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Abstract 

Differential gene expression in bulk transcriptomics data can reflect change of tran-
script abundance within a cell type and/or change in the proportions of cell types. 
Expression deconvolution methods can help differentiate these scenarios. BEDwARS 
is a Bayesian deconvolution method designed to address differences between ref-
erence signatures of cell types and corresponding true signatures underlying bulk 
transcriptomic profiles. BEDwARS is more robust to noisy reference signatures and out-
performs leading in-class methods for estimating cell type proportions and signatures. 
Application of BEDwARS to dihydropyridine dehydrogenase deficiency identified 
the possible involvement of ciliopathy and impaired translational control in the etiol-
ogy of the disorder.
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Background
RNA sequencing (RNA-seq) is the cornerstone of regulatory genomics studies. It pro-
vides information on changes in gene expression accompanying a biological process and 
allows for the reconstruction of gene regulatory networks. The widespread adoption and 
utility notwithstanding, traditional “bulk” RNA-seq technologies offer an incomplete 
and potentially biased view of expression changes, especially for heterogeneous tissues, 
since they report gene expression levels aggregated across multiple cell types present in 
unknown proportions. In data from heterogeneous samples, differential gene expression 
can reflect a regulated change of transcript abundance within a cell type, a change in the 
proportion of cell types within the sample, and/or a combination of both phenomena. 
Differentiating these scenarios is important for inferring mechanisms surrounding bio-
logical processes.
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Single-cell transcriptomics techniques, such as single-cell RNA-seq (scRNA-seq), can 
address this issue directly, but are considerably more expensive and time-consuming, 
limiting the use of these high-resolution assays to fewer samples per biological condition 
than is afforded by bulk technologies. This practical consideration underlies the need 
to develop reliable computational methods to deconvolve bulk transcriptomics profiles. 
Deconvolution methods [1–3] have the potential to reveal cell type-resolution transcrip-
tomes at the low cost and large scale afforded by bulk RNA-seq, allowing greater statisti-
cal power in detecting transcriptomic and compositional changes in a biological process.

Deconvolution methods assume that a bulk RNA-seq profile is a weighted mixture of 
cell type-specific profiles, known as “signatures”, and use statistical techniques to esti-
mate the weights and/or cell type signatures that comprise the bulk profile. While it 
may be possible to estimate both simultaneously, a more practical approach is to rely 
on reference signatures (cell type-specific expression profiles from similar biological 
conditions) to estimate cell type proportions. CIBERSORT [4] and FARDEEP [5] adopt 
this approach. A similar approach is used by MuSIC [6], SCDC [7], BISQUE [8], and 
BayesPrism [9], which utilize entire existing scRNA-seq data sets as reference. While 
these methods demonstrate the potential of this approach, they also highlight chal-
lenges that arise due to technical and biological differences between reference signatures 
and bulk transcriptomic profiles. For instance, reference cell type signatures obtained 
from scRNA-seq data may be unsuitable for deconvolving bulk RNA-seq data due to 
a difference in technologies, even if they profile the same biological conditions. Simi-
larly, reference signatures derived from healthy subjects used for deconvolving patient 
transcriptomics profiles or those from untreated biospecimens used for experimentally 
perturbed samples may introduce unknown biological biases, leading to errors in decon-
volution. Tissue-specific differences in cell type transcriptomes may also lead to such 
errors.

Recently, comprehensive benchmarking studies have detailed the extent to which bio-
logically and/or technologically mismatched reference signatures can affect the accuracy 
of deconvolution methods. For instance, Sutton et al. [10] observed a negative impact 
of biological differences on deconvolution accuracy across all methods tested. Newman 
et al. [11] propose the use of batch correction to bridge the gap between transcriptom-
ics technologies, while Jew et al. [8] suggest learning a transformation between synthetic 
bulk profiles generated from a reference scRNA-seq data set and the target bulk data set, 
which can be used for deconvolution. Sutton et al. [10] propose using reference signa-
tures that are aggregated from multiple sources and technologies, while Wang et al. [6] 
and Dong et al. [7] utilize heterogeneity across multiple single cell data sets to improve 
the accuracy of deconvolution. Recently, Chu et al. [9] developed a Bayesian model to 
infer sample-specific signatures, allowing for technical and biological variation between 
reference scRNA-seq and bulk expression profiles. Despite these efforts, deconvolution 
in the face of mismatched references signatures remains an unsolved problem.

In this work, we describe a rigorous Bayesian probabilistic method for bulk expression 
deconvolution, called BEDwARS (Bayesian Expression Deconvolution with Approxi-
mate Reference Signatures), which tackles the problem of signature mismatch from a 
complementary angle. It does not assume availability of multiple reference signatures, 
nor does it rely solely on transformations of data prior to deconvolution. Instead, it 
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incorporates the possibility of reference signature mismatch directly into the statis-
tical model used for deconvolution, using the reference to estimate the true cell type 
signatures underlying the given bulk profiles while simultaneously learning cell type 
proportions. It assumes that each bulk expression profile is a weighted mixture of cell 
type-specific profiles (“true signatures”) that are unknown but not very different from 
given reference signatures. Thus, the reference signatures are used as priors in a Bayes-
ian estimation of true signatures, along with the cell type proportions. Our strategy of 
jointly inferring both proportions and signatures is a notable departure from the two-
step strategy of current methods whereby reference signatures are first “corrected” and 
then used for deconvolution. It has parallels to so-called full deconvolution methods [12, 
13] but its ability to utilize given reference signatures distinguishes it from this genre of 
methods. Moreover, our technique works with reference cell type signatures from any 
source and is not limited to scRNA-seq references.

We demonstrate the advantages of BEDwARS through extensive tests on semi-syn-
thetic data sets mimicking human pancreatic islet and brain gene expression data, under 
varying levels of misalignment between reference and true signatures. We evaluate its 
ability to recover cell type-specific expression signatures as well as sample-specific cell 
type compositions in comparison to state-of-the-art reference signature-based decon-
volution methods [1]. In these tests, BEDwARS outperforms leading methods such as 
CIBERSORT, CIBERSORTx, FARDEEP, and BayesPrism in the estimation of cell type 
proportions. Furthermore, it generally provides more accurate estimates of true cell type 
signatures compared to RODEO, a state-of-the-art expression deconvolution method 
that estimates such signatures based on cell type proportions inferred by methods such 
as CIBERSORTx or FARDEEP. Our evaluations demonstrate the advantage of jointly 
inferring cell type proportions and cell type-specific signatures while allowing the latter 
to deviate from pre-determined reference signatures that may not be accurate for the 
bulk data being studied. Finally, we apply BEDwARS to study the mechanisms underly-
ing pediatric dihydropyridine dehydrogenase (DPD) deficiency, based on new data from 
induced pluripotent stem (iPS) cell-derived neural organoids.

Results
Overview of BEDwARS

BEDwARS is a Bayesian approach to deconvolving bulk expression profiles using refer-
ence expression profiles (“signatures”) of the constituent cell types. It is designed to be 
robust to “noise” in provided reference signatures that may arise due to biological and/or 
technical differences from the bulk expression profiles. The underlying model assumes, 
like other deconvolution models, that the bulk expression profile, say X , of a biological 
sample is a weighted mixture of cell type-specific signatures, say Sc (for each cell type c ). 
Loosely speaking, X = cwcSc , where X and Sc are G-dimensional expression profiles 
( G is the number of genes) and wc is the proportion of cell type c in the sample (Fig. 1). 
Importantly, the BEDwARS model assumes that a cell type’s signature Sc , henceforth 
called the “true signature” of cell type c , is similar to but not identical to the available ref-
erence signature, say Src , of that cell type, and must be estimated as part of the deconvo-
lution process. This is the fundamental conceptual difference of BEDwARS from existing 
approaches. In other words, given a collection of bulk expression profiles {X} and a set 
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of reference signatures 
{
S
r
c

}
 , BEDwARS simultaneously infers the proportions w = {wc} 

of all cell types c in each sample, and the unknown “true signatures” {Sc} of all cell types 
while maintaining similarity between reference signatures and inferred true signatures.

