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Abstract 

Structural variant (SV) calling belongs to the standard tools of modern bioinformat-
ics for identifying and describing alterations in genomes. Initially, this work presents 
several complex genomic rearrangements that reveal conceptual ambiguities inher-
ent to the representation via basic SV. We contextualize these ambiguities theoreti-
cally as well as practically and propose a graph-based approach for resolving them. 
For various yeast genomes, we practically compute adjacency matrices of our graph 
model and demonstrate that they provide highly accurate descriptions of one genome 
in terms of another. An open-source prototype implementation of our approach 
is available under the MIT license at https:// github. com/ ITBE- Lab/ MA.

Keywords: Nested SV, Complex SV, Alignment, MEMs, Seeds, Pan-genomes, 
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Background
Structural variant (SV) calling is a popular technique for discovering and describing 
genomic differences and rearrangements. Examples of the application of SV calling are 
phylogenetic analyses and the discovery of genetic disorders. SV callers can be classified 
as alignment-based, assembly-based, and meta-callers. Alignment-based callers rely on 
short reads (Illumina) or long reads (PacBio, Oxford Nanopore) [1–4]. Here SV callers 
exploit one or several types of evidence for SV detection such as (1) deviations from 
the expected distance between paired reads (read-pair-based calling), (2) the locations of 
supplementary alignments for chimeric reads (split-read-based calling), and (3) regions 
with particularly high or low coverage on the reference genome regarding alignments. 
Assembly-based callers detect SV by comparing assemblies, e.g., in [5–8]. Finally, meta-
callers [9–11] try to achieve high accuracy and high recall rates by combining the output 
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of other SV callers. Overviews presenting all these types of SV callers together with their 
characteristics and their respective performances can be found in [12–15].

Our work starts by reporting shortcomings of state-of-the-art read-pair and split-read-
based SV calling. Here we identify ambiguities inherent to the description of genomic 
rearrangements via basic SV [16]. As a solution, we introduce a description of genomic 
rearrangements using skew-symmetric graphs. A highlight of our graph model is a fold-
ing scheme for adjacency matrices that unifies forward strand and reverse strand. The 
general suitability of graphs for the representation of genomic rearrangements is already 
demonstrated in [17, 18]. Furthermore, we inspect the negative side effects of align-
ments on SV calling that result from their path-oriented nature. For circumventing these 
side effects, our skew-symmetric graphs are computed using seeds merely. This seed-
ing is extended by a recursive reseeding technique that takes the position of Dynamic 
Programming [19, 20] usually incorporated with alignment computations (e.g., in the 
aligners Minimap2 [21] and MA [22]). A practical evaluation using the two Saccharo-
myces paradoxus (wild yeast) genomes UFRJ50816 and YPS138 (data published by [23]) 
shows the viability of our approach. In this context, we express the genome UFRJ50816 
in terms of the genome YPS138 via a graph that is computed either from the assemblies 
of both genomes or from PacBio reads and Illumina reads. A discussion of our approach 
emphasizes its suitability with graph genomes and, in this way, with pan genomes.

Results
Ambiguities inherent to the description of genomic rearrangements via basic SV

In the following, we assume that genomic rearrangements are represented by combi-
nations of basic SV, where a basic SV is one of the following four elementary reorgan-
izations of the reference genome: Deletion, Insertion, Inversion or Duplication. Some 
state-of-the-art SV callers [1, 4] attempt to represent genomic rearrangements by nest-
ing these basic SV. However, this representation scheme comprises inherent ambigui-
ties in two ways: (1) a set of basic SVs can describe multiple reorganizations and, on the 
contrary, (2) a single genomic rearrangement can be described by multiple sets of basic 
SVs. Figure 1 visualizes these ambiguities via examples. In Fig. 1A, the combination of a 
duplication and an inversion describes three different genomic outcomes. In Fig. 1B, a 
reference ABCD is reorganized to ACBD either with two inversions or with a duplica-
tion followed by two deletions and an inversion. Recently published works are aware of 
these ambiguities [24–27]. As an intermediate solution, they exclude complex genomic 
rearrangements that pose unmanageable ambiguities to them.

The abovementioned ambiguities can be eliminated by expressing the outcome of 
the rearrangement process (instead of the process itself ) in terms of the reference. This 
can be accomplished by, e.g., dot-plots as shown in Fig. 1. Each dot-plot, in turn, can 
be translated into a genome-mapping graph, where all breakend pairs of the dot-plot 
become edges. (The notion breakend is similar to the notion breakpoint as explained 
in Additional file  1). Moreover, the genome-mapping graph can be represented using 
an adjacency matrix that can be efficiently stored in a database, a CSV file, or by tying 
together breakends in the VCF format [28] (using the BND tag and no other tag). For 
unifying forward and reverse strands, an adjacency matrix can be folded. A detailed 
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definition of our graph-model, the inference of adjacency matrices, and their folding 
scheme is given in the methods section.

We now analyze the practical relevance of the abovementioned ambiguities by inspect-
ing the output of the popular SV callers Sniffles [29] and Delly [4]. For this purpose, for 
each dot-plot, we generate a set of error-free alignments, which reflects the rearrange-
ment of the respective dot-plot and fully covers the y-axis. A detailed description of the 
experimental setup is given in Additional files 4 and 5. We generate 100 × coverage and 
do not induce any noise, e.g., sequencer errors, into the alignments. This exclusion of 
noise is for avoiding additional complications for SV callers besides the nested variants 
themselves. The generated queries are forwarded to the SV callers for evaluation and 
their output is visualized in the bottom row of Fig. 1. All SV callers reconstruct the ref-
erence positions of the breakends successfully but struggle with the abovementioned 
ambiguities. For subfigure A, Sniffles reports an inversion and duplication for all three 
reorganizations. Therefore, Sniffles recognizes the basic SV correctly but cannot distin-
guish between the three cases. Delly distinguishes all three cases but does not report the 
duplication in the first two rearrangements. For Fig. 1B, Sniffles returns a combination of 
both development histories, where the basic SV are sorted by their start position on the 
reference (due to this sorting both histories appear intermingled). Delly’s output seems 

Fig. 1 Examples of ambiguities resulting from the description of genomic rearrangements via basic SV. A 
shows a situation, where a duplication and an inversion correspond to three different outcomes, which are 
depicted by diagrammatic dot-plots (for a description of dot-plots and their diagrammatic representation 
see Additional file 2). Each outcome can be uniquely represented by a graph and its folded adjacency matrix. 
Here we show simplified versions of the graphs and their folded adjacency matrices merely. The unfolded 
matrices as well as the full graphs for all examples are given in Additional file 3. For testing SV callers that 
report genomic rearrangements via basic SV, such as Sniffles and Delly, we simulate 100 × coverage of 
error-free alignments for all cases with a read length of 1000 nt for long reads and 250 nt for paired-end 
short reads. B displays an example, where different rearrangements via basic SVs lead to equal outcomes. 
Here, a pair of inversions is equal to a duplication followed by two deletions and an inversion. As for A, 
the corresponding graph, folded adjacency matrix, and output of real-world SV callers are shown for both 
examples. Additional file 3 gives an analogous example, where a duplication followed by two inversions leads 
to the same outcome as two duplications followed by one inversion
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to comprise fragments of both development histories. Using our proposed representa-
tion scheme, all cases can be represented unambiguously by a unique adjacency matrix. 
Furthermore, there are SV callers, such as Gridss [30] and Manta [3], which avoid basic 
SV calls for reporting variants and make use of a BND-call representation of the VCF 
format [28] instead. As a consequence, these callers do not struggle with the ambiguities 
reported here. We examine the equivalence of the BND-call representation, our adja-
cency matrix approach, and a dot-plot representation in the discussion section.

