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Abstract 

Sequence alignments are the foundations of life science research, but most innova‑
tion so far focuses on optimal alignments, while information derived from suboptimal 
solutions is ignored. We argue that one optimal alignment per pairwise sequence 
comparison is a reasonable approximation when dealing with very similar sequences 
but is insufficient when exploring the biodiversity of the protein universe at tree‑of‑life 
scale. To overcome this limitation, we introduce pairwise alignment‑safety to uncover 
the amino acid positions robustly shared across all suboptimal solutions. We imple‑
ment EMERALD, a software library for alignment‑safety inference, and apply it to 400k 
sequences from the SwissProt database.

Keywords: Sequence alignment, Dynamic programming, Needleman‑Wunsch 
algorithm, Protein folding, Suboptimal alignments

Background
When exploring the diversity of life, we tend to either reduce observations accord-
ing to similar principles and patterns shared across lineages (comparative method) or 
aim to deduce the individual mechanistic function with a cause-and-effect-revealing 
experimental design (functional assessment). In genomics, such attempts translate into 
comparing genetic sequences according to the similarity of their DNA or protein com-
position (comparative genomics) or mechanistic analysis of three-dimensional struc-
tural conformations of proteins (functional genomics). Recent breakthroughs in protein 
structure prediction from primary sequence alone  [1, 2] uncovered that integrating 
comparative and functional genomics into a predictive model can yield groundbreaking 
insights useful enough to guide mechanistic studies in molecular life sciences. Building 
on this integrative foundation of sequence comparison and protein structural predic-
tion, we explore how the sequence diversity across the tree of life can be compressed 
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into alignment-robust sequence regions while minimizing the loss of protein structural 
information.

To compare two biological sequences according to a predefined scoring-scheme, 
pairwise alignment methodologies have proven useful for various practical applica-
tions [3, 4]. When constructing a pairwise alignment, a combinatorial space of possible 
alignment configurations is explored and a single optimal alignment setting is selected 
(based on the predefined scoring-scheme) and reported to equip experimenters with 
one plausible solution rather than overwhelming them with a wide range of possible 
solutions. While sufficient for many applications, including protein sequence similar-
ity search, the reduction of comparison to one solution (even when optimal) can cause 
enormous information loss about biologically relevant, but suboptimal, alignment con-
figurations, thereby systematically biasing the comparative method when applied at 
tree-of-life scale. One could argue that handling only optimal alignments is the most 
parsimonious approach to dealing with complexities when scaling to millions or even 
billions of pairwise sequence comparisons when organizing a diverse sequence space 
according to their pairwise identities. However, analogous to the concept of point esti-
mates and confidence intervals in statistical parameter inference  [5], neglecting the 
goodness of fit for any application may result in unrealistic technical optima rather than 
focusing on quantifying the biological relevance (e.g., functional protein configuration) 
of reported alignment solutions.

It seems therefore surprising that the experimental community has grown accustomed 
to interpret algorithmically derived optimal alignment solutions as biologically most rel-
evant configuration of pairing similar proteins, although theory clearly states that such 
approximation may only be reasonable when comparing very similar sequences [6] and 
not when dealing with distant homologs. We argue that by exploring the space of sub-
optimal alignment configurations using a quantification method able to capture stable 
positions across possible alignment paths (alignment-safe intervals), novel insights with 
greater biological relevance can be unveiled and quantified with particular relevance for 
protein structure evolution at tree-of-life scale.

Fortunately, previously collected evidence suggests that sufficiently screening the sub-
optimal alignment space for particular configurations that are biologically more relevant 
can in fact be achieved  [7, 8]. Previous work, such as  [9–11], has shown that there is 
a significant connection between the suboptimal alignment space and the structural 
alignment space and used this link to improve the accuracy of pairwise sequence align-
ments. It has also been shown that suboptimal alignments are often more accurate than 
strictly optimal ones and that they contain a high number of correct amino acid resi-
due pairs [7], indicating their use in protein structure prediction. Vingron M and Argos 
P. [12] showed that so-called reliable regions, defined in terms of a robustness measure of 
individual aligned amino acids can identify conserved and functionally relevant regions 
among two protein sequences. They demonstrate this functional relevance by validating 
that these conserved regions also correspond to aligned regions of their respective ter-
tiary structures. In detail, Chao KM et al. [13] introduce a robustness measure for a sin-
gle pair of aligned symbols between two sequences to assess the difference between the 
optimal alignment score of the compared sequences without restrictions and the optimal 
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alignment score not containing that aligned pair. A related approach suggested by Naor 
D and Brutlag DL  [6] notes that the space of suboptimal alignments (whose score is 
within a difference � to the optimal solution) can reveal conserved regions when manu-
ally inspecting the “graphic representation” of these possible alignments. While this 
initial suggestion to explore the suboptimal alignment space yielded promising visual 
insights, no solution was given on how to automate or scale this approach to millions or 
billions of pairwise comparisons. Currently, most applications favor multiple sequence 
alignments (MSAs), hidden Markov model-based approaches (HMMs), or protein lan-
guage models [14] when interested in sensitively locating conserved regions inside a set 
of sequences for large-scale phylogenetic applications (i.e., those positions or regions 
that remain unchanged in the phylogenetic tree). While providing reliable results in a 
molecular evolution context, calculating optimal MSAs or constructing relevant HMMs 
for deep homology searches scales exponentially with the number of sequences, which 
is computationally expensive and not suitable for tree-of-life applications. In addition, 
MSAs are designed to process highly similar sequences and often perform poorly when 
comparing divergent sequences [15, 16].

Here, we overcome these limitations by introducing the application of solution 
safety  [17], (the  “Methods” section―Definition  1), for pairwise protein sequence 
alignments. With alignment safety, we can explore the space of optimal and suboptimal 
alignment configurations (i.e., possible pairings of amino acids) and find entire intervals 
that are common to all or to a given proportion of alignment solutions. We implement 
this approach in a command line tool, EMERALD [18]. Instead of forcing two (possi-
bly very diverse) sequences into a single optimal alignment configuration, EMERALD 
embraces the diversity of possible alignment solutions, by revealing alignment-safe inter-
vals of the two sequences which appear as conserved (and not even necessarily identi-
cal) in the entire space of optimal and suboptimal alignments (Fig. 1). To demonstrate 
the effectiveness of this procedure for sizeable protein comparisons, we first cluster all 
protein sequences stored in the Swiss-Prot database  [19, 20] using DIAMOND Deep-
Clust [21] (the “Results” and “Methods” sections) and apply EMERALD to each non-sin-
gleton cluster. With this comprehensive analysis, we aim to explore whether our method 
can provide a competitive solution to project alignment-safe primary-sequence intervals 
onto the structural conformation of proteins and thereby accelerate the biologically rel-
evant exploration of sequence evolution and their corresponding structural divergence 
across the tree of life.