To understand the model-prescribed relationship between the provided reference 
signatures and unknown true signatures (Fig.  1), consider the expression of gene g 
in cell type c , as per the true signature ( Sgc ) and reference signature ( Srgc ). The model 
assumes that Sgc differs from Srgc by an amount that is Gaussian distributed with mean 0 
and a gene- and cell type-dependent variance. In particular, the variance of this “noise” 

Fig. 1 Model outline. BEDwARS takes as input the bulk expression profiles ( X  ) as well as the reference 
signatures of individual cell types ( Sr ). BEDwARS models bulk profiles ( X  ) as combinations of “true” but 
unknown signatures ( S ) of cell types mixed in unknown proportions ( W ) and estimates both S and W from 
data. The true signatures are assumed to be similar to the reference signatures and differences between 
them are assumed to be normally distributed with mean zero and variance proportional to the reference 
gene expression ( Srgc ). The constant of proportionality is a cell-type specific parameter ( σc ) that allows for the 
degree of differences to vary across the cell types. The unknown cell type proportions ( W ) are assumed to 
follow a Dirichlet distribution. Maximum a posteriori estimation is used to find the cell type proportions and 
signatures based on the data
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term reflecting the difference between the true and reference signature values is pro-
portional to gene’s reference expression ( Srgc) and the constant of proportionality is cell 
type-dependent. (The noise is modeled on log-transformed expression, see “Methods”.) 
Thus, the model prefers the true signature value Sgc to be similar to the reference Srgc but 
also allows them to diverge, and the divergence can be larger for more highly expressed 
genes, following a conventional assumption of gene expression models [14]. Further-
more, since biological differences in expression profiles may manifest to different extents 
in different cell types, the model allows the divergence to be greater for some cell types 
than for others. The extent of divergence, reflected in the variance term, is learnt from 
the data.

The above design principles underlie how BEDwARS assigns a probability 
Pr(X |{Sc},w) to the bulk expression profile X conditional on a specific estimation of 
true signatures {Sc} and cell type proportions w , and how it assigns prior probabilities 
to Sc based on reference signature Src (see “Methods”). The tool estimates the true signa-
tures and cell type proportions with greatest posterior probability Pr({Sc},w|X) , using 
Metropolis Hastings sampling. The calculations include C + 2 additional parameters 
(where C is the number of cell types), which are simultaneously optimized. Importantly 
from a usability perspective, no parameters require hand-tuning and the preset param-
eters used in the model were the same for all experiments performed in this study (see 
“Methods” for a more precise description of the model and optimizations).

BEDwARS deconvolution of human pancreatic islet transcriptomic profiles is robust 

to mismatched and noisy reference signatures

We assessed the accuracy of bulk expression deconvolution by BEDwARS following 
benchmarking practices established by recent publications [1, 10] and making use 
of eight different transcriptomics data sets (Table  1). The overall approach to these 
evaluations is the following: (1) begin with a single-cell transcriptomics data set with 
labeled cell types and aggregate the transcriptomes of heterotypic cells to create a 
“pseudo-bulk” transcriptomic profile, keeping track of the relative proportions of dif-
ferent cell types in the aggregate; repeats of this process result in multiple pseudo-
bulk profiles that form the “target” data set to be deconvolved, (2) select a suitable 
transcriptomics data set representing a biological condition similar to the target data 
set and wherefrom we can derive an expression profile for each cell type; this is the 

Table 1 Summary of datasets used for benchmarking

Dataset Tissue type Data type Sequencing protocol Species

Baron Pancreatic islet scRNA-seq inDrop/CEL-Seq (Illumina 
Hi-Seq 2500)

Human

Segerstolpe Pancreatic islet scRNA-seq FACS/Smart-Seq2 Human

Enge Pancreatic tissue scRNA-seq FACS/Smart-Seq2 Human

Darmanis Middle temporal gyrus scRNA-seq Smart-Seq Human

IP Temporal lobe cortex Bulk RNA-seq Illumina Next-Seq Human

CA Middle temporal gyrus snRNA-seq Smart-Seq2 Human

NG Prefrontal cortex snRNA-seq 10X Chromium Human

MM Cerebral cortex Bulk RNA-seq Illumina Hi-Seq 2000 Mouse
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collection of “reference signatures”, and (3) deconvolve the target data set using the 
reference signatures and a method of choice, and compare the recovered proportions 
of different cell types to their true values from step 1. We compared the performance 
of BEDwARS to leading available tools—BayesPrism [9], FARDEEP [5], CIBERSORT 
[4], and CIBERSORTx [11]. BayesPrism is among the most recently presented decon-
volution methods. FARDEEP and CIBERSORT were the best performing decon-
volution tools from the benchmarking study of Cobos et  al. [1]. CIBERSORTx was 
included as it improves upon CIBERSORT by performing batch correction to account 
for technical differences between the target data set and reference signatures.

An important aspect of our evaluations was to record how different methods per-
form with mismatched reference signatures, i.e., those derived from conditions or 
transcriptomic assays that do not perfectly match those of the target transcriptomic 
data. Additionally, we tested the impact of artificially “noised” versions of these ref-
erence signatures, which we simulated while respecting the general trend observed 
between these signatures and their corresponding true signatures (see “Methods”; 
also, we refer below to figures illustrating noisy signatures).

For our first evaluations, we used single-cell RNA-seq data on human pancreatic 
islets from healthy subjects [15] to generate 100 pseudo-bulk profiles from weighted 
mixtures of cells of six pre-labeled types—alpha, beta, gamma, delta, acinar, and 
ductal. We adopted the procedures of Cobos et al. [1] for data processing and genera-
tion of mixtures. Deconvolution of this target data set (called “Segerstolpe-H”) was 
set to be performed using reference signatures constructed from the inDrop scRNA-
seq data of pancreatic islet samples from Baron et al. [16]. (Single cell transcriptomic 
profiles of cells of a type were averaged to obtain the reference signature of that cell 
type.) Note that the reference signatures and the target data set (pseudo-bulk pro-
files) are derived from different sequencing platforms (Table  1); this is one way of 
mimicking the technical differences between transcriptomics profiles that are often 
encountered in real-world deconvolution problems. Additional file  1: Fig. S1 shows 
the relationship between reference and true signatures, suggesting a high level of con-
cordance despite the technical differences. Each of the five evaluated methods—BED-
wARS, BayesPrism, FARDEEP, CIBERSORT, and CIBERSORTx—was used to infer 
cell type proportions in each pseudo-bulk profile and we calculated, for each cell type, 
the Pearson correlation coefficient (PCC) between true and predicted proportions 
across the 100 pseudo-bulk profiles. Figure 2A (group “Baron”) shows that BEDwARS 
makes marginally more accurate estimates, indicated by average PCC over the six cell 
types, though all five methods proved highly accurate in this evaluation. Figure  2H 
shows this comparison for each cell type separately, for the top two methods—BED-
wARS and BayesPrism, revealing that the difference in performance is mainly for the 
delta cell type (PCC 0.99 vs 0.88), as seen more clearly in Fig.  2G. (See Additional 
file 1: Fig. S2 for similar comparisons for all cell types and methods.) The improved 
accuracy of BEDwARS estimates is also borne out when using alternative metrics of 
comparison—mean absolute error (MAE) or root mean squared error (RMSE), rather 
than PCC—between true and estimated proportions (Additional file 1: Fig. S3A, B). 
For instance, we observed BayesPrism to underestimate beta and acinar proportions 
by nearly a factor of two and overestimate delta and ductal proportions in samples 
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depleted of these cell types (Additional file 1: Fig. S2), leading to a higher RMSE and 
MAE compared to BEDwARS (Additional file 1: Fig. S3A, B).