Alignments can conceal SV

SV callers recognize genomic rearrangements using the locations of their breakends. 
Here many state-of-the-art SV callers [1, 13, 14] rely on alignments of split-reads (chi-
meric reads). Therefore, these SV callers require their aligner to deliver precise and con-
sistent breakend locations. Aligners are designed to find maximally scored paths in the 
tradition of Needleman-Wunsch’s (NW) [19] and Smith-Waterman’s [20] algorithms. 
Such a path-based approach is well-suited for the discovery of mutations, short inser-
tions, and short deletions. However, long insertions and long deletions oppose maximally 
scored paths. This problem is well known and reflected by the introduction of two-piece 
affine gap-costs [31]. Furthermore, the path-driven approach contradicts duplications 
and inversions as indicated by the Dynamic Programming (DP) curves in Fig. 2B. State-
of-the-art aligners attempt to compensate for these shortcomings by identifying special 
cases using tailored strategies and reporting them via supplementary alignments. For 
example, Minimap2 tries to identify potential inversions using a z-drop heuristic during 
DP and verifies these potential inversions via DP on the reverse complement.

In Fig. 2, we evaluate the aligners Minimap2 [21], NGMLR [29], GraphAligner [32], 
and MA [22] in the context of the abovementioned shortcomings (Additional file 5 lists 
the versions of all software used for the analysis). There, we benchmark the discovery 
rates of the aligners for the following SV types: (1) a plain deletion; (2) a plain insertion; 
(3) a duplication, where a gap occurs between the original and copied segment; (4) a 
deletion directly followed by an inversion; (5) an inverted duplication (identical to the 
leftmost case in Fig. 1A); and (6) two nested inversions (identical to the case in Fig. 1B. In 
all six cases, the aligner’s query sequences span over the complete SV. Each query is gen-
erated by performing the following three steps: (1) We pick a randomly located interval 
of a given size (this size is denoted on the x-axis of the respective case in Fig. 2A on the 
human genome assembly GRCh38.p12). (2) The sequence in that interval is decomposed 
into sections as visualized on the x-axis (sections named A , B , C , …). (3) The query is 
generated by copying and rearranging these sections as shown on the y-axis. All que-
ries generated by the above scheme are of equal size (2000 nt). We generate 1000 que-
ries for each SV size of each SV-variant, where each query is generated from a different, 
randomly chosen reference interval. Following the generation, the query sequences are 
forwarded to the aligner. Using the CIGARs of the primary alignments and the supple-
mentary alignments, we verify an aligner’s discovery of all breakends that belong to the 
respective SV. Here, we grant a tolerance of 25 nt and verify reference locations as well 
as query locations of breakends. An SV counts as rediscovered if all its breakends are 
found. To account for sequencing errors, we additionally simulate substitutions, inser-
tions, and deletions on queries with error rates that mimic PacBio HiFi reads, using the 
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simulator published in [22]. Additional file 6 details the exact error simulation approach. 
As visible in Fig. 2B, erroneous reads have a limited impact on the recall rates of aligners 
and do not affect the range of SV types that are concealed by them.

In Additional file 6, we repeat the experiment of Fig. 2 with the query sizes 1000 nt and 
20,000 nt. There, recall rates show improvements with increased query size, particularly 
for NGMLR [1]. However, the general shape of the curves stays unaltered since the size 
of the reorganized segments does not change.

Figure  2B indicates the limited success of state-of-the-art aligners in overcoming 
their path-oriented design. Aligners recognize some cases comprising duplications and 
inversions while failing on others. Maximal Exact Matches (MEMs) are a particular 
form of seeds, where seeds are equivalences between a reference genome and a read, 
typically used by an aligner as the basis for alignment computation. Informally, a MEM 
is such an equivalence between two sequences (e.g., reference genome and read) that 
cannot be extended in either direction without encountering a mismatch or the outer 
end of one (or both) of the sequences. A formal definition of MEMs can be found in 
[22]. The MEM’s curves, in contrast to the aligner’s curves, illustrate that this type of 

Fig. 2 The figure compares Dynamic Programming (gray), MEMs (black), MA (orange), Minimap2 (red), 
NGMLR (green), and GraphAligner (blue) regarding the rediscovery of several types of SV. The human 
genome GRCh38.p12 is used as the reference genome. Subfigure A visualizes the analyzed genomic 
rearrangements using diagrammatic dot-plots. Blue lines indicate matches on the same strand, while orange 
lines represent matches on opposite strands. A description of diagrammatic dot-plots can be found in 
Additional file 2. Subfigure B displays the rediscovery rate as a function of the SV size (see subfigure A) for the 
various kinds of SV in A. Each diagram shows two curves. Here, each point of a curve represents an average 
measurement for 1000 query sequences. The lighter-colored areas show recall rates for idealized error-free 
queries, while the darker areas report rates for simulated PacBio CCS reads. The diagrams for Dynamic 
Programming show rediscovery rates for banded global Dynamic Programming with two-piece affine 
gap costs. Here, the global Dynamic Programming is merely applied to the reference section that a query 
originates from
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seed is sufficient for recognizing all analyzed cases. For MEMs, the impact of erroneous 
reads on the recall rates is higher than for aligners or DP, but still moderate. This can be 
attributed to the fact that, in the presence of sequencer errors, MEMs may not extend 
to the exact location of a breakend, whereas aligners accurately recover exact breakends 
by using DP. In our SV calling approach, we address imprecise breakends by employing 
techniques such as reseeding, fuzzy edges, and a statistical approximation of true entry 
locations. These techniques are explained in detail in the methods section.

The failing of aligners can be explained by their path-driven selection of seeds that 
occurs as part of the seed-processing step (e.g., chaining), where aligners purge relevant 
seeds. While small deletions and insertions are well discovered by all aligners, their dis-
covery rates decrease with increasing indel size. This is in accordance with the above-
mentioned opposition of the path-oriented scoring scheme to long indels. Since the 
MEM and DP curves in Fig. 2B indicate that seeds and two-piece affine gap-costs cope 
well with larger indels, the worse behavior of all aligners for indels must again originate 
from their seed-processing step (e.g., chaining [33]).

Aligners rely on “occurrence filtering” for coping with the ambiguity of genomes. For 
keeping fairness, we mimic this occurrence filtering during MEM computation by dis-
carding all MEMs that surpass a given threshold of occurrences on the genome. Except 
for insertions and deletions, Fig.  2B shows a slightly decreasing discovery rate with 
MEMs for small SV-sizes. This can be explained by the mimicked filtering in combina-
tion with the ambiguity of the human genome because small seeds tend to be purged by 
occurrence filtering and so the corresponding breakends cannot be discovered anymore. 
As with alignments, a breakend is considered as “discovered by a MEM” if one of the 
MEMs endpoints and the breakend have equal read and reference positions. Further-
more, an SV counts as rediscovered by MEMs if all its breakends are found. Please note 
that all cases investigated in Fig. 2 mimic real-world rearrangements that we encounter 
during our analysis of the yeast genomes UFRJ50816 and YPS138.

Some aligners, e.g., Minimap2, can be configured to report all discovered chains via 
supplementary alignments. If configured this way, an aligner’s recall rate in the above 
analysis increases significantly (as shown in Additional file 6 for Minimap2). However, 
the configuration results in an abundance of CIGARS without any contextual informa-
tion among them. Without this contextual information, the CIGARs are of similar value 
as pure MEMs in the context of SV calling.

