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Abstract 

Background: RNA profiling technologies at single‑cell resolutions, including single‑
cell and single‑nuclei RNA sequencing (scRNA‑seq and snRNA‑seq, scnRNA‑seq 
for short), can help characterize the composition of tissues and reveal cells that influ‑
ence key functions in both healthy and disease tissues. However, the use of these 
technologies is operationally challenging because of high costs and stringent sample‑
collection requirements. Computational deconvolution methods that infer the compo‑
sition of bulk‑profiled samples using scnRNA‑seq‑characterized cell types can broaden 
scnRNA‑seq applications, but their effectiveness remains controversial.

Results: We produced the first systematic evaluation of deconvolution methods 
on datasets with either known or scnRNA‑seq‑estimated compositions. Our analyses 
revealed biases that are common to scnRNA‑seq 10X Genomics assays and illustrated 
the importance of accurate and properly controlled data preprocessing and method 
selection and optimization. Moreover, our results suggested that concurrent RNA‑seq 
and scnRNA‑seq profiles can help improve the accuracy of both scnRNA‑seq preproc‑
essing and the deconvolution methods that employ them. Indeed, our proposed 
method, Single‑cell RNA Quantity Informed Deconvolution (SQUID), which combines 
RNA‑seq transformation and dampened weighted least‑squares deconvolution 
approaches, consistently outperformed other methods in predicting the composition 
of cell mixtures and tissue samples.

Conclusions: We showed that analysis of concurrent RNA‑seq and scnRNA‑seq 
profiles with SQUID can produce accurate cell‑type abundance estimates and that this 
accuracy improvement was necessary for identifying outcomes‑predictive cancer cell 
subclones in pediatric acute myeloid leukemia and neuroblastoma datasets. These 
results suggest that deconvolution accuracy improvements are vital to enabling its 
applications in the life sciences.
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Background
Single-cell and single-nuclei RNA-sequencing (scnRNA-seq) technologies have revolu-
tionized our ability to quantify cell types and cell states in healthy and disease tissues. 
scnRNA-seq technologies generate cell-type specific transcriptomes, with individual 
cells labeled, enumerated, and molecularly characterized. This, in turn, allows for com-
paring the cell composition of tissues and for associating changes in tissue cell-type 
abundances and both their molecular and clinical parameters. Examples include scn-
RNA-seq assays that helped identify programs for tissue development [1] and regenera-
tion [2] and associated patient outcomes with tumor subclones [3]. scnRNA-seq assays 
helped reveal immune-cell-type composition differences that may dictate responses to 
immune checkpoint inhibition therapies [4], identified tumor subclones that acquired 
drug resistance during treatments [5], and identified cancer cells that adapted to evade 
targeted therapies [6]. scnRNA-seq assays are increasingly enabling research to identify 
therapeutic targets and diagnostic biomarkers in efforts to improve therapies for cancer 
and other diseases.

While scnRNA-seq assays can provide cell-type-specific information at unprec-
edented resolutions, their implementation is associated with challenges that prevent 
their widespread adoption in clinical settings. These challenges include the high cost of 
library preparation and sequencing and the stringent requirements for sample collec-
tion, processing, and storage. Namely, the current cost of scnRNA-seq assays is 10–30-
fold greater than the cost of bulk RNA sequencing (RNA-seq), which effectively prevents 
their adoption at scales previously seen for RNA-seq. Importantly, specialized facilities 
for sample collection and tissue processing are required for accurate profiling, and these 
are not readily available at most hospitals or academic institutions. For example, accu-
rate scRNA-seq profiles require fresh tissue dissociation and cell suspension generation 
at carefully controlled temperatures. Moreover, tissue preservation and cell sorting are 
known to alter scnRNA-seq estimates, with some commonly used methods shown to 
introduce bias by selectively depleting genes and cell types [7–9].

RNA-seq is less challenging to implement in clinical settings, but it only provides 
mean gene expression abundance estimates across cell types. Recently, computational 
deconvolution methods were proposed to infer cell-type abundances from RNA-seq 
profiles using either reference matrices composed of cell-type-specific gene expression 
signatures [10–12] or scnRNA-seq data from the same tissue type [13–16]. In various 
benchmarking efforts, we and others have shown that multiple factors, including data 
transformation, data normalization, and the composition of the reference matrix can 
impact the performance of deconvolution methods [10, 17]. However, given the poten-
tial impact of scnRNA-seq-based deconvolution on advances in the life sciences, there 
remains a need to systematically compare and quantify the absolute accuracies of decon-
volution methods.

Here, we evaluated deconvolution methods in 8 datasets of concurrent bulk RNA-
seq and scnRNA-seq profiles (see Additional file 5: Table S4). These datasets included 
cell mixtures, where cell type abundances and expression profiles are known with high 
accuracy and that could be used to quantify both deconvolution and scRNA-seq expres-
sion estimates, as well as tissues that allow comparing the effects of common preser-
vation protocols. When evaluating deconvolutions of bulk RNA-seq profiles, accuracy 



Page 3 of 22Cobos et al. Genome Biology          (2023) 24:177  

was determined by comparing deconvolution-predicted cell abundances to gold-stand-
ard estimates, where gold-standard estimates were derived from either validated counts 
of the composing cells or the analyses of scnRNA-seq profiles. Surprisingly, our results 
suggested that some methods consistently produced the most accurate cell-abundance 
estimates, irrespective of datasets or data processing.

We hypothesized that concurrent RNA-seq and scnRNA-seq profiling could be used 
to not only evaluate deconvolution methods but also improve deconvolution accuracy. 
To test this, we developed the R package Single-cell RNA Quantity Informed Decon-
volution (SQUID), which combines bulk RNA-seq transformation and dampened 
weighted least squares deconvolution approaches. Analyses of SQUID accuracy sug-
gested that methods that harness the power of concurrent RNA-seq and scnRNA-seq 
profiling can consistently outperform other methods in predicting the composition of 
cell mixtures and tissue samples. Finally, to evaluate the benefit of improved deconvo-
lution accuracy for applications in cancer research, we concurrently profiled pediatric 
acute myeloid leukemia (AML) and neuroblastoma samples by RNA-seq and scRNA-seq 
and tested whether deconvolution methods can predict risk based on the abundance of 
potential high-risk cancer subclones in diagnostic samples. Our results indicated that 
only SQUID subclone-abundance estimates were predictive of outcomes in RNA-seq-
profiled AML and neuroblastoma diagnostic samples. Thus, we concluded that SQUID’s 
deconvolution-accuracy improvement is key to enabling its potential applications in 
diagnostic protocols for these cancers.