To test the effect of noisy reference signatures, we created six sets of perturbed ver-
sions of the above-mentioned Baron reference signature, representing different levels of 
noise and named “NL-1”, “NL-2”, etc., using randomization to create 11 such signatures 
in each set. Noise was introduced as described in “Methods”, maintaining the overall 
trend with the true signature and with a greater noise level inducing greater variance 
among genes with similar expression values in the true signature. The extent of injected 
noise is illustrated, for the lowest and highest levels NL-1 and NL-6, in Additional file 1: 
Fig. S1; as seen in Additional file 1: Fig. S4A, increasing noise levels result in progres-
sively decreasing correlation coefficient between the reference and true signatures. As 
shown in Fig. 2A, accuracy of cell type proportion estimation degrades with increasing 
noise levels (groups NL-1, … NL-6), but to a lesser extent for BEDwARS than the other 
methods. Performances of BEDwARS and BayesPrism are similar and better than other 
methods for lower noise levels (NL-1,-2,-3), while BEDwARS is significantly better than 
all other methods for higher noise levels (NL-4,-5,-6). Figure 2B shows that BEDwARS 
is substantially better than BayesPrism at the noise level (NL-4), inferring more accurate 
proportions for four out of six cell types. Additional file 1: Fig. S5 shows that BEDwARS 
has greater or almost equal accuracy compared to BayesPrism (the second-best method) 
for all cell types and noise levels except for delta and beta cell types in NL-1 and NL-3. 
Notably, at all noise levels, BEDwARS has the least RMSE and MAE between estimated 
and true proportions (Additional file 1: Fig. S3A, B).

Next, we created a new target data set (called “Segerstople-T2D”) comprising 
pseudo-bulk mixtures derived from the same study as in Fig. 2A (human pancreatic 
islets [15]) but representing patients with type II diabetes (T2D). (See Additional 
file  1: Figs. S4B and S6.) Mirroring trends in Segerstolpe-H evaluations, BEDwARS 
and BayesPrism perform similarly and significantly better than other methods for 
lower noise levels (NL-1,-2,-3). BEDwARS stays the best method for higher noise lev-
els, with significant improvements over BayesPrism for NL-4,-5 (Fig.  2C). The sig-
nificant gap between BEDwARS and BayesPrism at the noise level NL-4 is due to 
superior performance for three cell types and almost equal performance for the rest 
of them (Fig. 2D). (See Additional file 1: Fig. S7 for more complete comparisons.) In 

(See figure on next page.)
Fig. 2 Evaluation of cell type proportion estimation in pancreatic transcriptomic profiles. A, C, E Pearson 
correlation coefficient (PCC) between true and estimated cell type proportions in 100 pseudo-bulk 
samples, averaged over cell types, is shown for different deconvolution methods. Results are shown for the 
Segerstolpe-H (A), Segerstolpe-T2D (C), and Enge-H (E) datasets. Category labels of bar charts indicate the 
reference signature, with “True” indicating the true underlying signature that is normally not available during 
deconvolution, “Baron” indicating the Baron signatures, and “NL-x” indicating Baron signatures with noise 
added at level x. For “NL-x”, results shown are mean with 95% confidence interval from evaluations using 11 
variants of the Baron signature with noise added at level x. B, D, F, H, J, L PCC for each cell type separately is 
compared between the two best methods for respective datasets, when using NL-4 signatures (B, D, F) or 
Baron signatures (H, J, L). G, I, K Estimated and true proportions in the 100 pseudo-bulk profiles are directly 
compared, for a single cell type from each dataset, and for the two best methods for that dataset. BEDwARS 
performance is more robust to noise than the other methods in all datasets. All methods have comparable 
performance when the true signature is used. For the Baron signature, the performance of BEDwARS is 
similar to other methods, with a noticeable improvement for Segerstolpe-T2D dataset. BEDwARS provides 
better estimates for almost all cell types in the NL-4 evaluations and for at least one cell type with the Baron 
signatures
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fact, the performance gap in the absence of noise (Fig. 2C, group “Baron”) was slightly 
more than in Segerstolpe-H evaluations, with the larger differences seen for the delta 
and ductal cell types (Fig. 2J, I). Additional file 1: Fig. S8 shows a detailed comparison 
with all methods for all cell types, revealing for instance that CIBERSORT and CIB-
ERSORTx (collectively called CIBERSORT(x)) underestimate acinar cell type propor-
tions by nearly an order of magnitude and BayesPrism estimations are off-target by a 
factor of four, while BEDwARS estimates are close to the true values. BEDwARS has 
a clear advantage over all methods here, indicated by its exhibiting the least RMSE 

Fig. 2 (See legend on previous page.)
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and MAE between estimated and true proportions at no noise (group “Baron”) and all 
noise levels (see Additional file 1: Fig. S3C, D).

We repeated the above evaluations with a different target data set—pseudo-bulk mix-
tures generated using scRNA-seq data from Enge et al. [17], representing human pan-
creatic tissue from healthy subjects (“Enge-H data set”). This is similar to the above tests 
in that the reference signatures (from Baron et al. [16]) and target profiles represent dif-
ferent technologies (Table 1). (Also see Additional file 1: Figs. S4C and S9.) Performance 
comparisons yielded similar trends (Fig.  2E)—BEDwARS showed marginal improve-
ment over BayesPrism with the Baron signatures (Fig. 2K, L), but now the gap with FAR-
DEEP was larger (average PCC of 0.98 vs 0.8) (Additional file 1: Fig. S10); see Additional 
file  1: Fig. S3E, F for MAE and RMSE metrics. BEDwARS also showed a remarkable 
robustness to increasing noise levels, with progressively greater improvements over the 
other methods. A direct comparison with the second-best performing method (Bayes-
Prism) at noise level NL-4 (Fig. 2F) shows that the largest performance gap is for delta 
cell type. (Also see Additional file 1: Fig. S11 for comparisons to BayesPrism at varying 
noise levels.)

We then performed a closer comparison for the performance of BEDwARS with other 
methods in recovering rare cell type population. In all pancreatic datasets, BEDwARS 
estimates the rare cell type proportions better than other methods (see Additional file 1 
Supplementary Note 1A, Figs. S36-S41, Table S11). In another evaluation, we used het-
erogeneous data sets comprising pseudo-bulk profiles generated from two different 
sources and observed that BEDwARS performance can occasionally deteriorate in such 
scenarios as it assumes that the bulk profiles share their underlying signatures (see Addi-
tional file 1 Supplementary Note 1B, Fig. S42). We also examined the effect of varying 
numbers of bulk profiles and based on the results we recommend users to use datasets 
with the size at least four times the number of cell types to be deconvolved (see Addi-
tional file 1 Supplementary Note 1C, Fig. S43).

In summary, BEDwARS was found to provide more accurate estimates of cell type 
proportion compared to four leading methods, across a range of benchmarking condi-
tions representing varying levels and sources of divergence between the true cell type 
signatures underlying the target data set and the provided reference signatures. (This 
was observed not only with the PCC but also alternative evaluation metrics such as 
MAE and RMSE.) Notably, all methods yielded near-perfect estimates of proportions 
when provided the true signatures, in all settings, indicating that the challenge in accu-
rate deconvolution arises mainly from signature mismatch and noise.

BEDwARS accurately estimates cell type signatures from noisy references

The principle underlying robust deconvolution by BEDwARS is to jointly estimate pro-
portions as well as cell type signatures, allowing the latter to diverge from the reference. 
It is natural to ask, then, if the estimated signatures are indeed accurate. This can be 
assessed by comparing the BEDwARS-estimated cell type signature to the correspond-
ing true signature from the target data set, using correlation coefficients. An alternative 
strategy to reconstructing the true signatures is to estimate cell type proportions in the 
target data set (as above) and use this information to re-estimate the true signatures. For 
this last step, we chose RODEO, a leading deconvolution method based on robust linear 
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regression that infers cell type-specific signatures underlying a given bulk transcriptom-
ics data set, given their cell type proportions in each sample. RODEO has been shown to 
be more accurate compared to other existing methods and to be robust to noise in the 
cell type proportions provided to it. We thus compared signature estimation accuracy 
of BEDwARS and RODEO, with the latter using cell type proportions estimated using 
BayesPrism, FARDEEP, CIBERSORT, or CIBERSORTx (in four separate runs). We also 
examined the accuracy of RODEO when provided cell type proportions from BEDwARS 
deconvolution. The correlation between the true signatures and reference signatures was 
used as a baseline.