SV calling using genome‑mapping graphs inferred from MEMs

We now outline our technique for computing genome-mapping graphs from MEMs. 
Using the inversion shown in Fig. 3A as an example, we explain our approach step-by-
step. First, we unfold the reference genome and represent it as a string of nucleotides so 
that the forward strand is directly followed by the reverse strand. Using this unfolded 
reference genome together with a set of given reads, we compute a set of MEMs and 
record the linkage between the MEMs’ breakends during computation. Figure 3B shows 
the computation of four MEMs m1 to m4 for the two exemplary reads r1 and r2 that are 
assumed to be error-free for simplicity. The four MEMs are connected at their break-
ends via the two links labeled “a” (end of m1 to begin of m3 ) and “b” (end of m2 to begin 
of m4 ). Next, the linkage between MEMs is mapped into an adjacency matrix that runs 
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along the reference genome on both axes. Informally, this adjacency matrix expresses 
the sequenced genome in terms of the reference genome via neighborhood relation-
ships, i.e. the matrix indicates which nucleotides of the reference genome appear as 
neighbors on the sequenced genome. The matrix can be simplified by omitting entries 
that do not indicate differences between reference genome and sequenced genome (such 
entries appear directly over the matrix diagonal as described in the methods section). 
The neighborhood relationships are expressed in the matrix by indicating ‘from’ which 
position on the reference genome (x-axis position of a matrix entry) we have to go “to” 
which position on the reference genome (y-axis position of a matrix entry) for recon-
structing the sequenced genome. For example, in Fig. 3B the arrow of the breakend-pair 

Fig. 3 The figure displays the basic design of our approach for SV calling using an example. A The dot-plot 
diagrammatically visualizes an inversion of section ‘B’ on the sequenced genome. This inversion induces 
one breakend pair on the reference genome and one breakend pair on the sequenced genome. B shows 
the dot-plot of A unfolded into the forward strand and reverse strand. There are two reads r1 and r2 , where r1 
originates from the forward strand and r2 originates from the reverse strand of the sequenced genome. The 
locations of both reads on the sequenced genome (right) and the reference genome (top) are visualized, 
where the reads decompose into two segments on the reference genome. The reads indicate the inversion’s 
breakend pairs, once on the forward strand via the arrow labeled “a” and once on the reverse strand via 
the arrow labeled “b.” C The inversion’s breakend pairs are visualized in a corresponding adjacency matrix 
via the matrix entries labeled “a” and “b.” The x-position of an entry (breakend pair) is the origin position on 
the reference, while the y-position corresponds to the destination position. D We apply our matrix folding 
scheme to the adjacency matrix of subfigure C for unifying breakend-pair calls (matrix entries) from forward 
and reverse strand reads. E shows the genome mapping graph defined by the adjacency matrices of C and D 
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labeled “a” originates from the last nucleotide of the sequence ‘A’. Therefore, the matrix 
entry “a” in Fig. 3C is placed above the end of the sequence ‘A’ on the forward strand. 
Accordingly, the matrix entry’s vertical position is defined by the arrow’s end, which 
points to the first nucleotide of the sequence ‘B’ on the reverse strand. For inferring 
the adjacency matrix position of a breakend pair, we merely require the immediate sur-
rounding area on the sequenced genome, which can be provided by a sequencing read. 
As opposed to the dot-plots in Fig.  3A and B, both axes of the adjacency matrix run 
along the reference genome. This is vital, as the sequenced genome is unknown during 
SV calling. The matrix shown in Fig.  3C is not suitable for describing structural vari-
ations because it comprises the example’s inversion twice. To solve this problem, the 
matrix is folded in 3 steps (the folding scheme is explained in the methods section) and 
reduced to the matrix shown in Fig. 3D. Here the two entries “a” and “b” of the unfolded 
matrix are unified to a single entry “a/b” that describes the example’s inversion uniquely. 
Such a folded matrix can then be visualized as a genome-mapping graph that expresses 
the sequenced genome in terms of the reference genome. Figure 3E shows this graph for 
the example. In the absence of ambiguities induced by genomic repetitions, the genome-
mapping graph allows a directed reconstruction of the sequenced genome from the ref-
erence genome. In the case of ambiguities (e.g., in the case of duplications, where the 
reconstruction runs into a cycle), an additional graph traversal is required that decides 
the order of entry visits in ambiguous situations. A detailed description of our SV call-
ing approach is given in the methods section. This includes the proposal of a memory-
efficient representation of our adjacency matrices.

Incorporating genome repetitiveness and sequencer errors into SV calling

Repeats on the reference genome can cause MEMs to overlap on the y-axis (on the read) 
as shown in Fig. 4A. There, the MEMs m1 and m2 both cover the section labeled B on the 
y-axis. This overlap leads to the erroneous matrix entry labeled a . This entry expresses 
that, on the sequenced genome, the reference’s first instance of B is followed by the refer-
ence’s second instance of B . However, for correctly representing the sequenced genome 
via the adjacency matrix, we instead express that there exists only one instance of B on 
the sequenced genome. A graph genome, where such repetitiveness is modeled by edges 
instead of vertices, would eliminate this problem (more details on graph genomes can be 
found in the discussion section). In the methods section, we introduce an algorithmic 
scheme that shortens overlapping seeds for resolving such overlaps on sequential refer-
ence genomes.

The repetitiveness of genomes creates further issues. In the following, let S be a 
sequence that occurs once on the reference genome but n times on the sequenced 
genome. This leads to a situation, where the vertex belonging to the first or last nucleo-
tide of S comprises n inbound or outbound edges, respectively. Relations between such 
inbound and outbound edges cannot be expressed by the graph itself. Instead, they 
must be defined by a graph traversal. Since our approach currently does not compute 
such a traversal, we avoid these regions by applying a filtering approach on all reads as 
described in the methods section. Now, let S be a sequence that occurs n times on the 
reference genome and at least once on the sequenced genome. In this case, an occur-
rence of S on a read triggers n matches on the reference, where all of them are false 
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positives except for one. For handling this situation, we discard all seeds. This technique 
is similar to the “occurrence filtering” that is part of the seeding step of many aligners 
[21, 22, 34]. The discarding of ambiguous seeds primarily removes small seeds since the 
number of occurrences of a seed on a genome is expected to increase with decreasing 
size of the seed. However, small seeds are required if two differences between read and 
reference are close to each other. Such differences can be caused by genomic rearrange-
ments, sequencer errors, or combinations of them. If the seed between two differences 
is missing, two correct entries in the adjacency matrix are replaced by a single wrong 
entry (see Fig. 4B). For tackling this problem, we propose an efficient reseeding scheme 
for the retrieval of small seeds on a locally confined region of the reference (see Fig. 4C). 
The required basic techniques for obtaining such seeds using an index computed on 
the fly are proposed in [35]. There, a hash table is used for computing Minimizers that 
are merged and extended afterward for obtaining MEMs. For each MEM, we search for 
smaller undiscovered MEMs occurring immediately before and after it. This process is 
recursively extended to freshly discovered MEMs until they are expected to be too small 
(down to 5nt). The detailed process is described in the Methods section.

Evaluation using yeast genomes

So far, we analyzed individual aspects of our SV calling approach merely. Now, we per-
form a comprehensive evaluation using the real-world data proposed in [23] for Saccha-
romyces paradoxus (wild yeast). We work with yeast genomes due to their small size and 
moderate repetitiveness in comparison to, e.g., the human genome. In the Discussion 
section, we outline extensions and modifications of our approach that would allow its 
application to the human genome. The data in [23] are particularly well suited for our 

Fig. 4 A shows a problem caused by the repetitiveness of the reference genome. In the sequenced genome, 
one of the occurrences of B is missing. The two seeds m1 and m2 that overlap on the y-axis (top) corresponds 
to the erroneous entry a (bottom). Our overlap-elimination technique (as described in the methods section) 
resolves this problem by shortening m1 and m2 to the line pcut . The result of this shortening is the correct 
entry a′ . B Two 1 nt deletions between the reference genome and sequenced genome create the small seed 
m (top-left). m is assumed to be deleted by the occurrence filtering of our approach (top-right). This deletion 
leads to the replacement of the two correct entries a and b (bottom-left) with a wrong entry c (bottom-right). 
For salvaging such lost seeds, we rediscover m via a reseeding within the gray boxed area (top-right). C 
visualizes our reseeding technique for a larger area, where each box corresponds to a recursive call and the 
gray’s darkness indicates the recursion depth
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analysis because they comprise independently assembled genomes for several strains 
of wild and domestic yeast, which can be used as ground truth for our analysis. We 
focus on the genomes UFRJ50816 and YPS138 here. These genomes comprise complex 
genomic rearrangements (e.g., six clustered inversions, some of which are overlapping) 
that are similar to the situations shown in Fig. 1B2. Finally, the yeast genomes in [23] are 
all sequenced in their haploid or homozygous diploid forms, which simplifies SV calling 
compared to diploid genomes comprising heterozygous loci.

