erence described above. We used the human-aligned data to filter, normalize, integrate 
with the reference, and assign cell identities. We removed droplets that had fewer than 
2000 genes detected, as well as droplets with fewer than 0.1% or more than 20% of reads 
aligning to mitochondrial genes. We processed the data using SCTransform with 5000 
variable genes, returning residuals for all genes. Using the procedure described above, 
we then aligned our data with the joint reference, including all human and chimpanzee 
data generated in this study. We assigned each hybrid cell the identity of the nearest ref-
erence cell by Euclidean distance in Harmony-corrected PC space.

We used data aligned to the combined human and chimpanzee reference for all 
quantitative comparisons. By default, cellranger discards sequencing reads that do not 
uniquely map to the genome. Therefore, reads that remain after alignment represent 
fragments that can be uniquely assigned to the allele of one species. We retained drop-
lets that passed filters in the human-aligned data. We also transferred relevant metadata, 
including cell type identities, from the human-aligned data.

Differential expression between humans and chimpanzees with DREAM

In order to perform differential expression (DE) analysis, we generated pseudo-bulk 
expression by taking the sum of counts for all cells that came from the same individual, 
replicate, and cell type. We then removed any samples with 5 or fewer cells. For each 
cell type, we filtered genes using the filterByExpr function from the R package edgeR 
[58], setting the variable min.count to 5. We used VariancePartition to assess the effect of 
technical factors such as replicate, sex, and donor cell type (YRI LCL vs CEU fibroblast). 
We found minimal contributions from sex and donor cell type (Figure S2C). We then 
performed DE analysis using DREAM [44] separately in each cell type, setting species as 
a fixed effect and individual and replicating as random effects. We estimated size factors 
using the trimmed mean of M-values (TMM) with singleton pairing and we performed 
cyclic loess normalization.

Estimating the contribution of cell type proportion

To assess the contribution of cell type composition to changes in gene expression across 
species, we performed differential expression testing including PCs for cell type compo-
sition. For each sample, we generated a matrix that contained the proportion of cells that 
fell into each of the 86 previously defined cell types. We then performed PCA on this 
matrix. We found that the first two PCs explained 66% and 22% of the variation in cell 
type composition, respectively. Since these two PCs explained the vast majority (88%) of 
cell type composition differences, we included them as fixed effects in the linear mixed 
model we used to test for differential expression. We ran this analysis for 65 of the 72 cell 
types; the remaining seven cell types could not be analyzed due to high collinearity.

Next, we tested whether cell type composition is a major source of variation in genes 
that we previously identified as DE (5% FDR). We found that PC1 and PC2 explained 
a median of 2% and 1.3% of the variation in gene expression, respectively (Additional 
file 1: Figure S9A). We also found that the effect size estimates for these DE genes did 
not change significantly when the PCs were included in the model (Additional file 1: Fig-
ure S9B).
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Joint differential expression with Cormotif

The package Cormotif [45] uses t-statistics from LIMMA [59], performed in multiple 
conditions, to share information and improve power of DE analysis. The software takes 
normalized gene expression measurements as input. This may be inappropriate for sin-
gle-cell RNA-sequencing projects, where the number of cells per sample may vary by 
more than an order of magnitude. We modified the Cormotif package to accept UMI 
counts as input. To generate t-statistics, our modified package runs limma-voom [60] 
in order to apply precision weights to each sample. We used the same gene filters as 
we used for DREAM. We also used TMM and cyclic loess normalizations. The modi-
fied Cormotif package that implements this is available on github at https:// github. com/ 
kenne thaba rr/ Cormo tifCo unts.

Identification of genes effect size less than 0.5 across species

We calculated the confidence that any particular effect size is less than 0.5 using sum-
mary statistics from the linear mixed model implemented in DREAM. Using the t-sta-
tistic, standard error, and residual degrees of freedom from every test, we calculated 
the probability that the effect size was in the range (− 0.5, 0.5) using the pt function 
in R. When we defined genes with conserved expression across multiple cell types, we 
excluded genes that have effect sizes greater than 0.5 in at least one cell type with prob-
ability 0.95.

Identification of cell type restricted differential expression

To visualize the expression patterns of genes within correlation motifs, we generated a 
cormotif score for each cormotif in each cell. For each cormotif, we first took the prod-
uct of the SCTtransform residuals for each gene and the probability that each gene is 
a member of that cormotif. We then summed these cormotif membership-weighted 
SCTransform residuals for all genes. We then computed z-scores of this metric to visual-
ize distributions of cormotif expression.