The above evaluations were performed on each of the three benchmarks with 
human pancreatic data and revealed a few clear trends (Fig. 3). First, BEDwARS and/
or RODEO/BayesPrism estimate significantly more accurate signatures when provided 
with noisy reference signatures, compared to the other three methods. For instance, on 

Fig. 3 Evaluation of cell type signature estimation using pancreatic transcriptomic profiles. A, C, E Pearson 
correlation coefficient (PCC) between true and estimated cell type signatures, averaged over cell types, is 
shown for different deconvolution methods. Signatures were estimated by deconvolving 100 pseudo-bulk 
samples generated from Segerstolpe-H (A), Segerstolpe-T2D (C), and Enge (E) datasets. Performance of 
BEDwARS is compared with RODEO provided with cell type proportion estimates obtained using BayesPrism, 
CIBERSORT, CIBERSORTx, FARDEEP, or BEDwARS. Category labels of bar charts indicate the reference signature 
used. Category label “True” indicates that the true signatures were provided as reference to BEDwARS; no 
comparisons are made to RODEO in this case, rather this setting was used to assess if BEDwARS, which allows 
the estimated signature to deviate from the given reference, reports back an estimated signature similar to 
the true signature. BEDwARS is more robust to the increasing noise levels in recovering the true signatures in 
all datasets. RODEO provided with BEDwARS-estimated cell type proportions performs as well as BEDwARS, 
suggesting that accurate proportion prediction by BEDwARS is key to accurate signature estimation. B, D, 
F PCC for each cell type separately is compared between BEDwARS and its closest competitor (excluding 
RODEO/BEDwARS) for respective datasets, when using NL-4 signatures. In this setting, the PCC is substantially 
higher for BEDwARS-estimated signatures of ductal cell type than its competitor, for all datasets
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the Segerstolpe-T2D target data set (Fig.  3C, D), BEDwARS and RODEO/BayesPrism 
have similar performance, which is better than other alternatives at all noise levels. On 
the Segerstolpe-H data set (Fig.  3A), RODEO/BayesPrism performs marginally better 
than BEDwARS at lower noise levels (NL-1,-2,-3) whereas BEDwARS is significantly 
better at higher noise levels (NL-4,-5,-6) (Fig. 3B). On the Enge-H dataset, BEDwARS is 
the top performing method at all noise levels and its performance gap with BayesPrism 
is larger at higher noise levels (Fig. 3E, F). Cell type level performance comparison reaf-
firms the advantage of BEDwARS for signature estimation at higher noise levels (Addi-
tional file 1: Figs. S12-S14).

A second trend we noted was that all methods inferred accurate signatures when pro-
vided with the Baron signatures without noise (Fig. 3A, C, E, group Baron). Thirdly, we 
realized that poor signature estimation was tied mainly to errors in the proportion esti-
mation (the first deconvolution step), as evidenced by the fact that RODEO recovers 
equally accurate signatures as BEDwARS if provided with the more accurate cell type 
proportions from BEDwARS; this is true regardless of the noise levels. Trends seen here 
were confirmed when using RMSE instead of correlation as the metric for signature 
comparison (Additional file 1: Fig. S15).

The results of this and the previous section together demonstrate the value of jointly 
estimating cell type proportions and signatures when deconvolving bulk profiles using 
noisy or mismatched reference signatures. Indeed, when true signatures underlying 
the target data set are known accurately, all methods recover proportions accurately 
(Fig. 2A, C, E; group True), and when proportions are estimated accurately using BED-
wARS, RODEO can also provide equally accurate signatures.

Robust deconvolution of brain transcriptomic profiles with BEDwARS

The next set of evaluations were performed following the recent benchmarking study of 
Sutton et al. [10], where scRNA-seq data from middle temporal gyrus in human brain of 
[18] were used to generate the target data set. Using their methodology, we generated 
100 pseudo-bulk profiles as weighted mixtures of the three most frequent cell types in 
the scRNA-seq data—neurons, astrocytes, and oligodendrocytes. As above, the propor-
tions and true signatures used here were recorded as ground truths of the benchmark. 
In our first evaluations on these data, the reference signatures used were bulk RNA-seq 
profiles of immunopurified (IP) cells from the human brain [19] (see “Methods”); this 
is the “IP” signature. Noisy versions of this signature were also tested. (See Additional 
file 1: Figs. S4D and S16 for illustrations of how the IP signature and its noisy versions 
relate to the true signature.)

As shown in Fig. 4A, BEDwARS and BayesPrism provide more accurate estimates of 
cell type proportions in the brain data set, as compared to the three other methods. This 
is true even with the no-noise reference signatures (group “IP”, BEDwARS/BayesPrism 
correlation 0.91/0.94 vs. CIBERSORTx correlation 0.84). Their deconvolution accuracy 
remains stable (between 0.91 and 0.85) at the wide range of noise levels, while other 
methods see their accuracy drop from ~ 0.83 (at no noise) to ~ 0.32 at the highest noise 
level; this trend is also seen with alternative metrics such as MAE and RMSE (Additional 
file 1: Fig. S17A, B). A closer examination (Additional file 1: Fig. S19) reveals that with 
the IP signature the oligodendrocytes cell type is the primary reason for performance 
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Fig. 4 Evaluation of cell type proportion and signature estimation from brain transcriptomic profiles. A, B 
Pearson correlation coefficient (PCC) computed between the estimated and true cell type proportions (A) or 
cell type signatures (B), averaged over cell types, when deconvolving 100 pseudo-bulk samples generated 
from Darmanis dataset. Category labels of bar charts indicate the reference signature used. BEDwARS and 
BayesPrism are similar and have higher PCC than the other methods in the estimation of cell type proportions 
for the IP signature and its noisy versions (NL-x), with the performance gap increasing as the noise level 
increases. For estimation of cell type signatures, RODEO provided with BEDwARS or BayesPrism-estimated 
proportions (RODEO/BEDwARS, RODEO/BayesPrism) outperform other methods including BEDwARS. C, D 
Average PCC between estimated and true cell type proportions (C) or signatures (D), using the IP signatures 
(same as in A, B) as well as the CA, NG, MM signatures. All methods perform comparably for proportion 
estimation when using the CA signature but BEDwARS exhibits better performance when the reference 
signature is more diverged from the true signature, such as NG (different region of human brain) and MM 
(mouse brain). All methods show comparable performance in signature estimation when provided the CA 
and IP references signatures, but RODEO provided with BEDwARS- or BayesPrism-estimated proportions 
exhibits superior performance for the more diverged reference signatures (NG and MM). E PCC for each cell 
type separately is compared between the two best methods (BEDwARS and BayesPrism) when using NG 
signatures. Both methods perform equally well evaluated by PCC criterion. F Estimated and true proportions 
in the 100 pseudo-bulk profiles are directly compared, for neurons (NEU) and astrocytes (ASTRO), for the 
two best methods when using the NG signatures. BEDwARS estimates are considerably more accurate in 
magnitude than BayesPrism estimates
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deterioration in CIBERSORTx (BEDwARS correlation 0.94 vs. CIBERSORTx correlation 
0.81), which underestimates the true proportions by nearly four-fold. (Also see Addi-
tional file 1: Figs. S18 and S19.) Evaluation of signature estimation accuracy by PCC cri-
terion (Fig. 4B) suggests that all methods are capable of recovering the true underlying 
signatures for this data set, although at higher noise levels RODEO using BEDwARS- 
or BayesPrism-estimated cell type proportions (RODEO/BEDwARS, RODEO/Bayes-
Prism) clearly outperform others. (Also see Additional file 1: Fig. S20.) This is reaffirmed 
by evaluations with the RMSE criterion (Additional file 1: Fig. S15D) and provides fur-
ther support for the advantage of BEDwARS and BayesPrism in terms of proportion 
estimation.

Next, we evaluated brain transcriptome deconvolution with three additional refer-
ence signatures that were considered by Sutton et  al. [10]. These include a signature 
obtained from bulk RNA-seq profiles of immune-purified cells from mouse brain tissue 
[20] (“MM”- Mus Musculus), one obtained from Human Cell Atlas containing single-
nucleus RNA-seq of adult human middle temporal gyrus [21] (“CA”-Cell Atlas), and one 
signature from single-nucleus expression profiles of adult human prefrontal cortex in 
control samples [22] (“NG”- Nagy et al.). Additional file 1: Figs. S21 and S22 show that 
the MM and NG signatures are more diverged from the true signatures (than are IP sig-
natures), while the CA signatures are more similar to the true signatures. As shown in 
Fig. 4C, with the NG and MM reference signatures (more mismatch), the BEDwARS- 
and BayesPrism-estimated proportions (Additional file  1: Fig. S24A) are clearly more 
accurate than CIBERSORTx and FARDEEP. Evaluations with MAE and RMSE metrics 
(Additional file 1: Fig. S17C,D) confirm the advantage of BEDwARS in this benchmark, 
but only for the NG signature; the MM signature yields comparable accuracy across 
methods by these alternative metrics. Notably, when using NG signatures, neuron pro-
portions are severely underestimated by BayesPrism (Fig. 4F, Additional file 1: Fig. S23) 
while astrocyte proportions are overestimated by a factor of 1.5, even though PCC val-
ues for either cell type are similar between BEDwARS and BayesPrism (Fig. 4E).