Due to the reported ambiguities of basic SV, an evaluation of our approach using VCF-
formatted data as ground truth is not feasible. For overcoming this problem, we com-
pute a set of adjacency matrix entries based on a reference assembly (we use YPS138) 
and a sequenced assembly (we use UFRJ50816) as ground truth entries. The entries are 
inferred from a comprehensive set of MEMs for the assemblies. Here, we rely on the 
same algorithmic techniques for computing seeds and matrix entries as we use for reads 
(see methods section). The overall scheme for the computation of ground-truth entries 
is given in Additional file 7. For the ∼ 12Mio bp long yeast genomes, this ground-truth 
matrix comprises 45,533 entries. In the following, it is denoted by MT .

The theoretic foundations of our approach demand that the sequenced assembly cor-
responds to one specific traversal throughout the genome-mapping graph, where the 
graph is defined by the ground-truth entries and the traversal is determined by a visit-
ing order among the entries. For UFRJ50816 and YPS138 we could fully reconstruct the 
sequenced genome using a prototype implementation, which is described in Additional 
file  8. This, in turn, proves the correctness of the practically computed ground-truth 
entries.

So far, for the generation of the ground-truth entries, the complete genome AS is used 
as one virtual error-free read. Now, we evaluate our approach using simulated reads, 
where we rely on SURVIVOR [37] and DWGSIM [36] for the generation of CCS-PacBio 
and Illumina reads, respectively. The error profiles for SURVIVOR’s CCS-PacBio read 
generation are sampled from Minimap2 alignments for the PacBio-MtSinai-NIST reads 
of HG002 (AJ Son) [38]. We use simulated reads instead of real-world reads to establish a 
proper ground truth. In the context of our benchmarking, the entries of the ground truth 
matrix MT are distributed over three submatrices: A matrix MT ,≥200 (comprising 337 
entries) consisting of all entries in MT of size ≥ 200nt, a matrix MT ,10−199 (comprising 
1329 entries), comprising all entries of size [10nt, 200nt) and a matrix MT ,<10 (compris-
ing 43,804 entries) with all the remaining entries (size < 10nt). Here the size of an entry 
is the maximum of the distance between an entry’s breakends on the reference genome 
and an entry’s weight, i.e., the length of an inserted sequence that might be part of the 
entry (e.g., for a basic insertion the distance of the breakends is 0 and the size of the 
entry is the length of the inserted sequence). Figure 5 shows the outcome of our bench-
marking for all three matrices. Callers that report basic SV (e.g., Sniffles [1] and Delly [4] 
are excluded from the benchmarking due to the previously reported ambiguities affect-
ing the representation of complex rearrangements via basic SV. Manta reports complex 
events via the BND-tag and nested events via basic SV. Hence, we could translate the 
basic SV-calls as well as the BND-calls into our matrix representation. The benchmark-
ing indicates a superiority of our approach compared to its competitors. Particularly for 
PacBio reads, it performs well over the full range of all three matrices. Furthermore, we 
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surpass the other callers with respect to the maximal recall rate except for MT ,≥200 with 
Illumina reads, where Gridss can recall 2% of the 337 entries. Altogether, Gridss and 
Manta show a blindness outside of the middle-sized genomic rearrangements defined 
by MT ,10−199 . Aside from this blindness, they struggle to determine the exact locations 
of breakpoints (solid curves of Fig. 5) as indicated by their improved behavior for the 
more relaxed benchmarking, where a tolerance of ± 25nt is granted in the context of the 
breakend reporting. The slightly better accuracy of Gridss for recall rates of up to 25% 
with MT ,10−199 in the case of a ± 25nt tolerance indicates a weakness of our heuristics 
for filtering false positives. This mirrors the conclusion that assembly-based SV calling is 
excellent for filtering false-positives of [30]. Manta shows an improved behavior for Illu-
mina reads of length 100 nt. Therefore, an additional benchmarking for 100nt Illumina 
reads is given in Additional file 6.

Fig. 5 The figure shows the accuracy rate as a function of the recall rate for Gridss [30] (orange), Manta [3] 
(green), and our approach (blue) on the two yeast genomes YPS138 (as reference genome) and UFRJ50816 
(as sequenced genome). Here the accuracy rate is the percentage number of correct entries among all 
reported entries. A reported entry is considered as correct if it matches the position of a ground truth entry. 
The recall rate is the number of correctly reported entries over the number of entries in the respective 
ground truth matrix. A shows benchmarking for simulated reads. There, we simulate 100 × coverage for 
250-nt-long Illumina reads with DWGSIM [36] using default parameters, while setting the mutation rate 
to zero. Furthermore, we simulate 100 × coverage for CCS-PacBio reads using SURVIVOR [37] using default 
parameters. B displays benchmarking results for the original Illumina HiSeq 2500 and PacBio SMRT reads 
that were utilized for the assembly of UFRJ50816 in [23]. The solid curves ( ± 0nt) and triangles benchmark 
the SV callers for their ability to rediscover the exact locations of breakends. The dotted curves ( ± 25nt) and 
discs show the callers’ performance if we grant a tolerance of ± 25nt for the breakends positions. Here, if an 
SV caller reports multiple entries within the emerging 50nt window, we pick the entry with the highest score 
and discard all remaining entries. Manta does not report different confidences and hence appears as single 
points in the analysis. For all other callers, curves are inferred by gradually adding calls to the analyzed set, in 
reverse order of their confidence. Gridss and Manta are designed to work with short reads (Illumina reads) 
merely and are therefore excluded from the PacBio benchmarking. The reported VCF BND-tags of Manta and 
Gridss are translated into corresponding matrix entries for benchmarking
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Next, we analyze real-world reads. To accomplish this, we rely on the PacBio SMRT 
and Illumina HiSeq 2500 reads that were originally employed to generate the UFRJ50816 
assembly [23]. As a result, we no longer measure accuracy and recall rates in comparison 
to a ground truth, as the ground truth is now unknown. Instead, we evaluate the similar-
ity to the output of the genome assembler used during the creation of the UFRJ50816 
assembly. For Illumina HiSeq 2500 reads, our curves for both simulated and real-world 
reads show a high degree of similarity. For PacBio reads with an entry size < 10nt, we 
observe the same similarity. However, as the entry size increases the curves become 
more divergent. Larger entry sizes correspond to larger SV, which subsequently 
increases the probability of discrepancies between the SV caller and the assembler.

The outcome of SV calling should allow the reconstruction of the sequenced genome 
from the respective reference genome. Our genome mapping graph model (adjacency 
matrices) permits such a reconstruction as described in the methods section. We now 
evaluate the genomes that result from a reconstruction using matrix entries inferred 
from the sequenced genome as one long error-free read. With respect to this recon-
struction, we compare our approach, in the following called MSV, with Gridss. Here 
we work with Illumina reads in combination with PacBio reads for MSV and Illumina 
reads by themselves for Gridss. As shown in the first row of Table 1, the calls from the 
sequenced genome deliver a perfect reconstruction of the sequenced genome, which 
justifies the use of these calls as ground-truth. With MSV, the identity between chro-
mosomes of the reconstructed genome and the sequenced genome varies from 97.0 to 
99.9%. Here, these identities are computed as i

min(|Q|,|R|) , where i represents the number 
of matches in a banded ( bandwidth = abs(|Q| − |R|)+ 10, 000 nt ) Needleman Wunsch 
alignment with two-piece affine gap costs between the sequences Q and R . As described 
in the methods section, the reconstruction requires a traversal for resolving ambiguities 
resulting from genomic repetitions. SV callers do not compute such a traversal. There-
fore, as an approximation, we infer this traversal from the sequenced genome itself. In 
the following, we call this traversal the primordial traversal. This traversal is trivially 
computable by ordering the entries of the sequenced genome according to their position 
on the sequenced genome. However, the primordial traversal can contradict the entries 
of a caller. For MSV, such contradictions occur between 195 (0.5%) of the 38,113 entries 
used during the reconstruction. For Gridss, such contradictions occur for 73 out of 155 
entries (47%). Here the total number of entries is much lower since the entries of Gridss 
are mainly in MT ,10−199 . The primordial traversal could be replaced by a naïve traversal 
that always prioritizes non-implicit edges over implicit edges (see the first subsection 
of the methods section for the definition of implicit edges) and stops if multiple non-
implicit edges originate from a visited vertex. For MSV, 94.5% of pairs of consecutive 
edges in the primordial traversal are part of such a naïve traversal as well, i.e., merely 
5.5% of edge pairs of the primordial traversal are contributing. Comparing the naïve 
approach to the primordial traversal, 97.6% of pairs of consecutive edges are part of both 
traversals.