Results
To quantify absolute deconvolution performance, we established a framework based on 
concurrent bulk RNA-seq and scRNA-seq or snRNA-seq data across human and murine 
tissues. In parallel, we evaluated the impact of RNA-seq and scnRNA-seq data normali-
zation strategies on deconvolution performance (Fig. 1). While concurrent RNA-seq and 
scnRNA-seq assays can be used to evaluate deconvolution accuracy, they lack controls 
for both true composition and cell-type expression estimates. Namely, divergent esti-
mates from the two assays cannot be resolved, and technical analysis errors may not be 
identified due to missing information. Consequently, accurate and fully resolved decon-
volution-strategy evaluations require fully characterized datasets, where the expression 
profiles and composition of each cell type are known with high degrees of accuracy. To 
accomplish this, we developed a solid tumor model that includes multiple solid-tumor 
cell types, immune cells, and lower-abundance stem cells. We then generated and con-
currently profiled cell mixtures that conform to this model by flow cytometry, RNA-seq, 
and scRNA-seq. Here, we present the results of our efforts to evaluate deconvolution 
methods on cell mixtures and tissue samples and evaluate whether improved deconvolu-
tion accuracy can benefit its potential applications in diagnosing cancer patients.

Cell mixtures characterization

We established six in  vitro cell mixtures that are composed of varying proportions of 
cells from 3 breast cancer lines (T47D, BT474, MCF7), monocytes (Thp1), lymphocytes 
(Jurkat), and stem cells (hMSC). Mixture composition was recorded based on input 
cell counts. Cells from each cell line and cells from each mixture were profiled by bulk 
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RNA-seq in triplicates. Cell mixtures were profiled by flow cytometry in triplicates to 
independently evaluate their composition (Fig. 2A, Supplemental Table 1). The propor-
tions of breast cancer cell lines varied across mixtures, with some mixtures composed 
of predominantly one cell type (e.g., 66% of mixture 1 were T47D cells) and others hav-
ing a balanced composition (e.g., mixture 4). Monocytes and lymphocytes accounted for 
15% of the mixtures, and hMSC abundances varied from 0.5% to 2% (Fig. 2B, Additional 
file 2: Table S1). See Methods for detailed experimental descriptions.

UMAP analysis of mixture scRNA-seq profiles verified the existence of 6 clusters 
with biomarkers that correspond to their six composing cell types (Fig.  2C, Addi-
tional file 3: Table S2). We confirmed breast-cancer cell type identities by integrating 
seven scRNA-seq profiles of breast-cancer cell samples [18], including T47D, BT474, 
MCF7, and four cell lines that were not used in our mixtures (BT483, AU565, HCC70, 
DU4475); see Fig. 2D. Cellular composition estimates based on absolute cell counts 
that were determined during mixture assembly showed high correlations with com-
position estimates by flow cytometry and scRNA-seq: r = 0.97 and r = 0.96, respec-
tively, Fig.  2E and F. However, the correlation between estimates by flow cytometry 
and scRNA-seq clusters was significantly lower (r = 0.92, p < 0.05 by Fisher’s trans-
formation). This suggested that composition estimates by cell counts are the most 
accurate, and flow cytometry and scRNA-seq introduce independent errors to com-
position estimates. Overall, however, these results confirmed the mixture composi-
tion as estimated by cell counting and demonstrated that it is reflected in scRNA-seq 
data with good accuracy. Note that the accuracy of scRNA-seq-derived expression 
estimates of individual cell types was not as good as the corresponding mixture com-
position estimates. Specifically, Pearson correlation of the profiles of the predicted 
T47D, BT474, and MCF7 cells and their respective bulk RNA-seq profiles were 
r = 0.53, r = 0.53, and r = 0.55, respectively; Jurkat and Thp1 had Pearson correlations 
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Fig. 1 We benchmarked data normalizations and deconvolution approaches in datasets with concurrent 
bulk RNA‑seq and scnRNA‑seq profiles (*). Cells were clustered in an unsupervised fashion (**). Gold standard 
abundance estimates (***) for each cell type were obtained by either aggregating cells or nuclei in each 
scnRNA‑seq cluster, immunohistochemistry, fluorescence‑activated cell sorting, or cell counts. Deconvolution 
methods used either full scnRNA‑seq expression profiles or cluster‑specific biomarkers to predict cell‑type 
abundances based on bulk RNA‑seq profiles. Deconvolution accuracies in each sample were assessed by 
comparing predicted abundances from bulk RNA‑seq and gold standard estimates
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of r = 0.66 and r = 0.63, respectively; hMSCs, which were the least abundant cells in 
each mixture, were correlated at r = 0.16 with their bulk profiles. Moreover, restrict-
ing comparisons to the top expressed genes did not improve these correlations (Addi-
tional file 4: Table S3).

Cell mixtures reveal differences in deconvolution accuracy

To evaluate the effects of expression-estimate inaccuracies on the quality of deconvo-
lution, we tested the accuracy of ordinary least squares regression (OLS) in predicting 
mixture composition from its bulk profiles and using either scRNA-seq or bulk-derived 
expression profile estimates for each cell type. Our results suggested that OLS can esti-
mate mixture composition with high accuracy when input expression profile estimates 
are accurate. Namely, using bulk RNA-seq profiles of each cell type, OLS composition 
predictions had Pearson correlations of r = 0.95 with mixture composition estimates by 
cell counts (Fig. 2G). However, when using scRNA-seq-based expression estimates for 
each cell type, this correlation declined to r = 0.78 (Fig. 2H). Note that the correlation 
r = 0.78 is significant at p < 1E − 5, suggesting that, overall, OLS can predict composition 
in our mixtures using scRNA-seq-based expression estimates. However, its deconvolu-
tion accuracy using scRNA-seq-based expression estimates was significantly lower than 
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Fig. 2 Cell mixture design, characterization, and analysis by OLS. A Breast cancer cells (BT474, T47D, and 
MCF7), leukemia cells (THP1 and Jurkat), and human mesenchymal stem cells (hMSCs) were used to generate 
six populations of mixed cells (cell mixtures). Each cell line was profiled individually by bulk RNA‑seq in 
triplicates, and each mixture was profiled by bulk RNA‑seq and flow cytometry in triplicates as well as by 
a 10 × genomics Chromium controller. B Cell mixtures were composed of varying proportions of cancer 
cells, with leukemia cells accounting for 15% and hMSC accounting for 0.5% (M1 and M4) to 2% (M3 and 
M6) of each mixture. C The clusters derived from scRNA‑seq data corresponded to composing cell types, 
as identified by cell‑type biomarkers. D The integration of scRNA‑seq profiles of our mixtures (in gray) and 
scRNA‑seq profiles of BT474, T47D, MCF7, BT483, AU565, HCC70, and DU4475 (Gambardella et al., 2022) 
revealed a significant overlap between profiles of BT474, T47D, and MCF7 cells, while negative controls, 
including BT483, AU565, HCC70, and DU4475, clustered separately. E Cell counts at the time of mixture 
generation were significantly correlated with cellular composition estimates by flow cytometry (r = 0.97) 
and F by scRNA‑seq analysis (r = 0.96). However, the correlation between the estimates by flow cytometry 
and scRNA‑seq was significantly lower (r = 0.92, p < 0.05, Fisher’s transformation). G Ordinary least squares 
regression (OLS) using bulk RNA‑seq profiles of composing cell types estimated the composition of our 
mixtures with high accuracy (r = 0.95). H OLS deconvolution abundance estimates using cell‑type expression 
profiles from scRNA‑seq analysis were also accurate (r = 0.72, p < 1E − 4) but significantly worse (p < 1E − 5, 
Fisher’s transformation)
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when using bulk RNA-seq-based expression estimates. As expected, hMSC composition 
estimates were the least accurate (Fig. 2H).