Evaluation of signature estimation (Fig. 4D) suggests that for the CA and IP signatures 
(more matched with true signatures) all methods perform equally well, while for the 
NG and MM signatures (more mismatched), RODEO using BEDwARS- or BayesPrism-
estimated proportions has better performance than others. (Also see Additional file 1: 
Figs. S15E and S24B.) For deconvolution with MM signatures, we observed (Additional 
file  1: Fig. S25) that oligodendrocyte proportions are poorly estimated by all methods 
but BEDwARS and BayesPrism estimates are well correlated with true proportions. This 
suggests that a cell type signature estimation method such as RODEO can benefit from 
proportion estimates that are accurate in relative if not absolute terms. Evaluations using 
the CA reference signature revealed similar performance by all evaluated methods, 
both for proportion estimation (Additional file 1: Fig. S26) and for signature estimation, 
with correlation values of ~ 0.9 or greater (Fig.  4C, D), highlighting the importance of 
matched reference signatures for the deconvolution task.

We also compared BEDwARS with the recently reported tool SCADIE [23], which, 
like RODEO, relies on initial estimates of cell type proportions provided by any exist-
ing deconvolution method and iteratively refines the cell type signatures and propor-
tions. Our evaluations demonstrate that the performance of SCADIE in both proportion 
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and signature estimation is strongly dependent on the quality of cell type proportions 
used in the initialization. In particular, we found that when using reference signatures 
that are more diverged from true signatures, SCADIE initialized with CIBERSORTx- 
or FARDEEP-estimated proportions performs significantly worse than when initialized 
with BEDwARS-estimated and comparably to BEDwARS (for proportion estimation) 
and RODEO/BEDwARS (for signature estimation). (See Additional file 1: Figs. S27-S29).

In summary, extensive comparative evaluations on a published set of benchmarks 
involving brain transcriptomics data reaffirmed the conclusions drawn from pancreatic 
islet benchmarks, that BEDwARS is capable of robust proportion estimation in the face 
of noisy and mismatched signatures and such proportions can then be the basis of more 
accurate signature estimation as well.

Application of BEDwARS to characterize the cell type‑specific regulomes of DPD‑deficient 

patients

In this section, we present a case study in the use of single cell and bulk transcriptom-
ics to characterize molecular mechanisms underlying a rare disorder. Dihydropyridine 
dehydrogenase (DPD) deficiency is caused by deleterious germline variants within the 
DPYD gene and typically presents as a pharmacogenomic condition, in which patients 
are at significantly higher risk of severe adverse events when treated with the commonly 
used chemotherapeutic 5-fluorouracil (5-FU) [24]. DPD deficiency has also been linked 
to rare inborn error of metabolism that is accompanied by neurological disorders of var-
ying degrees of severity in children [25, 26]. The penetrance of the pediatric condition 
within individuals with DPD deficiency is very low. For the purposes of this manuscript, 
we will refer to this condition as “pediatric DPD deficiency” to distinguish it from the 
pharmacogenomic disorder or the generalized reduction in DPD function. While the 
biochemistry surrounding DPD is well characterized, there is extremely limited informa-
tion pertaining to how DPD deficiency could contribute to the clinical presentation of 
neurologic and metabolic conditions in affected children.

The analyses presented in this manuscript represent a subset of a larger clinical study 
designed to characterize the developmental and biochemical pathways that are altered in 
pediatric DPD deficiency with the goals of gaining a better understanding of the disease 
etiology as well as identifying potential therapeutic approaches to improve quality of life 
for affected patients. For the overall study, fibroblasts were obtained from affected indi-
viduals, non-affected family members, and unrelated controls. Fibroblasts were repro-
grammed into induced pluripotent stem cells (iPS cells), which were subsequently used 
to derive neural organoids. At least 3 independent iPS clones were generated from each 
subject.

For the present study, RNA-seq was performed on 72 brain organoids from three 
patients with pediatric DPD deficiency (referred to as DPD1, DPD3, and DPD6) and 
on 48 organoids from two non-affected subjects (DPD2 and DPD4). ScRNA-seq profil-
ing was also performed for three organoids from patient DPD1 and for three organoids 
from the non-affected subject DPD4. For purposes of cross-technology calibration, we 
ensured that eight of the organoids profiled using bulk RNA-seq in each group (patient 
or non-affected) were generated and cultured in parallel with the three organoids used 
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for scRNA-seq. We will refer to these bulk-profiled organoids as “semi-matched” bulk 
samples below.

To deconvolve the bulk RNA-seq profiles into cell type-specific components, we first 
generated reference signatures using the single-cell data. Single-cell profiles from the 
affected and non-affected subjects were processed together to obtain ~29,707 cells that 
segregated into 17 clusters that potentially represented different cell types and states 
(Fig. 5A). To identify cell types represented by these clusters, we utilized a multi-pronged 
strategy based on work by Tanaka et al. [27]. The average expression of neuronal markers 
(STMN2, GAP43, DCX) and early neurogenesis genes (VIM, HES1, SOX2) was used to 
discriminate neuronal from non-neuronal clusters (Fig. 5B, Additional file 1: Fig. S30). 
Further resolution was achieved through the consideration of additional known cell type 
markers, as well as statistically identified marker genes, enrichment of cell type-related 
Gene Ontology terms in these markers and overlaps with similarly obtained marker sets 
from Tanaka et al. (see “Methods”) (Additional file 1: Fig. S31). Using this approach, we 
were able to assign cell types to 15 of the 17 clusters (Additional file 1: Table S1). Nota-
bly, cortical neurons and astrocytes were the only cell types with representation in the 
affected and non-affected samples. Reference signatures were then obtained as average 
gene expression profile of each cell type found in the non-affected individual (astrocytes 
(AS), cortical neurons (CN), progenitor cells (PGC), cilia-bearing cells (CBC), inter-
mediate (INTER), BMP-related cells (BRC)), as well as three cell types in the affected 
individual (neurons (NEU), neuroepithelial cells (NEC) and cluster-11); in some cases, 
multiple clusters were mapped to the same cell type in this step (see “Methods”).

We next performed deconvolution of bulk RNA-seq profiles in each group (i.e., 
affected and non-affected) separately, using BEDwARS with the above-mentioned 
references signatures of nine cell types. (Bulk profiles for each group were first batch 
corrected to match the pseudo-bulk profiles generated from single cell data for the 
respective group, see “Methods” and Additional file  1: Fig. S32.) As an internal con-
trol, we first compared estimated cell type proportions in the eight semi-matched bulk 
samples in each group to those in the scRNA-seq samples of the same individual and 
found the deconvolution to successfully recover the proportions of dominant cell types 
(Fig. 5C). In both groups, the sum of inferred proportions of cortical neurons (CN) and 
neurons (NEU) matched the corresponding sum in the single cell data. However, the 
proportions of these two individual cell types could not be accurately resolved due to 
the similarity in the signatures (see Additional file 1: Fig. S33). Similar observations were 
made for the cilia-bearing cells (CBC) and intermediate (INTER) cell type proportions, 
with their sum matching between bulk-deconvolved and single cell data. Apart from 
these four cell types, any other cell type with either the inferred or true proportion above 
5% (AS, PGC, BRC in non-affected and PGC, cluster-11 in affected) was deconvolved 
accurately. The only exception to this trend was the AS cell type in the affected samples, 
where the true proportion from single cell data, roughly 10%, was underestimated at 
~4%, at the expense of an over-prediction of PGC proportion. Overall, this exercise con-
firmed our ability to deconvolve cell type proportions in bulk RNA-seq from organoids, 
leading us to apply the same procedure to the entire data set.