Results
The main purpose of this study is to notify the genomics community about the advan-
tages of exploring the suboptimal alignment space when dealing with comparisons of 
vastly divergent sequences where subsequent structural information will be used to 
make claims about protein sequence and fold evolution at tree-of-life scale. EMERALD 
allows to achieve this task by equipping users with an automated and scalable software 
solution to infer alignment-safe subsequences extracted from the suboptimal alignment 
neighborhood (Fig.  1), which we demonstrate experimentally to correspond to con-
served regions of the underlying protein structure (such as alpha-helix, etc.).
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Defining alignment‑safety for pairwise protein sequence alignments

Initially developed in the context of genome assembly [17], and later extended to other 
applications admitting multiple solutions, such as flow decompositions for RNA tran-
script assembly [22], and RNA folding [23], solution safety identifies a set of partial solu-
tions (e.g., an interval of an alignment) to infer safe positions or windows present in all 
optimal and �-suboptimal configurations to the problem. Using this definition, previous 
work by [6, 12, 13] can be reintroduced in the context of studying maximally safe partial 
alignments, whereby maximal denotes the property that such partial alignment cannot 
be extended left or right without losing the characteristic of being safe.

To achieve this property at scale and with biological relevance, we introduce novel 
computational aspects of the alignment-safety concept and implement these into the 
C++ command line tool EMERALD (the “Methods" section) [24]. First, we generalize 
the notion of safety by defining a partial solution to be α-safe ( α ∈ (0, 1] ) if it is present 
in at least a proportion α of all possible solutions. We further generalize α-safety to the 
space of �-suboptimal solutions from [6] that are at most � away from the optimal solu-
tion, by defining a joint-parameter (α,�) which captures partial solutions that appear in 
at least a proportion α of all �-suboptimal solutions. In other words, while � captures 

Fig. 1 Schematic representation of EMERALD’s safety window calculation of a DIAMOND DeepClust cluster 
containing 4 member sequences. EMERALD performs a pairwise global alignment between the cluster 
representative against each of the 4 cluster member sequences using affine gap costs and BLOSUM62 as 
substitution matrix. For the first sequence pair, the right‑hand side illustrates the suboptimal alignment 
graph and their corresponding suboptimal alignment configurations between the two sequences listed 
as �‑suboptimal alignments (an alignment is �‑suboptimal if its score is not more than � smaller than 
the optimal score). The illustrated graph is one of minimum size to fulfill the property of including all �
‑suboptimal alignments (here, we choose � = 8 ). Source‑to‑sink paths in the graph correspond to 
suboptimal alignments; nodes and edges on the unique optimal alignment path are shown in black, while 
those configurations on a �‑suboptimal path are illustrated in gray. The optimal alignment path is color 
coded in black and the two top �‑suboptimal alignment paths illustrated in orange and blue. For α = 0.75 
and � = 8 , we obtain three safety windows shown as green intervals. These three colored safety windows 
correspond to subpaths contained in at least α = 0.75 (i.e., 75% ) of all source‑to‑sink paths (i.e., of all �
‑suboptimal alignments). Note that the middle safety window is not captured (i.e., contained) by the (unique) 
optimal alignment, in black, and is only revealed by the subgraph of all �‑suboptimal alignments. Finally, 
we project the safety windows onto the cluster member (and cluster representative sequence) as explained 
in (the “Methods" section). This procedure is repeated for all possible pairwise comparisons between the 
representative sequence and the 4 members, thereby obtaining (α,�)‑safety windows for each cluster 
member (bottom left)
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the boundaries of the suboptimal alignment space that a user wishes to explore, α regu-
lates the quantile-range over all possible alignment solutions. The joint-parameter (α,�) 
then allows users to specify the suboptimal alignment space within a particular quan-
tile range over all solutions that shall be explored. This approach allows us to address 
the fact that an (α,�)-safe partial solution is an interval of arbitrary alignment length 
(not only a single pair of aligned symbols, as is the case for the robustness measure from 
[12]). Together, we denote all such (α,�)-safe intervals as the collection of alignment-
safe protein sequence intervals or in short safety windows. Intuitively, � allows sufficient 
exploration across the suboptimal alignment space within an α range, thus enlarging the 
solution space, and leading to shorter safety-windows, while α relaxes the safety require-
ment by enforcing that only a α-fraction of the �-suboptimal alignment-configurations 
need to have the same amino acid to extend safety windows. We show that optimizing 
the α and � configuration can be a powerful tool for regulating the biological relevance 
safety-windows can capture in diverse protein sequences and their respective three-
dimensional structures.

Additionally, we explore the biological signatures that can be captured when explor-
ing the suboptimal alignment space using our alignment-safety approach. In order to 
annotate which biological features alignment-safe residues may encode in a particular 
threshold- and substitution-matrix configuration, we use the Stride [25] annotation such 
as alpha-helices and loops to exemplify how users can biologically assess the output of 
EMERALD. However, we would like to point out that users need to pay close attention to 
what suffices as valid “ground truth” for their benchmarking, since EMERALD is agnos-
tic to particular biological applications and the choice of substitution matrix may induce 
a well characterized amino acid bias for evolutionary more stable residues  [26–28]. 
Recent advancements in protein structure prediction can also provide users with a more 
structurally oriented validation dataset [28]. While it is well understood that secondary 
structure elements align better than non-secondary structure elements or disordered 
parts of proteins, our methodology can reveal the concrete regions of a protein sequence 
(alignment-safety windows) that are the same across all (considered) suboptimal align-
ment solutions. This feature of EMERALD allows users to explore how robust certain 
sequence regions are to alternative alignment configurations and different substitution 
matrices. For this purpose, we extracted the secondary structure from the  Swiss-Prot 
database for each protein sequence using the command line tool Stride  [25]. For each 
residue in a sequence, Stride assigns a secondary structure type, in our case: “AlphaHe-
lix,” “310Helix,” “PiHelix,” “Strand,” “Bridge,” “Coil,” and “Turn.” We further distinguish 
secondary structure types by placing them into two distinct categories: stable and not 
stable. Coil, Strand, and Turn were labeled as not stable while the rest of the second-
ary structure types were labeled as stable. While this classification is naive in the first 
instance (for example, because there are well-known cases where Coils, Strands, and 
Turns can be stable to fix certain protein conformations and vice-versa, alpha-helices 
can be fairly flexible and unstable [16, 29]), we use this distinction only to exemplify 
how users can categorize known protein-structural features into distinctive structural 
feature classes to benchmark the suboptimal alignment-space for their domain-specific 
application and quantification of biological relevance. The main motivation behind such 
categorization is to test which regions of a protein structure are robustly encoded in 
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alignment-safe intervals. We envision that users make extensive use of this benchmark-
ing setup to explore, quantify and test the biological relevance of harnessing the sub-
optimal alignment-space for encoding structural features and protein evolution of their 
(divergent) sequences of interest.