Having confirmed the quality and validity of the in vitro cell mixtures and associated 
data, we used our benchmarking framework to evaluate deconvolution methods on 
these data (Fig. 3A). We observed substantial differences in performance (i.e., predicted 
abundances versus gold standard) between methods, with dampened weighted least 
squares (DWLS) outperforming the other five methods, irrespective of the bulk RNA-
seq and scRNA-seq normalization strategy. Overall, normalization of the bulk RNA-seq 
data with TPM resulted in better performance compared to TMM, LogNormalize, or 
when no normalization was applied. Normalization of the scRNA-seq-derived reference 
matrix had a lower impact on deconvolution accuracy. All methods performed poorly 
in predicting the abundance of hMSC cells (Fig. 3B). All methods also underestimated 
the fraction of Jurkat cells in several mixtures, but this was most pronounced for CIB-
ERSORT and OLS with a non-negativity constraint (NNLS). In addition, MuSiC under-
estimated the fraction of THP1 cells. Together, these observations demonstrated that, 
in an ideal setting, with concordant scRNA-seq and bulk RNA-seq, deconvolution with 
DWLS leads to the most accurate cell-type abundance estimates.

Variable deconvolution accuracy across human tissues

We studied seven human and murine tissue datasets with concurrent RNA-seq and scn-
RNA-seq profiles. DWLS outperformed the other methods in 6/7 datasets with higher 
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Pearson correlation coefficients and lower root mean squared error (RMSE, Fig. 4A and 
B). The absolute performance of all methods was very high in the remaining dataset 
(Brain, see Fig. 4A and B). Despite DWLS outperforming the other methods, its abso-
lute performance differed substantially across datasets. DWLS performance was high in 
the fresh kidney, AML, NB1, and brain datasets but lower in the NB2, breast cancer, 
and synapse datasets, with average Pearson correlation coefficients above 0.67 and below 
0.4, respectively. The choice of data normalization method impacted deconvolution per-
formance in a subset of datasets, but the impact on performance was typically modest, 
and none of the normalization methods consistently performed better or worse across 
datasets.

Single‑cell storage procedures impact deconvolution accuracy

Procedures to store single-cell suspensions are known to alter cell type abundance esti-
mates by scRNA-seq [7]. To evaluate the impact of cell storage procedures on decon-
volution accuracy, we compared deconvolution performance on two datasets—mouse 
kidney and human breast cancer—with concurrent bulk profiles and technical repli-
cate scRNA-seq profiles of single-cell suspensions derived from alternative tissue pres-
ervation methods. The kidney dataset included scRNA-seq profiles of methanol-fixed, 
cryopreserved, and fresh tissues [19], and the breast cancer dataset included profiles 
of fresh and cryopreserved tissues [20, 21]. We applied deconvolution on the matching 
bulk RNA-seq data using DWLS and FARDEEP—these methods performed relatively 
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well in our tests—and compared predicted cell type abundances to the gold standard in 
each of the scRNA-seq datasets. Both DWLS and FARDEEP showed good performance 
when comparing observed cell type abundances to those in the fresh and methanol-fixed 
kidney tissues, but both performed poorly when compared to the gold standard for the 
cryopreserved scRNA-seq dataset (Fig. 4C). We note that while the overall deconvolu-
tion accuracy for the breast cancer dataset was lower than that of the kidney dataset, 
there remained a significant difference in performance between fresh suspensions and 
cryopreserved suspensions (Additional file  1: Figure S2). Because of the variability in 
deconvolution accuracy, we included a comparison of all deconvolution and normali-
zation methods for the kidney dataset (Fig. 4C and Figure S5). We note that while the 
normalization choice had a relatively small impact on deconvolution accuracy for the 
kidney dataset, normalization may have had a strong effect on the performance of each 
tested method for the breast cancer dataset (Fig. 4A and Figure S2). However, our accu-
racy estimates were dominated by few abundant cell lines and may not generalize.

Transformation of bulk RNA‑seq data with SQUID improves deconvolution accuracy

DWLS consistently outperformed other deconvolution methods in our tests. However, 
its accuracy was poor in several datasets, limiting its potential applications. Note that 
lower accuracy may be due to method-independent factors, including physically dif-
ferent cellular compositions between scnRNA-seq and bulk RNA-seq samples, and 
technical differences in sample processing that results in diverging estimates. Most 
importantly, deconvolution accuracy is dependent on accurate gene expression esti-
mates, and—as is the case for our cell mixtures—scnRNA-seq-derived gene expression 
profiles may be imprecise. Indeed, we showed that OLS-based deconvolution using 
bulk RNA-seq profiles of each cell type (Fig. 2G) produced more accurate results than 
deconvolution using scRNA-seq-derived profiles (Fig.  2H) on our cell mixtures. Simi-
larly, deconvolution with DWLS using bulk RNA-seq profiles of each cell type was in 
excellent agreement with mixture composition as estimated by cell counts (Fig. 5A), and 
its performance declined when using scRNA-seq-derived profiles (Fig.  5B). We note 
that the same was observed when estimating mixture abundances using either scRNA-
seq analysis or flow cytometry. However, in all cases, deconvolution with DWLS was 
more accurate than OLS. Relative to cell-count estimated mixture abundances, DWLS 
and OLS predictions had r = 0.98 and RMSE = 0.04 vs. r = 0.95 and RMSE = 0.06 when 
using bulk RNA-seq profiles, and r = 0.93 and RMSE = 0.08 vs. r = 0.78 and RMSE = 0.12 
when using scRNA-seq-derived profiles, respectively. Based on these observations, we 
attempted to further improve DWLS performance by transforming bulk RNA-seq pro-
files to scRNA-seq vector spaces. This approach, which we coined “SQUID,” employed 
linear bulk RNA-seq transformation followed by dampened weighted least squares, and 
it further improved deconvolution accuracy (r = 0.95 and RMSE = 0.06, Fig. 5C).