We next deconvolved the 48 and 72 bulk profiles from two non-affected and three 
affected subjects respectively, using the same signatures and procedure as above. 
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Estimated proportions of almost every cell type (and in two cases, sums over cell type 
pairs – CN+NEU, CBC+INTER) were consistent among subjects within the same 
group (Fig.  5D). The CN+NEU proportion is noticeably higher in the affected sub-
jects, consistent with the limited single cell data (Fig.  5C), while CBC+INTER pro-
portion is higher in the non-affected subjects. Ciliated cells (i.e., CBCs) are involved in 

Fig. 5 Cell type-specific characterization of transcriptomic differences between organoids from DPD 
deficiency affected and non-affected subjects using BEDwARS deconvolution of bulk RNA-seq data. A UMAP 
plot of processed cells clustered into 17 groups. Cells on the right represent the affected patient and cells 
on the left represented the non-affected subject. B Average expression of 11 marker genes in cells of each 
cluster indexed by numbers. These markers were used for cell type assignment. C Comparison between 
the average inferred proportions (plain) from eight bulk samples of an affected and a non-affected subject 
and the average of “true” proportions (diagonal striped) derived from the semi-matched single cell data on 
three organoids for the same subject. D Inferred proportions of different cell types obtained by BEDwARS 
deconvolution of bulk RNA-seq data from organoids derived from two non-affected subjects and three 
affected patients. CN-NEU sum of inferred proportions of CN and NEU, CBC-INTER sum of inferred proportions 
of CBC and INTER. E Negative logarithm (base 10) of the p-value ( −log10(pvalue) ) of hypergeometric tests 
of Gene Ontology (GO) term enrichments in the top 200 differentially expressed genes (DEGs) from bulk 
samples (72 affected vs 48 non-affected, “Bulk”), bootstrapped bulk profiles derived from the single cell data 
(100 affected vs 100 non-affected, “BS-Bulk”) and the cell type-specific bulk expression derived from BEDwARS 
deconvolution (72 affected vs 48 non-affected, “CN-NEU”, “AS”, “CBC-INTER”, “PGC”, “BRC”, “NEC”). None of the 
GO terms enriched in the top 200 DEGs of cell type-specific profiles are enriched in the top 200 DEGs derived 
from the bulk expression profiles. See Additional file 1: Table S3 for information on GO terms. F Logarithm 
(base 2) of the fold-change ( log2FC ) of expression of the 139 genes grouped into cluster 8 based on their 
pattern of differential expression in different cell types. G The 139 genes of cluster 8 are highly enriched in the 
GO term “cytosolic ribosome” (hypergeometric test p-value 2× 10−85)
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extracellular signal transduction that is critical for patterning and morphogenesis dur-
ing neural development [28, 29]. Disruptions to the processes facilitated by ciliated cells 
has been shown to contribute to both neurodevelopmental and degenerative diseases 
[30]. The reduced number of CBC populations within organoids derived from affected 
individuals is suggestive that ciliopathies might be linked to DPD deficiency and contrib-
ute to the observed clinical presentation of pediatric DPD deficiency, warranting further 
study of this novel observation.

Deconvolution with BEDwARS also allowed us to examine cell type-resolved compo-
nents of each bulk transcriptomic profile, obtained by multiplying the cell type’s inferred 
proportion with the respective inferred signature. We could thus compare gene expres-
sion between the two groups of samples (affected versus non-affected) in a cell type-
specific manner, with the large numbers of bulk RNA-seq samples (72 and 48 in the two 
groups) providing high statistical power and the multiplicity of subjects in each group 
offering a more diverse representation than possible with the limited single cell data. We 
derived the genes most differentially expressed (DE) between groups, for each cell type 
separately (Additional file 2: Table S2), and performed Gene Ontology (GO) enrichment 
tests for the top 200 genes to characterize their biological functions (Fig. 5E, Additional 
file 1: Table S3 and Additional file 3: Table S4), see “Methods”. None of the significant 
GO terms (FDR < 0.05), except for one, obtained from this cell type-specific analysis 
were significantly enriched in the top 200 DE genes derived from bulk profiles or from 
bootstrapped samples of the single cell data. This demonstrates that the deconvolution 
approach likely helped reveal latent patterns of gene expression changes within specific 
cell populations that could not be observed within bulk data or in a limited sampling 
strategy (i.e., small number of organoids from fewer subjects) common to scRNA-seq 
analyses.

For example, chronic fatigue and metabolic dysfunction, consistent with mitochon-
drial disorders, have been previously reported in subjects with DPD deficiency [31]. 
However, it is unclear if mitochondrial disorder is a shared feature of pediatric DPD 
deficiency [32]. Mitochondria-related GO terms were identified in the deconvolved 
expression data for PGC, CBC-INTER, and BRC cell types (Fig. 5E and Additional file 1: 
Table  S3 and Additional file  3: Table  S4, suggesting that changes in the expression of 
mitochondrial genes within these compartments might be relevant to the disease eti-
ology. As another example of latent features potentially identified by this analysis, dys-
functions in protein synthesis and folding (e.g., endoplasmic reticulum, ER, dysfunction) 
have been suggested to contribute to numerous neurological disorders; however, the 
etiology and/or pathogenesis have not been fully elucidated [33]. Terms related to ER 
and translation initiation were significantly enriched in CBC-INTER, PGC, CN-NEU, 
NEC, and AS clusters (Fig. 5E), suggesting that changes in protein translation and fold-
ing might contribute to clinical presentation of pediatric DPD deficiency.

In a complementary analysis, we clustered genes based on their patterns of differential 
expression across all nine cell types (Additional file 1: Fig. S34), obtaining 10 major clus-
ters of 39–5107 genes (Additional file 4: Table S5), with similar GO term associations 
as above (Additional file 5: Table S6). One of these clusters (cluster 8, Fig. 5F) shows a 
pattern in which genes are up-regulated in CN+NEU and NEC but downregulated in 
AS, PGC, and CBC+INTER cell types, in affected subjects compared to non-affected 
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subjects. Genes showing this pattern of expression were enriched for those associated 
with the cytosolic ribosome (i.e., “free” ribosomes, Fig. 5G; FDR = 5 ×  10–83). Cells of the 
nervous system, in particular neuronal cells, rely on localized translation of gene prod-
ucts via cytosolic ribosomes [34]. This pseudo-compartmentalized translation within 
neural cells has been shown to create spatial variability in protein expression that is criti-
cal for neural development, function, and plasticity [35]. Disruptions to localized trans-
lation have been linked to various neurodevelopmental and neurodegenerative disorders 
[36, 37]. Combined with the results linking ER/translation GO terms in these same cells, 
these findings indicate that dysregulation of translation and protein folding, whether at 
the ER and/or at distal sites, might contribute to the clinical presentation of pediatric 
DPD deficiency.

Discussion
We present here a Bayesian approach to the deconvolution of bulk expression profiles 
especially designed to address potential differences between reference cell type sig-
natures and the true (but unknown) cell type signatures underlying the bulk profiles, 
a common challenge in deconvolution. One might expect that a Bayesian deconvo-
lution approach that allows for noisy signatures as part of its model will not perform 
best if the reference signatures are in fact very similar to the true signatures underlying 
the bulk data, i.e., when the anticipated noise is not there. However, we noted that our 
model’s performance is better than or competitive with the other approaches in most 
of the benchmarks in this study, including those where the signature differences were 
the smallest. This suggests that in such cases, the model learns to perturb the reference 
signature to a lesser extent based on the data. We note that BayesPrism also allows for 
adjustments to single cell-derived reference signatures, but not in a cell type-specific 
manner as is done in BEDwARS. Therefore, our evaluations also suggest that such cell 
type-specific perturbations to reference signatures may be required for a more accurate 
deconvolution in higher noise regimes.

The BEDwARS model estimates the true cell type signatures using reference signatures 
as prior information. This means that G × C parameters are learnt from the entire bulk 
data, where G and C are the numbers of genes and cell types respectively. Among other 
things, this implies that one needs to exercise care when using BEDwARS with many cell 
types and few bulk samples. While it is difficult to make precise recommendations about 
these numbers, since they depend on the additional data characteristics, we note that 
our evaluations have been successful with ~40 bulk profiles and ~10 cell types. Scenarios 
with more bulk profiles and fewer cell types should be safe for BEDwARS application, 
and further tests are needed for other scenarios. These considerations further imply that 
cell type proportion estimation cannot be done for one bulk profile at a time and all bulk 
samples should be provided at once to BEDwARS, even though the estimated propor-
tions are different for each sample.