In silico experimental design to investigate the biological relevance of alternative 

suboptimal alignment configurations

The concept of solution-safety [17] guarantees the following property. If the true align-
ment-configuration is inside the full solution space of the dynamic programming matrix 
(i.e., optimal and �-suboptimal alignment-configurations), then windows that are the 
same across all such alignment-configurations (safety windows) are also part of the true 
alignment (which cannot be observed in reality). In other words, analogous to sampling 
theory in statistics where the ground truth of a data universe cannot be measured, we 
assume that a representative sample drawn from this data universe allows us to infer 
rules and principles about the data universe itself. Alignment-safety windows can thus 
be seen as analogy of a representative sample drawn from the true (unobserved) align-
ment. The biological relevance of this approach can then be studied by annotating these 
alignment-safe windows/positions in regard to their overlap with protein secondary 
structural features, their contribution to protein selection pressures such as synonymous 
vs nonsynonymous substitution rates (dN/dS), and mappings onto AlphaFold2 struc-
tures or their underlying multiple-sequence alignments (MSAs). The focus of our exper-
imental design is, therefore, to test whether exploring the suboptimal alignment space 
when dealing with millions or billions of pairwise alignments spanning a comprehensive 
sequence diversity across the tree of life yields sufficiently more information (compared 
to a single optimal alignment configuration) to increase biologically relevant inference 
power when dealing with protein structure prediction and structural evolution tasks. To 
achieve this, we retrieved the Swiss-Prot database from [20] (June 2021), which repre-
sents a manually curated subset of the UniProtKB [19] database. In the version of June 
2021, Swiss-Prot contains approximately 560k protein sequences which can be retrieved 
as a FASTA-file. After data retrieval, we filter out protein sequences that did not have 
corresponding AlphaFold2 predicted three-dimensional structures [1, 30]. We then clus-
tered this dataset with DIAMOND DeepClust, a new sensitive deep-sequence-cluster-
ing method implemented into DIAMOND since version 2.1.0 [21]. We filter out cluster 
members with no stable bases and clusters of size 1, resulting in 15934 clusters and 396k 
sequences in total. To achieve a comprehensive overview of deep-homology associations 
between proteins across the full diversity intrinsic to the 396k Swiss-Prot sequences, 
clustering was carried out using a percent-identity threshold of 20% and 75% length cov-
erage. This threshold was motivated mainly by two factors: (1) conformity with the twi-
light zone of protein evolution where sequence identity greater than 20–35% can still 
be reliably associated with structural similarity above this zone, while this association 
is “breaking” otherwise [31] and (2) to maximize the diversity of the protein sequence 
space across the tree of life. It is important to note that although the minimum pairwise 
identity threshold ensures that distant similarities are detected, some clusters can yield 
pairwise sequence compositions that have significantly higher identity-relations than 
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the chosen threshold of 20%, since DIAMOND uses no upper identity threshold when 
clustering.

Next, we run EMERALD to calculate safety windows of all sequence and representa-
tive pairs of each cluster. To explore the influence of the suboptimal alignment space 
depth on capturing biologically relevant features, we test various parameter-com-
binations performed using three different α parameters (0.51, 0.75, 1) and seven � 
parameters (0, 2, 4, 6, 8, 10, 15), values that are in the same order of magnitude as the 
BLOSUM62 metric [32], resulting in 21 safety window calculations per cluster (Figs. 2 to 
3). As cluster representative, we selected the cluster centroids reported by DIAMOND 
DeepClust’s greedy set cover method. Finally, we benchmarked the CPU runtime and 
maximal memory consumption of these runs (Fig. 4).

Benchmarking and analysis of stable versus unstable protein structural features that are 

encoded by alignment‑safe windows

For quantification and comparison of safe intervals in the context of stable versus unsta-
ble bases, we utilize several benchmarking metrics: safety coverage, stable coverage, sta-
ble structure overlap, and stable structure retention. Safety coverage is defined by the 
portion (%) of a protein sequence which is reported by EMERALD as (alignment-) safe, 
while stable coverage is the portion (%) of a sequence that is considered stable according 

Fig. 2 Comparing stable structure retention and safety coverage (y‑axis) for several sequence identity ranges 
between cluster members against the cluster representative (x‑axis) carried out with EMERALD parameters 
α = 0.75 and � = 8 on all obtained sequences, where N denotes the number of sequences in each identity 
range. The dashed lines indicate medians and the dotted lines the first and third quartiles. The safety 
coverage increases with higher identity ranges due to the smaller size of the suboptimal alignment space for 
high identity sequence pairs. Since the stable structure retention quantifies the proportion of stable amino 
acids that are alignment‑safe, it increases alongside an increase in safety coverage. The high stable structure 
retention results indicate that EMERALD is indeed able to capture biologically relevant stable positions, as 
they make up a higher proportion when restricting the sequence to safety windows. a All sequences are 
included (i.e., with safety coverage of at most 100%). b Sequences restricted to those having safety coverage 
of maximum 80%
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Fig. 3 For a given threshold x, safety coverage of the sequences whose stable structure retention is at 
least x (on the left), and the proportion of the sequences whose stable structure retention is at least x (on 
the right). The results are split into different identity ranges. a All 396k sequences are included. b Restricted 
to sequences whose safety coverage is at most 80%. The dark red curves, which cover sequences of all 
identities, show in a that around 20% of the sequences (right plot) have a stable structure retention of 100% 
and only 15% of safety coverage (left plot), while the purple curves, which cover sequences from the identity 
range 40–70%, show in b that 10% out of the sequences with at most 80% safety coverage inside this identity 
range (right plot) have a stable structure retention of 100% and only a safety coverage of around 5% (left plot)