To systematically test the benefit of bulk transformation and deconvolution with 
SQUID, we compared the performance of SQUID, DWLS, and OLS for our cell mix-
tures, as well as for pediatric AML, NB1, NB2, Synapse (ROSMAP brain), breast cancer, 
and kidney datasets using a leave-one-out cross-validation strategy. Namely, iteratively, 
concurrent RNA-seq and scnRNA-seq profiles of all but one of the samples were used 
to predict the composition of the remaining sample based on its bulk RNA-seq profile 



Page 9 of 22Cobos et al. Genome Biology          (2023) 24:177  

(Fig. 5D). Our results suggested consistently and significantly improved prediction accu-
racies with SQUID. Comparisons of SQUID accuracy with the other methods, including 
DWLS, CIBERSORT, FARDEEP, RLR, NNLS, MuSiC, and Bisque (Additional file 1: Fig-
ure S6) without cross validation—analogous to Fig. 4 comparisons—are given in Addi-
tional file 1: Figures S2-6.

Deconvolution of pediatric AML and neuroblastoma dataset with SQUID

To assess the utility of deconvolution on bulk RNA-seq of clinical samples, we focused 
on profiles of pediatric AML and neuroblastoma samples. Large-scale clinical and bulk 

Fig. 5 Mixture deconvolution with transformed RNA‑seq data. A DWLS deconvolved the composition 
of our mixtures with near‑perfect accuracy when given the bulk RNA‑seq expression profiles of each cell 
type (r = 0.98, RMSE = 0.04) and B with high accuracy when using cell‑type expression estimates from 
scRNA‑cluster profiles (r = 0.93, RMSE = 0.08). C SQUID deconvolution accuracy, relative to cell counts, when 
using cell‑type expression estimates from scRNA‑cluster profiles (r = 0.95, RMSE = 0.06) was significantly 
better than DWLS (p < 2E − 4, Fisher’s transformation). D Deconvolution accuracies of concurrent RNA‑seq 
and scnRNA‑seq profiled tissues using SQUID, DWLS, and OLS, as assessed by Pearson correlation and root 
mean square error (RMSE)
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RNA-seq profiles are available for both these tumor types from the TARGET consor-
tium, including the profiles of 181 pediatric AML [22] and 161 neuroblastoma [23] 
patient samples. We profiled paired diagnostic pre-treatment and relapse samples for 
6 AML patients using concurrent RNA-seq and scRNA-seq assays, and we profiled the 
expression of 14 neuroblastoma samples using bulk RNA-seq; note that we previously 
reported on the scRNA-seq profiles of the 14 neuroblastomas [24] and used it here to 
evaluate deconvolution accuracy (the NB1 dataset). Pre-treatment AML samples were 
expected to be enriched for chemosensitive cancer cells, while relapse AML samples 
were expected to be enriched for chemoresistant cancer cells [25]. We used predicted 
cell types and expression profiles from these scRNA-seq data to deconvolve RNA-seq 
profiles of TARGET AML and neuroblastoma diagnostic samples.

Paired diagnostic-relapse pediatric AML samples were collected to identify chemore-
sistant tumor subclones. After integration and clustering (Fig. 6A), we sought to identify 
AML subclones (clusters) that are present before treatment and expand at relapse. We 
found one AML cluster that included diagnostic and relapse cells from at least half of the 
patients and expanded at relapse. We refer to this subclone as the AML expanding sub-
clone, or AML-X for short (Fig. 6B). We used SQUID, DWLS, CIBERSORTx, and OLS to 
predict the composition of TARGET AML samples from chemotherapy trials AAML03P1 
(40 patients), AAML0531 (171 patients), and CCG-2961 (24 patients). We then used the 
predicted abundance of AML-X cells in each diagnostic sample to predict patient outcomes 
by survival analysis. Note that AAML03P1 and AAML0531 patients were treated with a 
variety of chemotherapy and CD33-inhibitor combinations, and the earlier CCG-2961 
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Fig. 6 SQUID‑predicted cell‑type abundances identified outcomes‑predictive subclones in pediatric AML 
and neuroblastoma diagnostic biopsies. A Clusters identified in scRNA‑seq profiles of paired diagnostic and 
relapse samples from 6 pediatric AML patients included the cluster AML‑X. B AML‑X cells were present in 
the diagnostic biopsies of 3 patients and their abundance increased at relapse. C SQUID‑predicted AML‑X 
abundances in TARGET‑profiled diagnostic AML biopsies were predictive of patient outcomes. D The cancer 
lncRNAs MALAT1 and NEAT1 and E their direct targets were upregulated in AML‑X and were predicted to 
regulate chemoresistance in AML. F Clusters identified in scRNA‑seq profiles of neuroblastoma samples 
included NB‑s1 and NB‑s2. G SQUID‑predicted abundances of both NB‑s1 and NB‑s2 in TARGET‑profiled 
diagnostic biopsies were predictive of patient outcomes. H Upregulated genes in NB‑s1 included SEMA3D 
and HRAS, and upregulated genes in NB‑s2 (I) included SEMA3D and other semaphorin family members
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patients were treated by combinations of chemotherapy and anthracyclines. Abundance 
estimates by DWLS, CIBERSORTx, and OLS were not predictive of outcomes. However, 
cell-type abundance estimates by SQUID suggested that diagnostic samples whose com-
position included at least 5% AML-X cells had significantly worse outcomes (p = 1.90E − 3, 
Kaplan–Meier estimator, Fig.  6C). SQUID composition estimates were also the only 
ones that were predictive of survival by Cox regression (p = 6E − 4, compared to p = 0.07, 
p = 0.41, and p = 0.68 using DWLS, CIBERSORTx, and OLS, respectively). Note AML-X 
cells accounted for ~ 10% of the AML cells in the three scRNA-seq-profiled diagnostic sam-
ples with AML-X cells; this composition estimate was consistent with SQUID estimates in 
TARGET diagnostic samples after accounting for tumor purity (Additional file 6: Table S5). 
The most upregulated genes in AML-X were MALAT1, NEAT1, and ZEB2 (Fig. 6D). The 
long non-coding RNAs NEAT1 and MALAT1 co-localize in Chr11Q13.1, are co-expressed 
in pediatric AML, and are predicted to transcriptionally co-inhibit hundreds of genes [26, 
27]. Their common targets were significantly downregulated in AML-X (Fig. 6E). Moreo-
ver, NEAT1 has been previously implicated with chemoresistance in cancer [28], and both 
NEAT1 and MALAT1 have been associated with poor prognosis in childhood leukemia 
[29]. In addition, MALAT1 has been shown to post-transcriptionally upregulate ZEB2 in 
cancer [30, 31], and ZEB2 was the third most upregulated gene in AML-X.