The use of weights is necessary during reconstruction since some differences between 
the reference genome and the sequenced genome (e.g., mutations and insertions) should 
not be expressed via sequences of the reference genome. In our case, sequences that are 
not covered by any seed are represented as weights. This implies that some duplications 
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become weights due to the occurrence filtering (see methods section). Here, 90.6% and 
93.8% of these weights are sequences of size one (mutations), while 0.6% and 0.4% of 
these weights are sequences of size ≥ 100 nt (long insertions or long repetitive regions), 
for entries of the sequenced genome and MSV, respectively. For MSV, 4.5% of the recon-
structed genome originates from weights (inserted sequences), where 37,683 of MSV’s 
entries comprise a weight. For the calls of the primordial traversal, 3.0% of the recon-
structed genome originate from weights and 42,597 entries have weights. Large inser-
tions connect to one of two special sentinel vertices as described in the methods section. 
However, in the context of our evaluation of Yeast, all insertions are fully enclosed by 
one PacBio read at least. Therefore, for all entries, the merging scheme described in 
Additional file 9 can be applied in the context of the entries’ scoring.

Discussion
The yeast genomes used for our analyses are small compared to, e.g., the human genome. 
This raises the question of the applicability of our approach to larger, more complex 
genomes. Currently, the repetitiveness of complex genomes practically overloads the 
seed processing involved in our approach. For example, the human genome comprises 
many nontrivial sequences with more than 10,000 occurrences distributed over all its 
chromosomes. In our approach, all occurrences of such a sequence must be memorized 
by seeds for each sequenced read that comprises that sequence. The resulting amount of 
seeds for all reads can be staggering for complex large genomes and is best handled by 
extending our approach as described later. For the yeast genomes, this problem is still 
manageable. Benchmarking can be done on standard hardware without any extensions 
of our approach while still working with genomes showing complex, nested SV. Nev-
ertheless, the repetitiveness of genomes generally poses a problem during the analysis 
of genomic data. Here, the repetitiveness of sequenced genomes affects our approach 
differently than the repetitiveness of reference genomes. A sequence that occurs once on 
the reference genome but many times on the sequenced genome equals one or several 
duplications. Such duplications create cycles in our graph model that can be resolved 
via a graph traversal. On the contrary, sections of a sequenced genome that match 
several locations on a reference genome are more challenging. Here it is necessary to 
select the correct location from many candidates on the reference. This selection could 
be done via alignments, where the alignment’s CIGARs provide the seeds used for the 
computation of matrix entries. In detail, each maximally extended stretch of consecutive 
matches within the CIGARs of the primary and all supplementary alignments can be 
translated into a single seed. Here, secondary alignments should be excluded for ensur-
ing that seeds do not overlap on their read intervals. However, such an alignment-based 
seed generation would conceal many complex genomic rearrangements as shown in the 
results section. Therefore, it represents an unsatisfactory solution.

Instead of tackling the repetitiveness of a reference genome, via, e.g., an alignment-
based seed generation as mentioned above, it would be advantageous to avoid such 
repetitiveness in the first place. This can be achieved by switching to graph genomes. 
Here a repetitive sequence can be represented by a single vertex (or a subgraph for 
nested repetitive sequences) and the repetitiveness is resolved by a traversal through-
out the graph. Currently, the axes of our adjacency matrices correspond to sequential 
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genomes and therefore all matrix entries that connect non-neighboring vertices (verti-
ces that belong to non-neighboring nucleotides on a genome) represent SVs. However, 
our approach does not require such sequential genomes in the context of the adjacency 
matrix. Instead, we can use a graph genome as a reference by placing the vertices of the 
graph genome on the axes of the adjacency matrix. Compared to a sequential genome, 
the genomic rearrangements are now matrix entries that connect vertices not neighbor-
ing in the graph genome. Furthermore, the graph traversal that is computed for repre-
senting the sequenced genome can immediately be used as another path in the graph 
genome. Hence, our approach can be used for adding new specimens to graph-based 
pan-genomes. Such additions might imply a modification of the pan-genome graph’s 
structure if the sequenced genome indicates an additional level of repetitiveness. In this 
work, we use sequential reference genomes for two reasons: (1) Currently, we do not 
compute the traversal that delivers a sequenced genome. (2) A bootstrapping that pro-
vides repetition-free graph genomes as starting points is required.

In the results section, we investigate ambiguities resulting from the description of 
genomic rearrangements using basic SV (e.g., descriptions via the VCF format). Figure 6 
extends this inspection of ambiguities to the relationships between genomic rearrange-
ments, basic SV, sequenced genomes, and breakend associations: Evolutionary develop-
ment is a stepwise process; its genetic state is usually observed via sequenced genomes, 
which are snapshots of a specimen’s genetic definition. Aside from some trivial cases, 
these snapshots cannot reveal the history of genomic alterations (basic SV) that leads 
from one snapshot to another because different histories can yield the same outcome. 
For example, three inversions can alter a sequence in the same way as one duplication 
followed by two deletions, e.g., shown in Additional file 10: Fig. S12 D). This inherent 

Fig. 6 The figure visualizes several ambiguities inherent to the workflow of state-of-the-art SV calling. 
Furthermore, it places three SV description schemes (dot-plot, VCF-format, and adjacency matrix) into 
their context. Additional file 10 gives examples for the four shown ambiguities (red arrows) together with 
additional comments
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ambiguity, in turn, affects all basic SV-based description schemes, e.g., the VCF format. 
Therefore, any quantitative measurement of basic SV has to exclude nested variants (e.g., 
by using the benchmarking dataset proposed in [24]) or it is doomed to be ambiguous. 
For example, in [25–27, 39], these ambiguities are tackled by defining signature variant 
allele structures for several complex genomic rearrangements while ignoring all others. 
However, such complex genomic rearrangements are a significant aspect of the human 
genome as shown by Li et al. in [39], where they report that over half of all somatic vari-
ants in cancer genomes are nested and complex variants, and Collins et al. in [25], where 
they report that complex SV are abundant in non-cancer genomes as well. Furthermore, 
the repetitiveness of genomes in combination with the limited length of sequenced reads 
inflicts an additional level of ambiguity on the snapshots (sequenced genomes) them-
selves. For example, if a duplication’s size exceeds the length of all reads, the exact num-
ber of repeats can be guessed merely (see Additional file 10: Fig. S12 E). Our adjacency 
matrix-based approach resolves these ambiguities in two ways: (1) It abstracts from 
the history of genomic alterations. (2) It differentiates between the adjacency matrix 
itself and a traversal through its respective graph. In this context, the adjacency matrix 
captures the locations of all breakend pairs (see Additional file 1 and Fig. 6), while the 
traversal corresponds to the occurrence order of the breakend pairs on the sequenced 
genome. This traversal can only be computed if there are reads of sufficient length. How-
ever, for inferring adjacency matrix entries, short reads are sufficient since each entry 
merely requires two seeds to identify its breakend pair.