Fig. 4 CPU runtime of EMERALD. a Computational run time for all DIAMOND DeepClust clusters generated 
from the filtered Swiss‑Prot database using the threshold combination α = 0.75 and � = 8 and calculated 
on a single thread. Each dot corresponds to a protein sequence cluster and the color of each dot indicates 
its number of corresponding member sequences. b Maximum memory consumption of EMERALD runs. For 
all trialed α and � parameter settings, the average memory consumption for each cluster ranged between 
205 and 207 Mb and the average run time between 11.4 and 11.5 s
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to the distinct protein-structural features classification (user-defined) described in the 
previous section. We further classify a sequence position as true positive (TP) if it is both 
safe and stable, false negative (FN), if it is not safe but stable, and false positive (FP) if it is 
safe but not stable. Based on these distinctions, we compute the metrics stable structure 
retention (recall) = TP/(TP+FN), indicating the percentage of stable positions captured 
by safety windows, stable structure overlap (precision) = TP/(TP+FP), indicating the 
proportion of safety windows that is also stable, and their combination, F1-score, which 
is the harmonic mean of the stable structure retention and overlap. This analytics tool 
allows users to benchmark according to their own distinction of structural classes when 
determining how much information is gained when incorporating the suboptimal align-
ment space to the sequence comparison task.

We represent the sequence identity ranges as intervals of real numbers with nota-
tion [i,  j] where i defines the lower identity boundary and j the upper identity bound-
ary. Figure  2 illustrates the stable structure retention and safety coverage benchmark 
for our 396k sequence dataset. Naively, we expect the stable structure retention and the 
safety coverage to be similar, as we are likely to cover, e.g., 60% of all stable elements 
if 60% of the sequence is covered. Similarly, if all amino acids are alignment-safe, the 
stable structure retention is equal to 100% meaning that no further biological informa-
tion can be obtained. Thus, we are usually interested in an increased gap between the 
stable structure retention and the safety coverage. Ideally, the stable structure retention 
would always be close to 100% with all varying safety coverages, meaning that safety 
corresponds perfectly to stable elements. Figure  2 further shows that as we consider 
sequences that are more dissimilar, safety coverage decreases, since we increase the 
space of optimal and suboptimal solutions. Figure 2b shows the stable structure reten-
tion that is restricted to all sequences with a safety coverage of at most 70%, resulting 
in a decrease of the stable structure retention. In both Fig. 2 a and b, the average val-
ues of the stable structure retention exceeds the average value of the corresponding 
safety coverage, and in the identity range [40%, 70%] , the average stable structure reten-
tion is at 80% even when we restrict the sequences to have no more than 80% safety 
coverage. This result shows that the proportion of stable positions inside the safety 
windows is larger than the proportion of stable positions out of all the sequence (i.e., 
(stable ∩ safe)/safe > stable/sequence length ). In addition to Fig. 2, we also assessed the 
safety coverage of each individual amino acid structure type in (Additional file 1: Fig. S1), 
which shows that unstable amino acids have a smaller safety coverage than stable ones. 
“Coil” has the smallest coverage followed by “Turn,” with an exception of “Strand” having 
a higher coverage than “AlphaHelix,” which we defined as stable. EMERALD sufficiently 
captures amino acids of type “Bridge” and “310Helix,” despite STRIDE only assigning 
these types to 0.8% and 3% of all amino acids, respectively.

Figure 2a illustrates that the best tradeoff between safety coverage and stable structure 
retention is the identity range [40%, 70%] sequence identity. This range setting introduces 
the biggest gap between medians while ensuring that the stable structure retention does 
not drop below 70%. In Fig. 2b, the median of the stable structure retention in the iden-
tity range of 40–70% is at 80%, despite the safety coverage being restricted to be at most 
80%. Furthermore, we analyzed the stable structure retention over all combinations of 
parameters (Additional file 2: Fig. S2; Additional file 3: Fig. S3; Additional file 4: Fig. S4). 
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Overall, the stable structure retention is always slightly larger than the safety coverage. 
For � = 0 (i.e., when we consider only optimal alignment parts) and all three α values 
0.51, 0.75 and 1.0, the safety coverage is close to 100% for identities of at least 20%, which 
implies that the substitution matrix is very good at finding a unique optimal alignment, 
which motivates exploring the suboptimal alignment space. As we predicted, decreas-
ing α corresponds to increasing the stable structure retention and safety coverage, while 
increasing � corresponds to decreasing them.

The choice of parameters also has an impact on the contiguity of safety window lengths 
and counts. For example, when selecting very conservative parameter settings, a larger 
proportion of shorter safety windows are generated. To buffer this effect, we added the 
additional constraint as a new EMERALD parameter -m (–windowmerge) which deter-
mines whether short safety windows that appear in close proximity (i.e., intersecting or 
adjacent to each other), are subsequently joined into one large safety window. We quan-
tify this parameter selection behavior in (Additional file  5: Table  S1), which now pro-
vides the average sequence and safety window lengths (summary statistic of contiguous 
stable intervals). As expected, lowering the pairwise sequence identity results in shorter 
and overall less contiguous safety windows. Additionally, a substantial amount of the 
safety windows of sequence alignments in the [70%, 100%] identity range have a length 
exceeding 50% of their full sequence length. Over the whole dataset and all combina-
tions of parameters, the stable structure overlap stays constant (Additional file 6: Fig. S5) 
with the median at around 43%.

Figure 3 further explores the relationship between stable structure retention and safety 
coverage. It restricts the sequences in the x-axis to those with stable structure reten-
tion of at least x, plotting the safety coverage (on the left) and the proportion of con-
sidered sequences (on the right). Strikingly, in Fig. 3a, we can see that for about 20% of 
all sequences, or of all sequences in the identity range [40%, 70%] (dark red, and pur-
ple curves, respectively on the right for x = 1.00 ), EMERALD retains all their stable 
positions, with a safety coverage of only 15%. This illustrates that, in contrast to opti-
mal alignment approaches, for lower identity bounds (dissimilar sequences) EMERALD 
manages to reveal structurally conserved intervals. Similarly, EMERALD achieves a sta-
ble structure retention of 80% for around 75% of all the sequences with a safety cover-
age of around 65%. In other words, EMERALD declares 65% of the sequence as safe, 
capturing 80% of all stable amino acids. This result further shows that by relaxing the 
stable structure retention criteria from 100% down to 80%, EMERALD is able to reduce 
the sequences to their safety intervals from full length to 65%. In Fig. 3b, we analogously 
restrict the sequences only to those of safety coverage of at most 80%. Here, for example, 
the purple curve shows that around 10% of the sequences in the identity range 40–70% 
can be reduced to a safety coverage of nearly 5%, without losing the stable structural 
retention constraint of 100%. This suggests that EMERALD embraces the sequence 
diversity to narrow down the structurally conserved context of a sequence.