To identify neuroblastoma cell clusters that are associated with outcomes, we integrated 
scRNA-seq data across the 14 neuroblastoma samples from the NB1 dataset and identified 
15 cell clusters (Fig. 6F). Each cluster was tested for patient outcomes prediction based on 
abundance estimates by SQUID, DWLS, CIBERSORTx, and OLS using TARGET RNA-seq 
data (Additional file 6: Table S5). The target dataset includes profiles of 161 samples from 
69 clinical trials where patients were treated by combinations of a variety of chemothera-
pies and other therapies, including GD2 and thymidylate-synthase inhibitors. In total, two 
cell clusters were identified to be predictive of outcomes using SQUID abundance esti-
mates (Fig. 6G, Cluster NB-s1 at p = 1.4E − 3 and Cluster NB-s2 at p = 1.0E − 2, Kaplan–
Meier estimator). No cluster was predictive of outcomes using estimates from other 
survival methods: DWLS, CIBERSORTx, and OLS abundance estimates for NB-s1 were 
predictive of survival at p = 0.23, p = 0.95, and p = 0.99, and for NB-s2 at p = 0.34, 0.93 and 
p = 0.99, respectively. Notably, among the top 5 most upregulated genes in cluster NB-s1 
were HRAS, SEMA3D, and H3F3B (Fig.  6H). RAS pathway mutations have previously 
been identified in relapsed neuroblastomas [32]. More recently, upregulation of H3F3B has 
been associated with the alternative lengthening of telomeres (ALT) phenotype in neuro-
blastoma, which is associated with poor outcomes [33]. Moreover, tumors harboring RAS 
pathway mutations in combination with telomere maintenance mechanisms were shown to 
have extremely poor survival rates [34]. In cluster NB-s2, we observed the upregulation of 
6 members of the semaphorin family, including SEMA3D (Fig. 6I). SEMA3D upregulation 
has been documented in metastatic neuroblastomas and was shown to affect neuroblas-
toma cell migration [35].

Discussion
Profiling technologies at single-cell resolutions are enabling efforts to characterize the 
cellular composition of complex tissues. Single-cell resolution RNA profiling technolo-
gies, including 10X Genomics platforms, are used to characterize the transcriptomes 



Page 12 of 22Cobos et al. Genome Biology          (2023) 24:177 

of individual cells, which, in turn, can be used to identify these cell types in past and 
future assays. Consequently, ongoing large-scale efforts, including The Human Cell Atlas 
[36], single-cell tumor immune atlas [37], and single-cell Atlas in Liver Cancer [38], are 
mapping out healthy and disease tissues and characterizing the transcriptomes of their 
composing cell types. These efforts are building resources that promise to improve our 
understanding of intercellular dependencies between healthy and diseased cells and to 
enable comparisons of tissues at high resolutions. Single-cell atlases promise to help 
interpret future single-cell assays and help maximize knowledge gained from RNA-seq 
profiles. RNA-seq profiles remain by far the most frequently used type of molecular 
data collected in the biological and health sciences, and they account for more pub-
licly available molecular datasets than any other data type. Because of the technical and 
financial challenges associated with scnRNA-seq, RNA-seq is likely to remain the most 
frequently used assay for the foreseeable future. Consequently, computational deconvo-
lution of bulk transcriptomes could serve as an alternative for scnRNA-seq to enumerate 
cell types in complex tissues, including tumor biopsies. We note that while we used the 
scnRNA-seq abbreviation to improve readability, scRNA-seq and snRNA-seq assays can 
produce substantially different expression estimates because the RNA populations pro-
filed by these assays are not the same. Our study was not sufficiently powered to evalu-
ate differences between deconvolutions based on scRNA-seq and snRNA-seq assays, but 
we expect that their expression estimates are sufficiently correlated to allow for accurate 
and consistent cell-type mappings between scRNA-seq and snRNA-seq profiles.

Deconvolution methods that use scnRNA-seq profiles to predict the composition of 
bulk-profiled samples are expected to play major roles in analyses based on single-cell 
atlases. However, their absolute accuracy remains understudied, and their potential 
users face multiple unaddressed challenges. First and foremost, current deconvolution 
methods are heuristics that always produce composition estimates irrespective of accu-
racy. Most methods do not provide accuracy evaluations, and efforts to evaluate accu-
racy will have limited success without assay-specific quality controls, which are not 
always available. Other challenges include the lack of guidance for choosing technical 
parameters in data analysis, including the choice of methods and parameters for data 
normalization, data harmonization, and clustering. These choices dictate the accuracy 
of scnRNA-seq analysis and its use for deconvolution. In summary, the deconvolution of 
RNA-seq profiles based on scnRNA-seq data will benefit from reliable accuracy evalua-
tion and guidance for selecting analysis parameters and methods.

Here, we produced comparative performance analyses of deconvolution methods 
based on constructed cell mixtures with known cell abundances and expression profiles 
and based on concurrent scnRNA-seq and bulk RNA-seq data across a variety of tissue 
types. Our analyses of cell-mixtures samples suggested that current scRNA-seq assays 
using the 10 × Genomics platform can produce excellent sample-composition estimates, 
but these assays may produce relatively poor transcriptome characterizations for each 
identified cell type and particularly for rare cell types. Moreover, our results suggested 
that scRNA-seq assays tend to under-sample adherent cells when non-adherent cells 
are present. We showed that when given accurate cell-type expression profiles, direct 
approaches like OLS for predicting cell-type abundances from bulk profiles produced 
excellent results (Fig. 2G). However, deconvolution using scnRNA-seq-derived profiles 
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using the same approach produced poor cell-type abundance estimates (Fig. 2H). Such 
drops in accuracy may be due to technical and biological biases, including cellular RNA 
content [39], but in this case, they appear to be driven by systematic cell-dependent inac-
curacies in scRNA-seq gene expression estimates. We note that our cell mixture model is 
a simplification of solid tumor samples. Namely, biological samples are often composed 
of more than six cell types, the catalog of cell types composing any two samples is often 
not equivalent, and tumor subtypes are likely to be more closely related than cell lines 
that are derived from unrelated patients. Moreover, in Fig. 2, we focused on the analy-
sis of OLS-based deconvolution, but other deconvolution methods—including MuSiC, 
DWLS, and SQUID—had substantially more accurate abundance estimates than OLS.