Applying BEDwARS to a new dataset, we were able to gain new insight into a rare 
pediatric inborn error of metabolism linked to DPD deficiency. Using a limited set of 
scRNAseq data to generate reference signatures, we deconvolved bulk RNAseq data 
from complex patient-derived neural organoids to identify novel expression changes in 
specific neural cell types. These findings suggest that multiple changes likely contribute 
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to the pathology of the disorder, including disruptions to ciliated cell function, mito-
chondrial dysfunction, and alterations to translational machinery at the ER and associ-
ated with free ribosomes. While pediatric DPD deficiency has previously been suspected 
of having a mitochondrial component [32], to our knowledge, this is the first reported 
evidence for possibly involvement of ciliopathy and impaired translational control in 
the etiology of the disorder. Further study of these pathways as potential targets for the 
development of new treatments for ameliorate the symptoms associated with pediatric 
DPD deficiency is warranted.

Based on our experience as well as on theoretical grounds, we believe BEDwARS may 
not be able to accurately tease apart the contributions/proportions of highly correlated 
cell types [4, 38, 39], a common unsolved problem with deconvolution methods. We 
also believe that BEDwARS performance can be further improved by modifying it to be 
more robust to outliers, e.g., by changing the optimization objective or through outlier 
detection and removal. Furthermore, BEDwARS can be improved by accommodating 
for higher granularity of signature adjustment, i.e., sample specific signatures. We leave 
these important engineering challenges for future iterations of the tool.

Conclusions
We implemented a Bayesian approach to the deconvolution of bulk expression profiles, 
specifically to address the challenge of misalignment between reference cell type sig-
natures and the unknown cell type signatures underlying given bulk profiles. Through 
extensive benchmarking, we demonstrated that our method outperforms leading in-
class methods in the estimation of cell type proportions and is more robust to the extent 
of misalignment between the reference and true cell type signatures. Furthermore, with 
a few exceptions our method achieves a better estimation of true cell type signatures 
than the state-of-the-art method, especially for higher noise levels. Application of BED-
wARS to dihydropyridine dehydrogenase deficiency provided new insights into the pos-
sible involvement of ciliopathy and impaired translational control in the etiology of the 
disorder.

Methods
Preprocessing of datasets used for benchmarking

Pancreas data

“Baron”: scRNA-seq data obtained from Baron et al. [16] were used in generating signa-
tures. Count-level data on cells from all four human subjects (3 healthy and 1 T2D) were 
utilized. “Segerstolpe”: scRNA-seq datasets from Segerstolpe et al. [15] were used, with 
count-level data on cells from six healthy individuals forming the “Segerstolpe-H” data-
set and those from four T2D individuals forming the “Segerstolpe-T2D” dataset. Cells 
with “not applicable”, “unclassified”, and “co-expression” tags were removed in this step. 
“Enge”: Count-level scRNA-seq data on cells from eight healthy individuals, reported in 
[17], formed the “Enge-H” dataset. Except for the Enge-H dataset, six cell types—alpha, 
beta, gamma, delta, acinar, and ductal—were analyzed. The Enge-H dataset did not con-
tain gamma cell type therefore only the remaining 5 cell types were considered.

Following the quality control procedure of Cobos et al. [1], for each pancreatic dataset, 
we removed cells with library size, ribosomal content or mitochondrial content more 
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than three median absolute deviations away from the median. Then, only the genes with 
nonzero counts in at least 5% of all cells were kept. Finally, RPKM normalization was 
done using hg19 human genome assembly.

Brain data

scRNA-seq data from the middle temporal gyrus in human brain, reported by Darmanis 
et al. [18], were RPKM-normalized using hg19 human genome assembly, following the 
preprocessing pipeline of Sutton et al. [10], to form the “Darmanis” dataset. The three 
most abundant cell types—neurons, astrocytes, and oligodendrocytes—were analyzed. 
“IP” signatures were obtained from FPKM-normalized RNAseq data on immunopuri-
fied cells from human adult brain (temporal lobe cortex) [19]. “MM” signatures were 
formed from FPMK-normalized RNA-seq data on immunopurified mouse brain tissue, 
reported by Zhang et al. [20]. “CA” signatures represent RPKM-normalized count-level 
single-nucleus expression in middle temporal gyrus [21], while “NG” signatures were 
single-nucleus expression of human prefrontal cortex [22], obtained from Sutton et al. 
[10] without repeating their preprocessing pipeline.

Generation of cell type signatures and their variants for benchmarking

Signature generation

Cell type signatures were generated by averaging the gene expression profiles of all cells 
of the same type in a dataset. Following Sutton et al. [10], for the signatures generated 
from Darmanis, IP, MM, and CA datasets, only genes with more than one RPKM/FPKM 
expression in at least one cell type were retained. NG signature was taken directly from 
Sutton et al. [10]. Signatures used in brain gene expression deconvolution were restricted 
to neurons, astrocytes, and oligodendrocytes, matching a similar restriction imposed on 
the Darmanis data set (see above).

Perturbation of signatures

This procedure is performed separately for each cell type, starting with a reference 
signature and a true signature of that cell type. (The true signature represents the 
target dataset to be deconvolved and the reference signature reflects the related 
dataset used by the deconvolution method.) The procedure, described next, modifies 
the reference signature by adding random noise to it while maintaining a statistical 
relationship between the reference and true signatures. It is parameterized by a sin-
gle parameter σ . First, the signatures are log-transformed. (Genes with zero expres-
sion in any cell type were excluded from the reference and true signatures before 
the transformation.) Next, genes are partitioned into equal-frequency bins based on 
their expression values in the true signature. Since a reference signature generally 
exhibits high positive correlation with the true signature (e.g., see Additional file 1: 
Figs. S1, S6, S9, and S16, genes in a bin that represents high (or low) expression level 
in the true signature have a high (resp., low) mean expression in the reference signa-
ture as well. This is the statistical relationship that the perturbation procedure main-
tains, as noted next. In the next step, for each bin, the mean expression of genes in 
that bin is calculated and each gene’s deviation from the mean is scaled by the same 
constant; this constant is set so that the resulting expression values (of genes in that 
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bin) have a standard deviation of σ . This step ensures that the average expression of 
genes in a bin remains unchanged, so the above-mentioned statistical relationship is 
maintained; at the same time the variance of reference gene expression in each bin is 
increased to the pre-set level σ , thereby adding noise to the signature overall. Some 
examples of the result of such perturbation are shown in Additional file 1: Figs. S1, 
S6, S9 and S16.

In our benchmarking, we set σ to values in the range [1, 2.25] with increments of 
0.25 , to define six noise levels called “NL-1” ( σ = 1 ), “NL-2”, … “NL-6” ( σ = 2.25 ), 
with higher noise levels resulting in lower correlation coefficients between reference 
and true signatures. The partitioning of genes was done so that each bin has 300 
genes when benchmarking the Darmanis dataset with IP signatures and 100 genes 
when adding noise to the Baron signatures for deconvolution of Segerstolpe-H, 
Segerstolpe-T2D, and Enge-H datasets. The exception to this was in the benchmarks 
where the Baron signatures were used with the Segerstolpe-H and Segerstolpe-T2D 
target datasets, no perturbation was applied to the signatures of acinar and ductal 
cell types, as the reference signatures were already relatively poorly correlated with 
the true signatures for these cell types. A similar exception was made for the ductal 
cell type when adding noise to the Baron signatures for use with the Enge-H dataset.

The above deterministic procedure for signature perturbation was followed by a 
second procedure that introduces additional noise to the reference signatures. All 
genes in the same bin (defined above, representing a small range of values of true 
signature) were further partitioned into bins of four genes each based on their refer-
ence expression values; then the reference expression levels of the four genes in each 
such bin were shuffled. The entire procedure was repeated 10 times to get 10 vari-
ants of the deterministically perturbed reference signature from the first procedure 
(previous paragraph). Thus, for each noise level, we obtained 11 different randomly 
generated variants of the reference signature, perturbing it similarity to the true sig-
nature in a controlled manner. Note: the IP signature (Zhang et al. [19]) and its noisy 
variants were restricted to include genes with at least two-fold higher expression in 
one cell type compared to the others.