(Additional file 7: Fig. S6) analyses the safety coverage and the F1 score, and it shows 
that, as we consider clusters with smaller post-computed identity values, F1-score has 
only a minor decrease, but safety coverage has a marked decrease. This indicates addi-
tionally that safety windows have a better ability to capture stable structural elements in 
clusters with smaller identity values (Additional file 8: Fig. S7).
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Finally, we benchmarked EMERALD’s run time and memory consumption (Fig. 4) on 
a computing server with 32 cores (2x hyper-threading, 64 threads) and 512GB of RAM 
using the clustered 396k sequences from the Swiss-Prot database. Overall, none of our 
clusters ran more than 17 min, and, except for two clusters, they did not use more than 
6.5GB of memory. While the time increases quadratically in the lengths of sequences, 
trivially, it increases only linearly with the number of sequences in the cluster. This result 
illustrates that EMERALD can scale to millions of sequences and thousands of clusters 
to explore the protein universe across the tree of life.

The pseudocode denoting the algorithmic procedure underlying the pairwise align-
ment-safety inference implemented into EMERALD is illustrated in (Additional file  9: 
Algorithm 1).

Discussion
For the past decades, pairwise sequence alignments have served silently and reliably as 
foundation of comparative and functional genomics applications. Algorithmic innova-
tion focused on computing ever faster heuristics for retrieving optimal alignment solu-
tions at scale or extending comparisons to multiple sequence alignments or Hidden 
Markov Model based statistical alignment approaches. However, only little innovation 
occurred in the pairwise alignment field on quantifying the biologically most relevant 
alignment configuration from a collection of up to millions of possible (suboptimal) 
alignment solutions. While biological meaning in the context of alignment optimization 
is a vague concept, in the early days of comparative and functional genomics the ability 
to encode structural information of proteins was among the main applications under-
lying the benchmarking of biologically meaningful alignment configurations [5, 7]. The 
consensus then was that focusing on optimal alignments is a reasonable heuristic when 
dealing with highly similar sequences, since the optimal alignment solution can indeed 
encode a good representation of conserved protein structure such as alpha-helix  [33]. 
Still applied as a main assumption in functional genomics today when employing pair-
wise alignment searches, protein sequences are usually screened for high similarity 
across distant species or strains to test whether this retained sequence identity translates 
into structural conservation and potential functional similarity.

In this study, we aimed to determine whether quantifying suboptimal alignment con-
figurations in pairwise sequence alignments can significantly improve the sensitivity 
of identifying relationships between features of protein structure across the tree of life 
when analyzing a large diversity of protein sequence space and making comparisons 
between hundreds of thousands of species [21]. To approach this quest, we designed an 
in silico experiment to annotate all alignment-safe positions of the Swiss-Prot database. 
Using this annotation approach, we investigate how the quantification of the subopti-
mal alignment space can refine biologically relevant interpretations such as conserved 
protein structural features. We asked how information about suboptimal alignment con-
figurations at scale can be harnessed to predict protein structural change when the pro-
portion of alignment-safe positions in distant sequence alignments is reduced. Finally, 
we introduced alignment-safety as a new methodology to approach such questions and 
the command line tool EMERALD to implement our methodology at scale.
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While previous work focused on assessing the quality or statistical robustness 
of optimal alignment configurations in comparison with a set of suboptimal align-
ment solutions (optimal alignment neighborhood) [34–36] in the context of protein 
homology modeling or threading, our work significantly extends these concepts to 
associate protein sequence evolution with their respective structural change while 
scaling to millions of pairwise comparisons and trillions of suboptimal solutions at 
tree-of-life scale. We achieve this by inferring the robust amino acid positions across 
a range of suboptimal alignment-configurations. As a result, we learned that when 
attempting to relate the sequence biodiversity of the protein universe to the evolu-
tion of protein structure, a detailed inference and exploration of how alignment-safe 
positions are retained or lost throughout the tree of life can serve as robust proxy for 
how conserved structural features change over evolutionary time. We interpret this 
result such that alignment-safe positions can be associated with the stably folded 
backbone of a protein structure and that further research is required to unveil the 
causal associations between alignment-safe positions and positions giving predictive 
signatures when inferring structural conservation above the twilight zone of protein 
evolution [31].

While our main purpose is to raise awareness and stimulate further discussion on 
how to scale sampling from the true alignment-configuration when dealing with the 
sequence diversity across the tree of life, a current limitation of exploring the sub-
optimal alignment solution space using our alignment-safety methodology is that 
inferring alignment-safety windows with EMERALD is sensitive to the choice of the 
parameters � and α . To further soften this limitation, we plan to establish an analo-
gous approach to topological persistence [37], where we extend EMERALD by adding 
a procedure we refer to as inference of persistent safety-windows. In this approach, the 
α parameter is fixed and a safety-window is only referred to as �-persistent if it is also 
(α,�)-safe. By iteratively increasing � starting from � = 0 , we can then extend the 
suboptimal alignment graph for the new � parameter and update the corresponding 
safety-windows. We envision that the persistence of a safety-window (i.e., the range 
of � parameters for which we can guarantee safety) will not only eliminate ambiguity 
in choosing the right EMERALD parameters, but will also inform us in greater detail 
about the protein features such alignment-safety windows encode.