Our results suggested that accurate evaluations and performance of scnRNA-seq-
based deconvolution methods for any given context will greatly benefit from the collec-
tion of concurrent scnRNA-seq and bulk RNA-seq data. Namely, bulk RNA-seq profiles 
allowed us to produce upper bounds on the accuracy of deconvolution methods that rely 
on the corresponding scnRNA-seq assays, and the integration of concurrent bulk RNA-
seq in the deconvolution process with SQUID improved deconvolution accuracy for all 
datasets. In addition, we observed substantial and consistent performance differences 
that were associated with library preparation methods, as well as analysis and deconvo-
lution methods. Namely, comparisons of related datasets—e.g., our two neuroblastoma 
datasets—suggested that datasets with few scnRNA-seq profiles lead to worse deconvo-
lution accuracy. We note that while the choice of scnRNA-seq normalization methods 
influenced deconvolution methods performance in some datasets, the best choices var-
ied across datasets and deconvolution methods. For example, while LogNormalize led to 
good performance for most deconvolution methods in our cell-mixture scRNA-seq data, 
it was associated with reduced DWLS accuracy (Fig. 3A). Overall, TPM normalization 
produced some of the most consistent results. However, the resolution of scnRNA-seq 
clustering had a greater influence on deconvolution success. Namely, high clustering res-
olutions could lead to reduced deconvolution accuracy when multiple cell clusters share 
the same cell type and have highly similar transcriptomes, while low cluster resolutions 
could lead to heterogenous cell clusters that are not associated with specific cell types. In 
both cases, cell-type specific deconvolution marker genes were difficult to identify and 
had limited cell-type selectivity. To resolve this, we opted to either merge clusters with 
similar transcriptomes or select resolutions to optimize the accuracy of OLS deconvolu-
tion of concurrent RNA-seq profiles. Both approaches lead to dramatic improvements in 
deconvolution accuracy for all methods.

We developed a deconvolution strategy with substantially improved accuracy using 
concurrent scnRNA-seq and bulk RNA-seq profiles. Jew et al. suggested that the trans-
formation of bulk RNA-seq profiles to scnRNA-seq space could improve the accuracy 
of RNA-seq deconvolution, and their proposed method Bisque [40] combined RNA-
seq transformation and NNLS to predict the composition of RNA-seq profiled samples 
based on scnRNA-seq profiles. However, by combining RNA-seq transformation with 
the dampened weighted least squares strategy employed by DWLS [14], we were able to 
dramatically improve deconvolution accuracy. Indeed, our proposed strategy (SQUID) 
outperformed all other strategies on all datasets with or without cross validation (Fig. 5 
and Additional file 1: Figures S2-6, respectively), and when estimating cell abundances 
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based on IHC, cell counts, flow cytometry, or scnRNA-seq analyses. We note that the 
number of publicly available deconvolution methods is increasing rapidly, and not all 
methods were evaluated here. We selected methods based on their demonstrated accu-
racy in previous studies and based on our ability to integrate them into our benchmark 
implementation. Consequently, because the Jew et al. (2020) implementation of Bisque 
expects raw counts from scnRNA-seq profiles, we could not include it in most of our 
evaluation, and it only appears in comparisons presented in Additional file 1: Figure S6.

To investigate the effects of tissue preservation methods on deconvolution accuracy, 
we evaluated deconvolution methods using scRNA-seq profiles of matched suspensions 
derived from methanol fixed, cryopreserved, or fresh tissues. We showed that decon-
volution based on scRNA-seq profiles of fresh and methanol-fixed tissues can perform 
with good accuracy, but performance based on matched cryopreserved samples was 
markedly worse. These results are in line with observations made by Denisenko et  al. 
that cryopreservation resulted in the loss of proximal tubule (epithelial) cell types, while 
methanol fixation maintained cellular composition [7]. Consequently, cryopreserva-
tion distorted abundance estimates, leading to a poor correlation between the predicted 
and expected cell type abundances. Interestingly, while not as accurate as using fresh 
or methanol-fixed profiles, SQUID predictions based on profiles of cryopreserved sam-
ples were dramatically more accurate than other deconvolution methods. This was due, 
in part, to its employment of RNA-seq transformation, which transformed bulk pro-
files to mirror cell-type depletions observed in scRNA-seq profiles. Thus, while SQUID 
reduced the discrepancy between the concurrent profiles, it did not fully correct scRNA-
seq inaccuracies. We argued that because scRNA-seq profiles can include inaccuracies, 
frameworks to evaluate deconvolution need to include datasets where both expression 
profiles and cell-type abundances are fully characterized, as in our mixture data.

Finally, we showed that improved deconvolution accuracy may be necessary for 
enabling its applications in cancer diagnostics. To evaluate this, we produced concur-
rent RNA-seq and scRNA-seq profiles for pediatric AML and neuroblastoma samples 
and analyzed RNA-seq profiles and clinical annotations from TARGET-profiled sam-
ples. We identified a potentially chemoresistant pediatric AML subclone by compar-
ing scRNA-seq profiles of matching diagnosis and relapse samples, and we generated 
subclone characterizations for neuroblastoma. We showed that only SQUID-predicted 
tumor subclone abundances in diagnostic samples were predictive of patient outcomes. 
Interestingly, while composition estimates by other methods failed to associate subclone 
abundances and patient outcomes in these datasets, the significance of outcomes predic-
tions based on abundance estimates by DWLS, CIBERSORTx, and OLS mirrored their 
estimated accuracy in our benchmark. Namely, following SQUID, DWLS-predicted 
abundance estimates for our candidate high-risk subclones were the most predictive of 
outcomes, while OLS estimates were the least predictive.

Conclusions
We identified key prerequisites and provided guidance for producing accurate deconvo-
lution of RNA-seq profiled tissues based on scnRNA-seq datasets. We found that scn-
RNA-seq-based composition estimates are often inaccurate for cryopreserved tissues, 
that expression-normalization methods should be selected in a context-specific manner, 
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and that cell-clustering resolutions should be carefully calibrated. Our analyses sug-
gested that, albeit at a marginally higher cost than scnRNA-seq profiles alone, concur-
rent RNA-seq and scnRNA-seq profiles could be used to optimize normalization and 
clustering, evaluate the accuracy of deconvolution methods, and improve deconvolution 
accuracy. Taken together, our results suggested that RNA-seq deconvolution using scn-
RNA-seq data can produce accurate cell-type abundance estimates and that atlases of 
concurrent RNA-seq and scnRNA-seq profiles could be used to reevaluate the composi-
tions of other RNA-seq datasets.

Methods
Deconvolution benchmarking framework

For those scnRNA-seq datasets for which no metadata or cell label information was 
available, cells were clustered together in an unsupervised fashion using Monocle3. 
Specifically, we sequentially applied the “preprocess_cds” (num_dim = 100, norm_
method = “log,” method = “PCA,” scaling = TRUE), “reduce_dimension” (max_compo-
nents = 2, umap.metric = “cosine”, umap.fast_sgd = FALSE, preprocess_method = ‘PCA’) 
and “cluster_cells” (k = 20, resolution = NULL, partition_qval = 0.05, num_iter = 1) 
functions; see our GitHub repository for detailed code, functions, and parameters. Dur-
ing quality control and preprocessing, we removed cells with extreme mitochondrial 
or ribosomal content (top 0.5% and bottom 0.5%), and we kept detectable genes that 
were expressed in at least 10 cells or 1% of the cells in any of the clusters. Next, cluster-
specific gene expression profiles were obtained by averaging raw gene expression values 
across all cells from a given cluster, and cluster-specific markers were obtained using the 
FindAllMarkers function from Seurat v4.0.4 with the threshold of log2(1.5) and using a 
Wilcoxon test on TMM normalized scnRNA-seq data. Gold standard abundance esti-
mates were obtained either as the sum of individual cells or nuclei present in each clus-
ter or by immunohistochemistry/Fluorescence-activated Cell Sorting (FACSymphony) 
cell counts; see Fig. 1 for a schematic representation of the benchmarking framework.