Conclusions
We show that state-of-the-art approaches for SV calling are incapable of unambigu-
ously representing nested and complex structural variants. This deficiency of current 
approaches leads to the exclusion of nested and complex variants in many contemporary 
studies (e.g., [25–27, 39]). This blind-spot in the analysis of genomic variation prohibits 
the association of complex and nested SV to diseases and observable traits.

For representing all forms of SVs unambiguously, we argue that one must express 
the outcome of genomic rearrangement instead of attempting to describe the process 
of rearrangement. Our outcome-focused approach leads to an adjacency matrix-based 
model that can cope with complex and arbitrarily nested SVs. This yields the following 
two advantages over current approaches for SV calling: (1) Detected genomic variations 
(from SNPs over isolated SVs to nested SVs) can be cross-compared between differ-
ent individuals by inspecting overlapping matrix entries. (2) Our matrices can be eas-
ily translated into other forms of visualizations, e.g., dot plots. Furthermore, a practical 
evaluation of our approach using various yeast genomes demonstrates that our adja-
cency matrices can be efficiently computed from raw sequenced reads. Summarily, our 
work eliminates significant shortcomings of state-of-the-art SV calling and paves the 
way for the discovery and understanding of diseases and biological processes that are 
related to complex and nested SVs.



Page 17 of 27Schmidt and Kutzner  Genome Biology          (2023) 24:170  

Methods
A skew‑symmetric graph model for describing genomic rearrangements

We describe rearrangements between a reference genome R and a sequenced genome S 
using a weighted, directed skew-symmetric graph (skew-symmetric graphs are defined, 
e.g., in [40]). In our graph model, vertices represent nucleotides of R . Using the edges 
and their weights, we express S in terms of R . Let u and v be two vertices. Furthermore, 
let N (u) and N (v) be their respective nucleotides: An edge from u to v , indicates that 
N (v) follows N (u) on S . Hence, edges can either express equality between S and R , by 
connecting the vertices of nucleotides that follow each other on R , or express differences 
(i.e., breakend pairs) by connecting the vertices of nucleotides that are nonconsecutive 
on R . For example, in Fig. 7C, the edge between the first two vertices of the segment U 
on the forward strand indicates that the corresponding nucleotides appear consecutively 
on the sequenced genome. Accordingly, the edge labeled a expresses that W  follows U 
on the sequenced genome. For each position on the reference, we have one vertex on 
the forward strand and one vertex on the reverse strand. These vertices are called mates. 
Additionally, each edge (u, v) has a mate edge that connects the mate vertices of u and 
v in opposite direction. In Fig. 7C, the forward-strand edge labeled a has a mate on the 
reverse strand that connects the first vertex of W  with the last vertex of U . The concept 
of mates is part of the skew-symmetry of our graph model. Using strand-crossing edges, 
we can represent breakend pairs of inversions. For example, in Fig. 7C, the first break-
end pair of the inversion of X on the sequenced genome is represented by the green 
mate edges labeled b . Insertions are modeled using the weights of edges. Hence, the edge 
connecting Y  and Z in Fig. 7C comprises I as weight for modeling the insertion of the 
sequence I on the forward strand. For representing a genome, it is necessary to have a 

(See figure on next page.)
Fig. 7 A visual overview of our approach for inferring a folded adjacency matrix from reads. A introduces 
a reference genome, a sequenced genome, and a history of basic SV (consisting of a deletion of the 
section V  , inversion of X  , and insertion of I  ) that transforms the former genome into the latter genome. 
The black-boxed numbers indicate the order of the breakends on the sequenced genome. A tilde over a 
number expresses that the corresponding breakend is on the reverse strand of the sequenced genome. 
The arrowheads of the genome sections U , V  , W , X  , Y , and Z symbolize their direction on the reference; 
the colored boxes above and below are their nucleotides (see Additional file 2) on forward and reverse 
strand, respectively. B shows the genomic rearrangement of A in form of a diagrammatic dot-plot (details 
on these dot-plots are in Additional file 2). Each of the breakend pairs a, b, c , and d of A is indicated via 
an equally labeled arrow. C displays the skew-symmetric graph for the genomic rearrangement of B. The 
dashed box on the graph highlights an exemplary pair of mate vertices. The labeled edges of the graph 
correspond to the equally labeled breakend pairs of A. The weights I  on the edges labeled d represent the 
inserted sequence on the forward and reverse strands. D introduces three error-free reads r1, r2 , and r3 . Their 
locations on the sequenced genome are visualized via gray boxes and their MEMs are displayed by colored 
arrows. I  is not covered by seeds because it is an insertion. E comprises the unfolded adjacency matrix for 
the skew-symmetric graph in C. The matrix is inferred from the three reads of D, where the MEMs can be 
associated via their numbers. For example, the entry a corresponds to the two breakends (1) and (2), which 
are discovered via the MEMs 1.1 and 1.2 of the read r1 . The first and last seed of each read has no breakend 
on the y-axis and x-axis, respectively. Such seeds are distinguished by using thin arrows. The edge weights 
I  and ∼ I on the mate edges labeled d denote the inserted sequences on the forward and reverse strands, 
respectively. The coloring scheme for the matrix entries memorizes the strand information of edges as 
described in the “Folding of Adjacency Matrices” chapter of the methods section. F visualizes the adjacency 
matrix folding scheme of our approach. A step-by-step description of the folding for the matrix in E is given 
in Additional file 11. G depicts the folded form of the matrix E. In the folded form, the forward and reverse 
strands are unified. Therefore, all equally labeled entries of the matrix in E appear as a single entry in G 
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Fig. 7 (See legend on previous page.)
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set of traversals that accumulatively visit all non-isolated vertices of the graph at least 
once. Each traversal represents one chromosome of the sequenced genome.

The example reads of Fig.  7D and  E  demonstrate the inference of entries for an 
unfolded adjacency matrix in the idealized situation of error-free reads. For this pur-
pose, we use Maximal Exact Matches (MEMs). MEMs are seeds that are maximally 
extended in either direction. Each entry is generated by the combination of the head 
(x-position of entry) and tail (y-position of entry) of two arrows, which correspond 
to the endpoints of two MEMs that occur consecutively on the respective read. For 
example, the MEMs labeled 1.1 and 1.2 in Fig.  7D and  E  create the entry labeled a 
in quadrant III  . If a read from the forward strand and a read from the reverse strand 
span over the same breakend pair, they create mate entries in the unfolded matrix. 
For example, the mate entries labeled b result from read r1 (on the forward strand) 
and read r3 (on the reverse strand). The entries touching the diagonal on their bottom 
right corner can be directly inferred from the seeds, where such a matrix entry (u, v) 
is formed by the pair of consecutive nucleotides N (u),N (v) in the respective seed. We 
call these entries implicit because they are not related to SVs and can be neglected in 
practical implementations.

Folding adjacency matrices

We now propose a folding scheme for unifying mate matrix entries (e.g., the entries 
labeled b in Fig. 7E) by exploiting the skew-symmetry of our graph model. In the context 
of this folding, for each edge (u, v) , we store the strands of u and v via two annotations. 
Each annotation can receive the value F  or R for the forward strand or reverse strand, 
respectively. In short, we write FF , FR,RF  or RR for the strand annotations of both 
vertices of an edge. In the context of these annotations, we use the following coloring 
scheme: FF  = blue, FR = green, RF  = purple, RR = light brown. In the unfolded matrix, 
these annotations are intrinsically defined via the quadrant an edge appears in Quadrant 
I → RR , Quadrant II → FR , Quadrant III → FF  , Quadrant IV  → RF  (see Fig. 6E). The 
annotations allow a reconstruction of the unfolded matrix out of the folded one.