Conclusions
We envision that studies exploring the suboptimal alignment space when comparing 
protein sequences pairwise across a biodiverse protein universe will stimulate further 
research attempting to address the remaining shortcomings of fold predictions such 
as dealing with disordered parts of proteins and incorporating diverse mutation pat-
terns into fold evolution predictions. Our alignment-safety methodology and EMER-
ALD software are designed to assist these efforts of associating new information 
gained from suboptimal alignments with biologically relevant phenotypes of proteins 
in an evolutionary context. We designed our approach to be sufficiently fast and sen-
sitive to scale to millions of sequences with various degrees of divergence to supply 
the data-intensive demands of the biosphere genomics era.
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Methods
Conceptually, we build on the approach introduced by Naor and Brutlag [6] and vastly 
extend its methodological depth and computational scalability for tree-of-life scale 
applications (Fig. 5). In detail, the approach introduced by [6] is restricted to consider 
only aligned symbols that are part of all suboptimal alignments, ignoring pairs which are 
part of the optimal alignment itself. For example, suppose that an aligned pair is com-
mon to all the 1000 optimal alignments of score q, there is a single suboptimal align-
ment of score q − 1 not containing the pair, and the next suboptimal alignments not 
containing the pair have score q − 100 . In this case, the single suboptimal alignment of 
score q − 1 makes the pair “not conserved” under the approach of [6] and drastically 
decreases the robustness of the pair (from 100 to just 1), since the robustness measure 
cannot quantify the proportion of (sub-)alignments containing the pair. In addition, they 
define robustness independently for each aligned amino-acid pair thereby excluding the 
opportunity to quantify robust regions, which are often observed in natural settings. As 
a result, although [6] provide a first theoretical template to study suboptimal alignment 
spaces, they fail to deliver scalable algorithmic solutions, software tools, and biological 
validation to investigate the protein sequence diversity space in the context of robust - 
alignment safe regions for tree-of-life scale applications. In fact, their methodology does 
not exceed a manual analysis of graphical alignment representations with little potential 
for automation and efficient scaling.

Inference of alignment‑safe protein sequence windows

We formally introduce the calculation of alignment-safe intervals through the thres-
holded exploration of the suboptimal pairwise alignment space. Let A and B be two 
strings over an alphabet � of length n and m, respectively. In this study, we refer to an 

Fig. 5 Conceptual overview of EMERALD’s safety window calculation workflow. As input EMERALD receives 
a set of clusters in fasta format. For example, such protein sequence clusters can be generated using 
DIAMOND DeepClust or alternative clustering methods. Next, users can specify the scoring matrix (e.g., 
BLOSUM62) according to which optimal alignment configurations will be determined. Each cluster member 
sequence is then globally aligned against the cluster representative sequence (centroid) using the pairwise 
Needleman‑Wunsch alignment algorithm. The resulting dynamic programming (DP) matrix of each pairwise 
comparison is then encoded as a graph data structure to search for optimal and suboptimal alignment 
paths according to the selected scoring matrix and the threshold configurations defining the suboptimal 
alignment space. Once all alignment‑safe intervals are computed, EMERALD projects these safety intervals 
(safety windows) back to the representative sequence, thereby annotating the sequence intervals that are 
robust across all possible alignment configurations within the suboptimal alignment space
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optimal alignment between A and B, when a particular alignment maximizes a scoring 
function based on an externally provided match/mismatch cost matrix. First, we con-
sider scores provided by a amino acid substitution matrix (such as BLOSUM62 [32]) 
and solely focus on optimal alignments, before we introduce affine-linear gap costs 
in the Introducing gap penalties section [38] and the suboptimal alignment space to 
explain the necessary changes in our approach.

In sequence bioinformatics, it is established that such optimal global alignments 
between A and B can be computed via dynamic programming [3]. A common result 
is that alignments of maximum score are in bijection with maximum-weight (opti-
mal) paths in the directed acyclic graph (DAG) which corresponds to this dynamic 
programming table. More formally, we can define the alignment DAG of A and B 
as G(A,B) = (V ,E) , with V = {0, . . . , n} × {0, . . . ,m} , with each node (x,  y) denot-
ing three out-going edges in E to (x + 1, y), (x, y+ 1) and (x + 1, y+ 1) (and thus, 
the DAG has unique source s = (0, 0) and unique sink t = (n,m) ). We denote 
paths in a graph by the notation P = (v1, v2, . . . , vk) ∈ V k and their restriction by 
P[vL..vR] = (vL, vL+1, . . . , vR) . The first two of the edges correspond to a gap and the 
third edge corresponds to an alignment of the symbols A[x] and B[y]. If we assign the 
scores of the substitution matrix as well as the gap score to the corresponding edges 
as weights, then finding an optimal alignment corresponds to finding a maximum-
weight path from s to t (s-t path) in G. We define such score maximizing paths as 
optimal. We are then interested in discovering those safe partial alignments that are 
common to all optimal alignments.

We can further generalize the notion of safety by also considering a parameter 
α ∈ [0, 1] and analogously explore α-safe partial alignments that appear in at least the 
proportion α of all optimal alignments. For α = 1 , 1-safety coincides with safety and 
considering α < 1 allows us to have potentially longer α-safe paths. We can define 
these notions formally based on the graph-centric definition of an optimal global 
alignment.

Definition 1 Let α ∈ [0, 1] , let A and B be two strings, and let G(A, B) be the global 
alignment DAG connecting A and B. We denote that a path P in G is

• safe, if P is a subpath of all optimal s-t paths of G;
• α-safe, if P is a subpath of at least an α proportion of all optimal s-t paths of G.
• maximally α-safe, if it is not a subpath of a longer α-safe path.

We define the set of all maximal α-safe paths as α-safety windows. We will omit α 
when it is clear from the context.

Given the alignment DAG G(A,  B) that connects A and B, we define 
G0(A,B) = (V0,E0) as the unweighted minimal subgraph of G(A,  B) to include all 
optimal s-t paths in G(A,  B) (thus s and t are nodes in both G(A,  B) and G0(A,B) ). 
Backtracking an optimal solution in G(A,  B) can be done by taking any in-coming 
edges of any node (x, y) that is part of an optimal path. Due to the bijection property 
of G0 , we can ignore edge weights and focus on exploring only the set of all its s-t 
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paths, since these are bijectively linked with the optimal alignments between A and B. 
We note that G0(A,B) is weakly connected (i.e., there is an undirected path between 
any two pairs of nodes, since by definition every node appears in some s-t path of 
G0(A,B) ). It is easy to notice that the safe edges of G(A, B) are exactly the edges that 
when removed from G0(A,B) leaves G0(A,B) no longer weakly connected. Such edges 
are also referred to as bridges of the undirected graph underlying G0(A,B) , and they 
can be computed in linear time and in proportion to the size of G0(A,B) [39].