We refer to cell clusters as cell types throughout the manuscript, even when no anno-
tations are available. Cell-type specific gene signatures were used to establish reference 
matrices for the deconvolution of their matching bulk RNA-seq data using CIBERSORT 
[11, 41], FARDEEP [42], RLR [43], and NNLS [44]. Alternatively, deconvolution of bulk 
RNA-seq data was performed with OLS, DWLS [14], and MuSiC [15], which directly 
use the scnRNA-seq data as the reference. Of note, MuSiC was tested in two different 
ways: (1) using the markers found by FindAllMarkers described above and (2) without 
including any prior marker information (markers = NULL). We used OLS and NNLS as 
naïve deconvolution tools to benchmark all other methods. Performance was quantified 
by calculating the Pearson correlation coefficient and RMSE between the cell-type pro-
portions observed by deconvolution and the expected cell-type proportions that were 
either known or derived from scnRNA-seq.

Deconvolution with OLS

OLS was used to solve a simple set of linear equations that seeks to find the optimal 
composition P of a set of mixtures with bulk RNA profiles Z to minimize the differ-
ence between the observed bulk RNA-seq profiles and the abundance-weighted sums 
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of the expression profiles of composing cell types X . Namely, given bulk expression pro-
files {zi ∈ Z} of each mixture, and expression estimates for each cell type 

{
xj ∈ X

}
 , we 

sought to identify pij ∈ P across all mixtures i and cell types j to minimize the difference 
between the bulk RNA-seq profile and the mean expression of profiles of the composing 
cells (Eq. 1).

Transforming and deconvolving bulk RNA‑seq profiles with SQUID

We present SQUID, a conversion-dampened weighted least squares strategy to trans-
form and deconvolve bulk RNA-seq data into scnRNA-seq vector spaces. SQUID was 
intended to test the potential of using concurrent RNA-seq and scnRNA-seq profiling 
to improve deconvolution accuracy. Similar to Bisque [40], SQUID learns a transforma-
tion function of bulk RNA-seq profiles Z to the concurrent pseudobulk profiles Z , where 
pseudobulk scnRNA-seq profiles are estimated as mean abundance across cells and sam-
ples. Then, the bulk RNA-seq expression profile of each gene g with non-zero expression 
in both the bulk and scnRNA-seq profiles is mapped to its pseudobulk profile according 
to Eq. 2, where ẑg ,i and zg ,i are the pseudobulk and bulk profiles of gene g in sample i , 
respectively. The coefficient ag and constant bg form the linear transformation for each 
gene g.

This linear transformation was applied to all bulk RNA-seq profiles to transform them 
to scnRNA-seq space. This transformation minimizes the deviation between a sample’s 
pseudobulk and bulk RNA-seq profiles by mapping the bulk RNA-seq expression profile 
of each gene to the magnitude and deviation of pseudobulk scnRNA-seq values. Equa-
tion 2 also applies when converting bulk RNA-seq profiles with no concurrent scnRNA-
seq profiles. However, when testing deconvolution by SQUID on our datasets, which 
included concurrent bulk RNA-seq and scnRNA-seq profiles for each sample, we used 
a left-one-out strategy. Namely, the linear transformation was optimized using all but 
one sample and was then used to transform the bulk RNA-seq profile of the remaining 
sample. This transformed profile was then used to predict the composition of the sample 
with the dampened weighted least squares strategy DWLS [14]. Deconvolution perfor-
mance was determined using cell counts for our cell mixtures and estimates from sin-
gle-cell profiles for patient samples with concurrent bulk and scnRNA-seq profiles (gold 
standard). We note that cell counts are the most accurate and unbiased estimates for our 
cell mixtures, and single-cell estimates are our only estimates for the true composition 
of patient samples. Comparisons of SQUID and other deconvolution method accuracy 
without cross validation are given in Additional file 1: Figures S2-6.

We note that the proposed linear transformation in Eq. 2 is not unique. Indeed, Bisque 
proposed an alternative transformation that could be used more generally (Eq. 3). We 
tested this formulation and found that it performed equivalently to the formulation 

(1)argmin
P

∑
i

(
zi −

∑
j pijxj

)2
for mixture i and cell type j

(2)argmin
a,b

∑
i

(
ẑg ,i −

(
agzg ,i + bg

))2
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given in Eq. 2. Namely, let ẑg  denote the average expression estimate of gene g in pseu-
dobulk profiles Ẑ and zg  the average expression of this gene in all bulk RNA-seq pro-
files—including the matching and other bulk RNA-seq and profiles Z , and let σ̂g and σg 
denote their respective standard deviations. Then, the transformed profile for gene g in 
sample i ( −→z g ,i ) is given in Eq. 3. Note that this formulation does not require RNA-seq 
and scnRNA-seq profiling to be concurrent.

Following transformation using Eqs. 2 or 3, SQUID adopts a simplification of DWLS’s 
strategy to deconvolve transformed bulk profiles. SQUID does not require signature 
gene selections and instead uses all genes with nonzero expression in both the trans-
formed bulk and scnRNA-seq profiles. The objective function is identical to the one 
employed by OLS (Eq. 1), however, here, the SQUID process seeks to identify p̃ij ∈ P̃ 
that minimizes the discrepancy between transformed bulk RNA-seq profiles −→Z  and the 
abundance-weighted sums of the expression profiles of composing cell types X . Conse-
quently, following the iterative process proposed by Tsoucas et  al., SQUID minimizes 
this dampened weighted discrepancy until convergence is reached at iteration l , so that 
�P̃(l) − P̃(l−1)� ≤ 0.01 [14].

A five‑step approach to determine the number of clusters in scRNA‑seq data

For those datasets for which no metadata was available, we performed the following five-
step iterative process.

(1) Use Monocle3 clustering (see Additional file 1: Figure S1A), which does an internal 
log transformation and library size normalization, to assign initial labels to all cells 
in each scRNA-seq dataset.

(2) Compute a mean expression profile per cluster using log-transformed and library-
size normalized data from Monocle3.

(3) Compute all pairwise Pearson correlations across the mean expression profiles.
(4) Combine all non-overlapping cluster pairs with the highest correlation where Pear-

son correlation r >  = 0.95 (see Additional file 1: Figure S1B).
(5) Modify the clustering information inside the metadata file (that we labeled as “phe-

noDataC”).