To identify single genes with tissue-restricted patterns of DE, we first filtered for genes 
with greater than 95% posterior probability of DE in at least one cell type. Within this 
set, we identified genes that had a posterior probability of DE of less than 5% in at least 
one cell type. To ensure that differential power could not explain the lack of DE in the 
conserved cell type, we required that the conserved cell type have at least 100 total 
observed UMIs for that gene in both humans and chimpanzees.

Differential expression in tetraploid hybrid cells

For every gene and cell type, we performed a paired Wilcoxon signed rank test to com-
pare the within-cell difference between counts of reads assigned to human alleles vs 
chimpanzee alleles. We used the row_wilcoxon_paired function from the matrixTests 
package to implement this [61]. We then adjusted p-values within each cell type using 
the Benjamini–Hochberg procedure [62].

Estimates of cis proportions

To estimate the relative contribution of allele-specific changes (cis changes) to human 
and chimpanzee gene expression divergence, we compared the effect size between 

https://github.com/kennethabarr/CormotifCounts
https://github.com/kennethabarr/CormotifCounts
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humans and chimpanzees to the effect size within tetraploid hybrid cells where the trans 
environment is fixed. We used the procedure outlined in [13, 49]. Briefly, we compute 
the cis component as the absolute value of the log2 fold change between humans and 
chimpanzees measured in hybrid cells, which we denote abs(hybrid.logFC). The trans 
and non-genetic component is the absolute value log2 fold change between humans and 
chimpanzees measured in human and chimpanzee cells, minus the cis component. For 
this, we used the effect size estimate computed by DREAM. We denote the trans and 
non-genetic components as abs(dream.logFC – hybrid.logFC). Thus, the cis proportion 
is given by abs(hybrid.logFC)/(abs(hybrid.logFC) + abs(dream.logFC − hybrid.logFC)).

External data sources

We obtained the percent coding identity between humans and chimpanzees from 
BioMart [63]. Mammalian dN/dS was obtained from a study of 29 mammalian genomes 
[64]. LOEUF was obtained from a study of 141,456 human exomes [46]. Human accel-
erated regions and their targets were obtained from a recently compiled set of 3,171 
regions [65].

Gene ontology and gene set enrichment

We performed gene ontology analysis using the R package topGO [66]. We used the 
Fisher exact test as the statistic and set the nodeSize parameter to 10. We assigned each 
gene to the cormotif for which it had the highest posterior probability of membership. 
We performed gene set enrichments using the package fgsea [67], with the eps param-
eter set to 0. We obtained gene sets from the Molecular Signature Database (MSigDB 
v7.5.1) [68]. For gene set enrichment of genes generally regulated in trans, we ranked 
genes based on the mean trans proportion across all cell types in which each gene was 
DE. We provided this ranking as input to fgsea and used the positive score type.

Identification of transcription factors putatively driving broad changes in gene expression

We obtained the motifs and targets from Xie et al. (2005) from MSigDB v7.5.1 as the 
TFT legacy subset [50]. We filtered the targets to include only the 14,487 genes that were 
tested for DE in this work. Using phyper in R, we performed a hypergeometric test to 
test for enrichment of each target set in our set of trans-DE genes (genes with a mean 
trans-proportion > 75% across all cell types in which that gene is DE at Cormotif pos-
terior probability > 95%). 179 motifs were enriched at 5% FDR. Using their description 
on msigDB, we manually annotated this set of 179 motifs to identify the TF that binds 
to each motif. In cases where the motif is bound by an entire family of TFs, we included 
each member of the family. After annotation, we filtered the set to include TFs that were 
(1) DE in at least one cell type in EBs and (2) expressed in at least three cell types in EBs. 
This resulted in 66 TFs for further analysis.

We then tested the correlation in tissue-specific DE patterns between TFs and their 
putative targets. For each TF, we ran a Pearson correlation between the logFC of the TF 
(computed by DREAM) and the logFC of each putative target that is DE in at least once 
cell type in EBs. To identify which TFs show statistical enrichment for correlated DE 
with their targets, we used Fisher’s method of combining p-values, implemented by the 
sumlogp function in the metap package.
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Statistics

For all correlations reported in the main text, we computed p-values using Spear-
man’s rank-order correlation test, implemented in R with the function corr.test with 
option method = ’s’. For all comparisons of the difference between distributions, we 
computed p-values using the two-sided Mann–Whitney U test, computed in R with 
the function wilcox.test.
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