Here, we propose a refined approach to compute α-safe paths based on counting s-t 
paths in G0(A,B) . For each node v, let d(v) be the number of paths from v to t. We can 
calculate these numbers with the following recurrence:

where N+(v) = {u ∈ V0 | (v,u) ∈ E0} . Since G0 is a DAG, the recurrence is well-defined, 
and it stores the total number of s-t paths in d(s). Analogously, we can also compute 
the number dr(u) of s-u paths for any u ∈ V0 . Given these two counts for any edge 
e = (u, v) ∈ E0 , we can define

as the proportion of all s-t paths of G0 that e is part of. We can also understand p(e) 
as the probability of e appearing in an arbitrary s-t path of G0 . Likewise, given a path 
P = (v1, . . . , vk) of nodes vi ∈ V0 , the proportion of s-t paths that P is part of is given by

Thus, P is α-safe if and only if p(P) ≥ α.
The following lemma shows that if α > 0.5 , then there exists an s-t path P∗ , such that 

any α-safe path is a subpath of P∗ . This not only simplifies the algorithm, but it also 
makes it computationally efficient since it guarantees that the number of maximal α-safe 
paths is proportional to the size of this path (i.e., O(n+m) ). Moreover, since P∗ is an s-t 
path in G0 , it corresponds to an optimal alignment between A and B, and thus all safety 
windows can be reported as intervals of this alignment.

Lemma 1 Let A and B be two strings based on an amino acid alphabet � . If α ∈ (0.5, 1] , 
then there is an s-t path P∗ which contains all the α-safe paths of G(A, B).

Proof As defined above, for an edge e let p(e) ∈ [0, 1] denote the proportion of optimal 
paths it is part of. It is clear that

for all nodes v, where δ+(v) is the set of all outgoing edges of v.

(1)d(v) =
{

1, if v = t,
∑

u∈N+(v) d(u) otherwise,

(2)p(e) :=
dr(u) · d(v)

d(s)

(3)p(P) :=
dr(v1) · d(vk)

d(s)
.

e∈δ+(v)
p(e) ≤ 1,
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We assume the opposite, meaning that there are two α-safe edges e1 and e2 for which no 
common s-t path exists. Since by definition of α-safe edges, p(e1) > 0.5 and p(e2) > 0.5 , 
we obtain the contradiction

as the paths that cross e1 are distinct of the paths that cross e2 but all start at node s. 
Finally, since each pair of α-safe edges share a path, there must exist a single path P∗ con-
taining all α-safe edges. �

Next, we give an approach on how to find such a path P∗.

Lemma 2 Let G = (V ,E) be a DAG with source  s  and sink t . Given a set of edges 
A = {e1, e2, . . . , ek} , we can find an s − t  path that either contains all the edges in A or 
return the information that such path does not exist, in time O(|V | + |E|).

Proof Let T be a topological order of all nodes in V and let A be sorted topologically by 
the tails of the edges. Assume we have a path from s to an edge ei = (ui, vi) . The task is to 
determine a path to the edge ei+1 = (ui+1, vi+1) . For any path Pei from vi to ui+1 , it must 
hold that T [x] ∈ [T [vi],T [ui+1]]=:I (⊆ V0) for all nodes x contained in Pei . To achieve 
this, we perform a graph traversal (for example, depth-first search) in I and visit every 
node at most once. If ui+1 is not found after the graph search, it follows that the path does 
not exist. At the end of this procedure, if no edge in A is left, we just connect the path to t.

In (Additional file  9: Algorithm  1), we provide the pseudo-code to infer safety-win-
dows. In lines 1 to 6 we construct the subgraph G0(A,B) of optimal paths, calculate the 
ratios p(e) for all e ∈ E and find a path P∗ according to Lemma 1. Next, we calculate the 
safety-windows with a two-pointer algorithm on P∗ . The iterator variable here is R (right 
pointer), and we use a second left pointer L with L ≤ R . The idea is to keep the value L as 
small as possible, to maintain the safety-windows left maximal, while moving L up until 
the interval [L, R] of P∗ becomes α-safe. On line 13 we add the interval into the list of 
safety-windows if it is also right-maximal (line 12).

Theorem 1 Let α ∈ (0.5, 1] . Given two strings A and B  of length n and m, respectively, 
(Additional file 9: Algorithm 1) computes the safety windows of A and B in time O(n ·m) , 
assuming constant-time arithmetic operations.

Proof We analyze the runtime line by line. First, constructing G0(A,B) can be per-
formed in O(n ·m) by the standard dynamic programming approach. As shown earlier, 
d(v) overall can be calculated in linear time (here O(n ·m) ) for DAGs. Line 5 runs in 
constant time, so this for-loop also runs in linear time.
Next, in line 6, we find an s-t path P∗ containing all α-safe edges, using the approach 
given in Lemma 2. Note that the path exists by Lemma 1.

∑

e∈δ+(s)
p(e) ≥ p(e1)+ p(e2) > 1,
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Finally, we calculate the safety windows by iterating over P∗ and store them in the set W. 
Both variables R and L require at most O(n+m) iterations and such W will at most con-
tain O(n+m) safety windows.

Let [ℓ, r) ∈ W  . According to the choice of ℓ in line 10, such an interval is α-safe. It is 
maximal and thus a safety window, since neither [ℓ− 1, r) ∈ W  nor [ℓ, r + 1) ∈ W .

Next, we show that all safety windows are in W. Let [ℓ, r) be a safety window. According 
to the iteration in line 9, R will eventually be equal to r. Consider the start of this itera-
tion. If L ≤ ℓ , the iteration in line 10 will ensure that L will be equal to ℓ by definition of 
safety windows and we insert [ℓ, r) = [L,R) into W. We now assume L > ℓ . In previous 
iterations R ≤ r , we must have increased L to make it larger than ℓ . But since [ℓ, r) is α-
safe, all intervals [ℓ,R) for R ≤ r are α-safe, and we never increase L if L = ℓ and R ≤ r . �

Note that we assume that arithmetic operations run in constant time. If G0(A,B) con-
tained all vertices in G(A, B), then the number of paths will be equal to the exponentially 
growing Delannoy numbers [40] (i.e., if G0(A,B) = G(A,B) , then d(v) ∈ O(5.8n/

√
n) , as 

this value is iteratively the sum of three previous values). Though, even if G0(A,B) only 
consists of nodes close to the diagonal line, the d values can grow up to O(2n).