Cell mixture construction

Tissue culture

MCF7 cells were purchased from the Tissue Culture Core at Baylor College of Medi-
cine. BT474, T47D, and THP1 cells were purchased from ATCC; Jurkat (J32) cells were a 
gift from Dr. Andras Heczey; hMSC cells were purchased from Lonza (PT-2501). MCF7 
cells were cultured in DMEM with 10% FBS; T47D cells were cultured in RPMI with 
10% FBS; BT474 cells were cultured in DMEM with 10% FBS and 15 μg/ml insulin; Thp1 
and Jurkat cells were cultured in RPMI with 10% FBS and 1% L-glutamine; hMSCs were 

(3)−→
z g ,i = ẑg +

σ̂g

σg
(zg ,i − zg )
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cultured using the MSCGM BulletKit from Lonza. All cell lines were cultured with 1% 
penicillin–streptomycin (ThermoFisher Scientific) and maintained at 37 °C in a humidi-
fied incubator with 5%  CO2. All cell lines were confirmed to be free of mycoplasma 
contamination by DNA staining with Hoechst (ThermoFisher Scientific) or Syto 82 
(ThermoFisher Scientific). DMEM, RPMI, and L-glutamine were purchased from Ther-
moFisher Scientific, and FBS and bovine insulin were purchased from Sigma. All cell 
lines were authenticated by the Cell Line Authentication Testing Division of Labcorp.

Mixture assay

Adherent cells were harvested in a proliferative state. Cells were washed in PBS, trypsi-
nized, collected, and resuspended in HBSS (ThermoFisher Scientific) with 10% FBS. 
Suspension cells were collected during the log growth phase and resuspended in HBSS 
with 10% FBS. All cells were maintained on ice after harvest and counted on a Countess 
II FL (Life Technologies). Viability was high for all cell lines, and the average of three 
counts was used to calculate cell concentrations. Per mixture, 16 K cells were submitted 
for scRNA-seq, 500 K cells were prepared for bulk RNA sequencing, and 50 K cells were 
prepared for flow cytometry.

Bulk RNA isolation and sequencing

Cell pellets of approximately 500 K cells were prepared in triplicates and flash frozen at 
the time of the experiment. RNA was extracted using the Qiagen RNeasy Plus mini kit 
with a genomic DNA elimination column (74,104). RNA quality was confirmed based on 
RIN, and 150 bp paired-end mRNA libraries were prepared by Novogene (Sacramento, 
California, USA), who also sequenced libraries at a depth of 20 M reads per sample on 
the NovaSeq 6000 platform (Illumina).

Single‑cell RNA library preparation and sequencing

Single-cell samples were submitted to the Baylor College of Medicine Single Cell 
Genomics Core immediately after preparation. Per sample, 16  K cells were loaded, 
with an expected return of 10  K cells. Single-cell gene expression libraries were pre-
pared according to the Chromium NextGEM Single Cell Gene Expression 3v3.1 kit 
(10 × Genomics). Briefly, cells, reverse transcription reagents, gel beads containing bar-
coded oligonucleotides, and oil were loaded on a Chromium controller (10 × Genomics) 
to generate single-cell GEMs (Gel Bead-In-Emulsion). Full-length cDNA was synthe-
sized and barcoded within each GEM. Subsequently, GEMs were broken, and cDNA was 
pooled. Following cleanup using Dynabeads MyOne Silane Beads, cDNA was amplified 
by PCR. The amplified product was fragmented prior to end-repair, A-tailing, and adap-
tor ligation. Final libraries were generated by amplification. Sequencing of single-cell 
libraries was performed by the Genomics and RNA Profiling Core at Baylor College of 
Medicine. To reach an estimated 20 K reads per cell, samples were sequenced at a depth 
of 200 M reads on the NovaSeq 6000 platform (Illumina).

Flow cytometry

Immediately after cell collection, a portion of each cell suspension was stained with 
Hoechst (10 μM in HBSS) or Syto 82 (5 μM in HBSS) for 10 min at 37 °C. After staining, 
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cells were washed and resuspended in HBSS containing 10% FBS. Stained cells were 
counted twice, and staining efficiency was assessed using Countess II FL. Staining effi-
ciency was nearly 100% in all cell lines, and viability remained high. Count averages were 
used to calculate the number of cells added to each mixture, and 50 K cells were tar-
geted for each flow sample. All flow samples were prepared and analyzed in triplicate. 
For each of the six mixtures (1–6), three flow samples (1A–1C, 2A–2C, etc.) containing 
one Hoechst-stained cell line (either T47D, BT474, or MCF7), one Syto 82-stained cell 
line (either Jurkat, THP1, or hMSC), and four unstained cell lines at identical propor-
tions were generated. Single-stained cells from these samples represented the propor-
tion of that cell line in the corresponding mixture. This strategy (Additional file 1: Figure 
S7) was developed to avoid spectral overlap and to increase our ability to accurately 
quantify positive cells. For each cell line, unstained and single-stained samples were used 
as controls to set voltages and define positive and negative gates. Flow cytometry was 
performed on a FACSymphony (BD Biosciences). Forward and side scatter areas were 
compared to select cells and exclude debris. Then, forward scatter height and area were 
compared to select single cells and exclude doublets. Single cells were sub-gated using 
positive and negative cut-offs for Hoechst (405 nm laser, BV421 channel) and Syto 82 
(561 nm laser, PE channel). Gates were set independently for each cell line due to large 
differences in cell sizes and to maximize the number of single-stained cells. Once set, 
these gates were applied universally to all mixtures. Comparison of BV421 and PE areas 
demonstrated few double-positive cells and three distinct populations: unstained cells, 
BV421-positive cells, and PE-positive cells. Data were exported and analyzed using 
FlowJo v10.8.0 (BD Biosciences). Average flow proportions were compared to expected 
cell counts and showed a high correlation.

Pediatric AML and neuroblastoma profiling

Paired diagnosis-relapse samples from 6 Pediatric AML patients that were enrolled in 
AAML1031 were profiled by CITE-seq, including scRNA-seq (Immunai), labeling RNAs 
with a 10 × Genomics Chromium controller and sequencing with Illumina Novaseq 600. 
In total, we profiled a total of 15,857 genes in 27,687 cells, with an average of 4,644 UMIs 
and 1432 gene features per cell (RNA only). Cells with mitochondrial gene content above 
10% and fewer than 500 UMIs were excluded. AML samples were treated with RNAlater 
and profiled using Illumina Novaseq 600 with 25 M reads per sample. Similarly, patients 
in the NB1 dataset were profiled by bulk RNA-seq with Illumina Novaseq 600 with 25 M 
reads per sample.
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