The folding scheme is visualized in Fig. 7F and comprises the following three steps:

1) The top half of the matrix is mirrored to the bottom half of the matrix.
2) The right half of the resulting rectangular matrix is mirrored to the left half.
3) In the resulting matrix, all entries below the diagonal are mirrored to their correspond-

ing mates above the diagonal. During this mirroring, the two binary annotations of 
entries are swapped and complemented ( FF → RR, FR → FR,RF → RF ,RR → FF  ). 
The weights of mirrored edges are reverse complemented. Entries on the diagonal 
that are annotated with FF  stay untouched, while all other entries on the diagonal are 
mirrored to themselves as described above.

In Fig. 7, the example matrix of subfigure E is folded into the matrix shown in sub-
figure G. The two breakpoints (two breakend pairs) of an inversion always correspond 
to two entries in the folded matrix, where one entry is annotated FR and the other RF  . 
For example, in subfigure G, the entries labeled b and c correspond to the inversion 
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X . For isolated inversions, these two entries are always direct neighbors in the folded 
matrix and their distance to the diagonal indicates the size of the inversion. The dele-
tion of V  is represented by the mate entries labeled a . In the unfolded matrix, one 
of these mates is annotated FF  and the other RR . The folding combines these two 
mates as shown in subfigure G. As with isolated inversions, the distance to the diago-
nal in the folded matrix indicates the size of isolated deletions. The insertion of I  is 
represented via the weights I  and Ĩ (the reverse complement of I  ) on the mate edges 
labeled d . Once more, the matrix folding combines both mates.

Computing a folded adjacency matrix from real‑world reads

In the following, we infer an adjacency matrix from a given set of reads and a reference 
genome R . Initially, we compute the MEMs of all reads. Each pair of these MEMs that 
occur consecutively on a read creates a single entry in the adjacency matrix. Here mul-
tiple reads can create the same entry. For coping with this, we move to a multigraph 
model. Furthermore, the endpoints of MEMs can deviate slightly from actual breakends 
due to sequencing errors and the repetitiveness of genomes. Therefore, we include a 
concept of fuzziness by extending each matrix entry to an area around it. For finding 
true breakend pairs, we merge overlapping areas and later reduce them to single points. 
In the context of this merging, the size of these areas should be chosen so that we do not 
merge areas that belong to different breakend pairs. For dealing with large insertions 
that are not enclosed by any read, two sentinel vertices are added to our graph model.

Computing MEMs for a read via reseeding

The MEMs used for inferring the adjacency matrix are computed via a process that com-
prises three steps: (1) an initial computation of MEMs with respect to the whole ref-
erence R and a given read, (2) a locally confined reseeding, and (3) the elimination of 
overlaps between MEMs on the same read.

For 1, we compute MEMs of a specific minimum size using Minimizers [41] and 
a merge-extend scheme [35]. In this context, we apply an occurrence filtering that 
eliminates hash table entries of Minimizers with too many matches on the reference 
genome or the sequenced genome. (This is required for handling the repetitiveness of 
the involved genomes. Please note that the sequenced genome is not directly available. 
Instead, we use all reads, which incorporate the sequenced genome.) In contrast to the 
commonly used occurrence filtering on the reference, the occurrence filtering on the 
sequenced genome is a novel addition. It is achieved in two steps: First, the number of 
occurrences is counted for all Minimizers on all reads. Next, we compute the reference 
positions for all minimizers with fewer occurrences than a given threshold, where this 
threshold is modulated by the average coverage of all reads.

For 2, matches smaller than the minimal size of Minimizers as well as matches for 
repetitive sections purged by the occurrence filtering are missing in the set of MEMs 
computed in 1. Many of these missing MEMs can be discovered via a locally confined 
reseeding that works as follows: First, we sort each read’s MEMs according to their start 
positions on the read. Afterward, we visit both endpoints of each MEM and search in a 
rectangular area that starts on the endpoint and extends away from the MEM on read 
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and reference (see Fig. 4C). If a MEM’s successor or predecessor (on the read) extends 
into this rectangular area, we shrink the area so that it lies between the endpoints of 
both MEMs. The size of this area determines the minimal size of MEMs to be discovered 
by the reseeding using the following formula:

Let � denote the minimal size of MEMs. w and h are the width and height of the rec-
tangular area for reseeding, respectively. � is chosen so that the probability of a random 
match of size � in an area of size w ∗ h is lower than 1%. For each rectangular area, we 
reseed by computing a single-use Minimizer index and by utilizing the merge-extend 
scheme proposed in [35] for turning the Minimizers into MEMs. The above procedure is 
repeatedly applied until it does not deliver new MEMs.

For 3, both of the above steps can deliver MEMs that overlap on a read. (These MEMs 
must originate from the same read.) However, as shown in the results section, such over-
lapping MEMs lead to erroneous matrix entries. We solve this problem by applying a 
seed shortening, where we distinguish between two kinds of situations as follows: A) 
A MEM m1 is fully enclosed by another MEM m2 on the read. In this case m1 is deleted 
and m2 is kept unaltered. B) The endpoint of m1 is above the start point of m2 , but m1 is 
not fully enclosed by m2 . So, we determine the central point pcut of the overlap between 
both seeds and shorten both seeds with respect to pcut . (The endpoint of m1 is moved 
to pcut − 1 ; the startpoint of m2 is moved to pcut .) The described overlap elimination is 
applied on SoCs as well. Additional file 12 visualizes both forms of overlap elimination 
and extends the explanation.

Fuzzy inference of edges from MEMs

Our fuzziness concept exploits the spatial locality of neighboring vertices on the refer-
ence genome. (Neighboring vertices (and so adjacency matrix entries) correspond to 
neighboring nucleotides on the reference.) In the following, we represent a MEM as a 
triple (q, r, l) , where q is the MEM’s start on the read (query), r is the MEM’s start on 
the reference and l is the length of the MEM. Let m1 = (q1, r1, l1) and m2 = (q2, r2, l2) 
be two MEMs that occur consecutively on some read. These two MEMs create a matrix 
entry e =

(
vx, vy

)
 with x = r1 + l1 and y = r2 . Here, the vertex vi corresponds to the i 

th nucleotide of the reference genome. Furthermore, we assume the existence of a cor-
responding true entry, denoted by T (e) , which emerges from error-free reads. The entry 
e can deviate from T (e) due to sequencing errors that shorten or extend MEMs errone-
ously. Here a shortened MEM causes a deviance leftwards ( m1 shortened) or upwards 
( m2 shortened) and an enlarged MEM causes deviance rightwards ( m1 extended) or 
downwards ( m2 extended). An erroneous extension of n nucleotides requires a wrong-
ful match between reference and read of n nucleotides, which is caused by n consecutive 
sequencer errors. On the contrary, a shorting by n nucleotides can be caused by a single 
sequencer error that breaks a MEM into two pieces, where the small piece (required for 
the entry) gets lost due to size constraints or occurrence filtering. This implies that an 
erroneous shortening is more probable than an erroneous enlargement. For dealing with 
such deviations of entries, we define a rectangular area around each entry e = (vx, vy) 

(
1− 025�

)(w−�)∗(h−�)

≥ 99%
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that is expected to include T (e) as follows: For denoting a rectangular matrix area A , 
we use a quadruple (a, b,w, h) , where a, b are the coordinates of the top-left point of A 
and a+ w, b− h are the coordinates of the bottom-right point of A . We define a rectan-
gular area A(e) = (x − σ , y− σ , f + σ , f + σ) , where f  and σ deal with the erroneous 
shortening or enlargement of MEMs, respectively. A(e) is called the entry area of e and 
we choose f = min(

∣∣x − y
∣∣, 10) as well as σ = 3 by default. Additional file 13 visualizes 

the concept of entry areas. All entry areas A(e) inherit a strand annotation from their 
respective entry e . The folding of the adjacency matrix automatically mirrors entry areas 
and adapts their strand annotations as required. Accordingly, in the folded matrix, an 
entry area can extend into four different directions with respect to its origin. For coping 
with the high density of entries immediately above the diagonal of the adjacency matrix, 
the fuzziness parameter f  is downregulated in this region (see Additional file 14). For an 
adjacency matrix M , entry areas in M correspond to bipartite subgraphs of M ’s graph.