Introducing gap penalties

So far, we only considered scores given by a substitution matrix M[1..σ ][1..σ ] for σ char-
acters as well as by gaps through insertions and deletions when determining (sub)opti-
mal global alignments between two protein sequences. While accounting for gaps in a 
global pairwise alignment is necessary to retrieve biologically relevant alignment config-
urations, finding the right balance between gap introduction and similarity optimization 
is an important consideration to make.

To achieve this, we generalize the gap scoring function to be affine-linear. This 
means that when creating a gap of length ℓ in the alignment, we obtain the score 
gapp,g (ℓ) = p+ ℓ · g . The value p ∈ Z is the gap penalty, chosen in order to minimize 
the number of gaps in an optimal alignment. Before having introduced a gap score, we 
have set p = 0 . To accommodate gap scores in our previously defined DAG G, we can 
slightly modify the graph to address the known issue that paths are then not in 1:1 cor-
respondence to alignments anymore. Following [38], we replace each node (i, j) by three 
nodes C(i, j), D(i, j) and I(i, j). Nodes D and I correspond to being inside a gap, erasing 
the characters in A and B respectively, while node C is the default node, from which we 
can decide to either match two characters or to introduce a new gap. We thus create the 
following edges for C: C(i, j) → C(i + 1, j + 1) to match Ai with Bj , C(i, j) → D(i + 1, j) 
to align Ai with a gap and C(i, j) → I(i, j + 1) to align Bj with a gap. The last two of the 
edges also define the start of a gap. For D (and analogously for I), we create the following 
edges: D(i, j) → C(i, j) to close a gap and D(i, j) → D(i + 1, j) to extend a gap. The new 
graph is an s-t DAG of size O(n ·m) which retains all properties to calculate safety-win-
dows as previously described. Additionally to the substitution matrix and the gap score, 
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we assign edge weights for closing and opening a gap, commonly chosen as 0 for closing 
and some negative integer for opening in order to punish creating too many gaps.

Extending our DAG approach to incorporate suboptimal alignments

We previously stated that the graph G0(A,B) has the property that all its s-t paths are 
optimal paths in G(A, B). This gives us a compact data structure able to store exponen-
tially many optimal paths. We now generalize the subgraph G0 to contain also subopti-
mal paths. This is achieved by introducing a critical threshold � , which users can specify 
to either extend or narrow down the suboptimal alignment space. For a given � ≥ 0 , an 
s-t path in G(A, B) is said to be �-suboptimal if it is of weight at least OPT −� , where 
OPT denotes the weight of an optimal path. We denote paths that appear in at least an α
-proportion of all �-suboptimal paths in G(A, B) as (α,�)-safe and define maximal (α,�)

-safe paths as (α,�)-safety windows.
Following the notion of  [6], we define G�(A,B) = (V�,E�) to be the subgraph of 

G(A, B) which is induced by the set of edges e ∈ E such that there is a �-suboptimal s-t 
path in G(A, B) crossing e. By definition, G�(A,B) contains all �-suboptimal s-t paths in 
G(A, B). Additionally, however, it may contain s-t paths that are not �-suboptimal. This 
implies that some paths of G�(A,B) appear in at least a proportion α of s-t paths which 
are not necessarily (α,�)-safe paths (in G(A, B)).

Naor D and Brutlag DL  [6] have shown that G�(A,B) is the smallest subgraph of 
G(A, B) that contains all �-suboptimal s-t paths. In fact, our data spanning tree-of-life 
scale protein sequence diversity does not indicate that these spurious non-suboptimal 
paths have any effect in practice. Naor D and Brutlag DL [6] argue that the only possible 
solution to capture only suboptimal paths would be to naively enumerate over all subop-
timal paths, which is unfeasible, since in the worst case there can be exponentially many 
suboptimal paths of size G(A,  B). We address this limitation by approximating (α,�)-
safe paths with those paths of G�(A,B) appearing in at least a proportion α within its set 
of s-t paths. We compute these paths according to (Additional file 9: Algorithm 1), with 
the only difference that we start with G�(A,B) in line 1 instead of G0(A,B).

To compute G�(A,B) , we proceed as in [6]: for all nodes v ∈ V  , we find the weight w(v) 
of an optimal v-t path of size G(A, B) in linear time by traversing the nodes in reverse 
topological order, such that the weights of all out-neighbors of v are computed when 
we reach v. Similarly, we compute the weight wr(v) of optimal s-v paths for all v ∈ V  . 
An edge e = (u, v) ∈ E is now part of G�(A,B) only if wr(u)+ w(v)+ w(e) ≥ OPT −� , 
where w(e) denotes the weight of the edge e. We can thus construct G�(A,B) in linear 
time and proportional to the size of G(A, B).

Implementing alignment‑safety into the scientific software EMERALD

We designed EMERALD to efficiently implement our theoretical methodology to 
explore the suboptimal alignment space by inferring alignment-safe intervals when 
performing pairwise protein sequence comparisons. In detail, EMERALD accepts a 
protein sequence cluster in FASTA format of k sequences as input and returns k − 1 
safety-window sets in a custom safety window format. Our tool aligns all sequences 
in the cluster against a user-selected representative sequence of the cluster, which by 
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default is the first sequence in the FASTA file, thereby maximizing the score of the 
alignment. EMERALD by default uses BLOSUM62 as substitution matrix; however, 
any affine-linear gap cost function can be used via the command line parameters. This 
makes EMERALD extendable to sequence alignments beyond protein sequences. For 
a cluster containing k sequences, the goal is to be able to compare the safety-windows 
of all k − 1 pairs with each other. Thanks to Lemma 1, we can project the safety win-
dows to the sequences. Node indices in the alignment graph are of the form (i, j) with 
0 ≤ i ≤ n and 0 ≤ j ≤ m , and such safety windows can be written as [(i1, j1), (i2, j2)] . 
For example, given the strings S = “AB” and T = “BC” and the alignment “ AB− ” and 
“ −BC ,” a safety window of the first gap would be of the form [(0,  0),  (1,  0)]. Even 
though by usual convention T [0] = B , this position is not part of the safety win-
dow. EMERALD then returns the interval [0,  1] for string S and [0,  0] for string T. 
In other words, the tuple indices of the nodes are between the string characters. 
This coincides with the fact that the node set is the product {0, . . . , n} × {0, . . . ,m} 
(i.e., (n+ 1) · (m+ 1) nodes) and with the fact that we want to be able to include gaps 
in safety windows.
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