Computing clusters by merging overlapping entry‑areas

Let M be a matrix and E be the maximal set, where we have T (e) = T (e′) for all pairs 
e, e′ ∈ E . This entry, which is equal for all elements in E , is called the true entry of E 
and denotes it by T (E) . If the parameters f  and σ are chosen properly, the entry area 
A(e) overlaps T (E) for all entries e ∈ E . This implies that all these entry areas mutually 
overlap. Hence, we can compute the set E (without knowledge about the true entry T (E) 
itself ) by joining overlapping entry areas of M into clusters. Such clustering can be per-
formed efficiently by a single line-sweep as described in Additional file 14. Additional 
file 13: Fig. S15 B) shows an example for the clustering of several entry areas that belong 
to the same true entry. As described above, the matrix folding maps areas originating 
from the reverse strand into the corresponding areas of the forward strand. The cluster-
ing is performed after the folding so that entry-areas from forward and reverse strand 
reads are unified. The weights (inserted sequences) of matrix entries in E can be dif-
ferent. In this case, multiple sequence alignments can be used for obtaining a unified 
weight. So far, we skip such multiple sequence alignments and leave the weight empty 
instead.

Approximating true entry locations

We now use all entries in E for computing an approximation of  E ’s true entry T (E) . 
For this purpose, we compute two sets X and Y  as follows:X = {i|(vi, _) ∈ E}

,Y = {j|(_, vj) ∈ E} . Depending on the two strand-annotations of E (these must be equal 
for all e ∈ E ), the approximation of T (E) =

(
ux,uy

)
 is defined as follows:

FF  : x is the 95th percentile of X and y is the 5th percentile of Y
FR : x is the 95th percentile of X and y is the 95th percentile of Y
RF  : x is the 5th percentile of X and y is the 5th percentile of Y
RR : x is the 5th percentile of X and y is the 95th percentile of Y

Here, the first annotation determines whether x is the 95th (for F  ) or 5th (for R ) percen-
tile of X , while the second annotation sets y ’s percentiles reciprocally ( F : 5th , R : 95th ) 
regarding Y  . The strand annotation-dependent percentile scheme is required due to the 
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abovementioned mirroring of entry areas (in the context of the matrix folding scheme). 
Due to this mirroring, an entry can expand into an area in four different directions.

Large insertions and the sentinel vertex

Let I be a large insertion and let r be a read that covers I partially at the beginning or 
end without fully enclosing I . In this case, an edge corresponding to I cannot be formed 
from r because either the edge’s origin vertex or destination vertex is unknown. Accord-
ingly, it is impossible to create a valid adjacency matrix entry for I using r . For coping 
with this situation, a sentinel vertex and its mate (one for the forward strand and one for 
the reverse strand) are added to our graph model. These sentinels take the position of 
the missing origin or destination vertex in the context of the edge creation. As for all ver-
tices, one row and one column of the folded adjacency matrix correspond to the sentinel 
vertex and its mate (see Additional file 9).

Practically, edges are connected to the sentinel vertex or its mate if the outer ends of 
a read exceed a given distance to the outmost ends of its seeds (MEMs). Furthermore, 
the previously introduced clustering for adjacency matrix entries can be used with the 
sentinels’ column and row as well. If there are reads that fully enclose I , a merging with 
entries that only partially enclose I is possible. If such fully enclosing reads are absent, 
genome assembly techniques are required for the reconstruction of I and its matrix 
entry. Additional file 9 comprises a detailed description of the creation, clustering and 
merging of edges that connect to the sentinel vertex or its mate.

Computing confidence scores for matrix entries

We compute the confidence score Conf (E) of an adjacency matrix entry E at the position 
(uX ,uY ) as Conf (E) = Reads(E)/(Cov(X)+ Cov(Y )) . Here, Reads(E) is the number of 
reads that contribute at least one entry-area to the cluster belonging to E , where entry-
areas are the fuzzy edges inferred directly from MEMs. We define coverage Cov(Z) as 
the number of reads that have at least one seed overlapping the Z th nucleotide of the 
reference. The subterm Cov(X)+ Cov(Y ) of the above computational scheme represents 
the sum of coverages from the X and Y  matrix position of E.

Reconstructing sequenced genomes from graphs

Highly accurate SV calling should allow a reconstruction of the sequenced genome on 
the foundation of the reference genome and the SV calls. In the following, we assume 
the existence of a sequenced genome S together with a set X of simulated long (PacBio) 
and short (Illumina) reads for S . Using our proposed approach, we compute an adja-
cency matrix MS using S as one single error-free read and a matrix MX using the set of 
reads X . The matrices MS and MX can differ slightly due to the impact of sequencing 
errors, the size of reads in X , and the repetitiveness of the reference genome. The differ-
ences between MS and MX can manifest in three ways: (1) an entry of MS is slightly mis-
placed in MX , (2) An entry of MS is missing inMX , and (3) MX comprises an additional 
entry that does not occur in MS . The matrices MS and MX define two skew-symmetric 
genome-mapping graphs GS and GX , respectively. Let tS be a traversal through GS that 
visits the edges in compliance with S . tS defines a set of tuples TS = {(i, e) : e is the i th 
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edge visited during the traversal tS} . Here an edge can be part of multiple tuples in TS . 
By following the edges in TS in ascending order of their i-values, we can reconstruct S 
in terms of GS . In this context, the diagonal entries (which are not part of the matrix in 
practice for efficiency reasons) are implicitly inserted. According to the computation of tS 
on the foundation of S , it must be possible to compute a traversal tX through GX . For this 
purpose, the partial traversal information comprised in reads needs to be accumulatively 
combined using techniques known from genome assemblers. Furthermore, insertions 
that are not fully covered by any read require read-to-read alignments for reconstruc-
tion. These two problems are subject to further research. In this work, we instead infer 
TX directly from TS as follows: For each pair (i, e) ∈ TS , we search for the spatially closest 
neighbor e′ ∈ MX . If the distance to e′ exceeds a given threshold, we ignore the pair (i, e) . 
Otherwise, we add a tuple (i, e′) to an initially empty TX . In the context of this addition, 
we copy the weight (weights are insertions) of e to e ’ too. Additionally, we define a succes-
sor function on the indices in TX assucc(i) = min

({
j
∣∣j > iand

(
j, e

)
∈ TX

}
) . For exam-

ple, in Additional file 8, we have succ(1) = 2 and succ(2) = 4 for TX . The reconstruction 
of an approximated S via TX follows the same algorithmic approach as described for S 
and TS . However, due to the differences between MS and MX , we get an approximated 
form of S merely. As shown in Additional file 8, these differences can cause a situation, 
where two tuples (i, e) and (succ(i), e′′) in TX contradict the graph GX . (I.e., the origin of 
the edge e′′ cannot be reached from the destination of the edgee .) In this case, we con-
tinue the reconstruction at the origin of e′′ as soon as we reach the destination ofe . For 
example, in Additional file 8, this contradiction occurs between the edges a′ and b′ as 
well as b′ and d′ . Therefore, the reconstruction comprises the segments before the desti-
nation of a′ and the segments following the origin of d′ merely. By choosing the origin of 
d′ instead of its destination, we avoid a bypassing of the insertion I.

As mentioned before, our skew-symmetric graph model unifies forward and reverse 
strand. The reconstruction process can encounter edges connecting vertices of oppo-
site strands that we call crossing edges. Due to such crossing edges, the strand must 
be tracked during reconstruction. In TS this tracking is achieved by inverting a “cur-
rent strand”-variable whenever the reconstruction passes crossing edges. (The cur-
rent strand must be considered during the abovementioned insertion of implicit 
edges; see Figs. 6E and 7C.) However, in TX , the strand tracking can fail due to the 
disappearance of crossing edges. For tackling this shortcoming, we inspect TS when-
ever we resolve one of the abovementioned contradictions between TX and GX.
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