Generation of pseudo‑bulk mixtures

Pancreas datasets

We followed the pseudo-bulk mixture generation pipeline by Cobos et  al. [1] with 
minor modifications. First, we randomly selected the number of cell types to be pre-
sent in a mixture, uniformly from the range [2, K] where K is the total number of cell 
types. Second, the selected number of cell type identities were randomly sampled 
without replacement. Next, the “true” proportions associated with the selected cell 
types were uniformly sampled from [0.05, 1] , followed by scaling to ensure that they 
sum to one. Finally, 100 cells were sampled so that each cell type was represented 
with its respective proportion and the expression profiles of the sampled cells were 
averaged to create a pseudo-bulk profile. By repetitions of this process, 100 mixtures 
with known cell type proportions and a pseudo-bulk expression profile were gener-
ated for each of the data sets Segerstolpe-H, Segerstolpe-T2D, and Enge-H.
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Brain datasets

One hundred mixtures and corresponding pseudo-bulk profiles were generated by 
sampling (without replacement) 100 cells at a time from the Darmanis dataset [18] and 
averaging their expression profiles. The same process was used by Sutton et al. [10] to 
generate the bulk mixtures for this dataset.

Induced pluripotent stem cells (iPSCs) and cerebral organoids for the study 

of DPD‑deficiency

iPSCs were reprogrammed from skin fibroblasts that were obtained from skin biopsies. 
Biopsies were collected following written informed consent/assent from the donor and/
or guardian and approved by the Mayo Clinic Institutional Review Board (IRB proto-
col 14-005685). iPSCs were maintained on 60-mm plates coated with hESC-qualified 
Matrigel (Corning Life Sciences, Corning, NY) in mTeSR Plus medium (StemCell Tech-
nologies, Vancouver, Canada) containing 100 units/mL penicillin and 100 mg/mL strep-
tomycin. Cells were grown at 37 °C in humidified air containing 5%  CO2. Differentiated 
cells were removed and medium was exchanged every 1–2 days. Cells were passed using 
ReLeSR (StemCell Technologies).

Cerebral organoids were generated from iPSCs using the StemCell Technologies 
STEMdiff Cerebral Organoid kit according to the manufacturer’s instructions. For bulk 
RNAseq analyses, organoids were harvested on day 46, lysed in TRIzol (Invitrogen, 
Waltham, MA), and stored at –80 °C until RNA extraction. RNA was extracted using the 
Zymo Research Direct-zol RNA miniprep kit (Zymo Research, Irvine, CA) according to 
the manufacturer’s instructions. RNAseq libraries were prepared using TruSeq Stranded 
mRNA reagents (Illumina, San Diego, CA). For scRNAseq, single cells were isolated 
using the Neural Tissue Dissociation Kit P (Miltenyi Biotec, Gaithersburg, MD) with 
gentle trituration. Single cell partitioning and scRNAseq library preparation performed 
using Single Cell Gene Expression reagents on a Chromium Controller (10 × Genom-
ics, Pleasanton, CA) in the Mayo Clinic Medical Genome Facility Genome Analysis 
Core. RNAseq and scRNAseq libraries were sequenced using 2 × 150 PE chemistry on a 
NovaSeq 6000 (Illumina) at the University of Minnesota Genomics Center.

For RNAseq, adapter sequences were removed using the TrimGalore wrapper around 
Cutadapt [40], and reads were aligned to the human genome (hg19) using two-pass 
mapping and genes expression quantified as gene counts using STAR [41]. scRNAseq 
data was processed, mapped to hg19, and quantified using the CellRanger pipeline ver-
sion 6.1.2 implemented on the 10 × Genomics cloud analysis platform.

Preprocessing of the scRNA‑seq and bulk RNA‑seq data for the study of DPD‑deficiency

Quality control, clustering, and marker detection

Scanpy [42] was used to process the combined scRNA-seq data of the non-affected 
(DPD4) and affected (DPD1) individuals. In the quality control step, cells with less than 
1000 genes expressed and genes that were detected in less than 500 cells were removed. 
Furthermore, cells with more than 5% mitochondrial gene percentages were removed. 
To cluster the cells, the top 2000 highly variables genes were selected based on the high-
est standardized variance approach of Stuart et al. [43] implemented as “seurat_v3” in 
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Scanpy. Principal component analysis (PCA) was performed on these highly variable 
genes and the top 20 PCs were used to build the neighborhood graph of cells. Leiden 
graph clustering method with resolution 0.8 was used to detect 17 clusters of cells. Most 
cells for clusters (0,1,2,3,5,6,9,11,15) were from the affected individual (“affected clus-
ters”) and the rest of clusters mostly contained non-affected cells (“non-affected clus-
ters”). Markers for each cluster were identified using t-test and Benjamini–Hochberg 
method was used for multiple hypothesis testing correction. The markers were then fil-
tered by their adjusted t-test p-value less than 0.05 and logFC greater than 0.25.

Cell type assignment details

A cell type was assigned to a cluster if at least two (out of three) criteria were met. The 
first criterion is based on the average expression of marker genes of the cell type, fol-
lowing Tanaka et  al. [27], that had detectable expression in our dataset. Clusters with 
high average expression of GAP43, STMN2, and DCX were tagged as neuronal clusters. 
Among these clusters, the expression of either TBR1 or SLC17A7 is indicative of corti-
cal neurons (CN) whereas expression of EOMES is indicative of neurons (NEU). Based 
on average expression of neuronal marker genes, clusters 0, 1, 2, 4, 5, 6, 8, and 9 had 
supporting evidence of being cortical neurons and neurons, respectively. Non-neuronal 
clusters were identified by the high expression of VIM, HES1, and SOX2. Expression of 
two other markers, BGN and DCN, was detected for cluster 12, supporting its assign-
ment to the progenitor cells (PGC) cell type. The cellular level expression of neuronal 
and non-neuronal marker genes is visualized in Additional file 1: Figs. S35 and S30.

The second criterion was the enrichment of certain Gene Ontology (GO) terms in the 
computationally derived markers of each cluster following the pipeline of Tanaka et al. 
[27]. Top 200 markers of each cluster (Additional file 6: Table S7) were tested for their 
enrichment in specific GO terms using the KnowEnG platform [44]. Clusters 3 and 10 
were enriched in astrocyte differentiation, cluster 15 in mitosis-related terms, cluster 
13 in motile cilium and epithelial cilium movement, and cluster 16 was also enriched 
in cilium-related terms (see Additional file 1: Table S8 and Additional file 7: Table S9). 
Following Figure S1.B of Tanaka et al. [27], we interpreted enrichment in astrocyte dif-
ferentiation (clusters 3,10), mitosis-related terms (cluster 15), and cilium-related terms 
(clusters 13, 16) as indicators of astrocytes, neuroepithelial cells (NEC), and cilia-bearing 
cells (CBC), respectively (See Additional file 1: Table S1).

The third criterion used in cell type assignment was based on the overlap of the top 
100 computationally derived markers of a cluster (Additional file 6: Table S7) with the 
corresponding markers from an annotated cluster in Tanaka et  al. [27]. The cell type 
annotation of the annotated cluster of [27] with the largest overlap is used for labeling 
our clusters. In cases where multiple annotated clusters of [27] were assigned subtypes 
of the same cell type, the overlap was averaged over all subtypes. Based on this criterion, 
clusters 0,1,2,4,5, and 8 should be designated as cortical neurons, cluster 9 as neurons, 
clusters 3 and10 as astrocytes, clusters 13 and 16 as cilia-bearing cells (CBC), clusters 6, 
7, 11, and 14 as intermediate (INTER), and cluster 15 should be tagged as neuroepithe-
lial cells (NEC).

The final cell type assignment was based on presence of at least two of the above 
three types of supporting evidence. Cluster 6 had conflicting evidence in support of 
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cortical neurons (CN) and intermediate cells (INTER) based on the first and third cri-
teria respectively. Cluster 11 was only supported by the third criterion to be assigned 
to intermediate cells (INTER). Therefore, clusters 6 and 11 were left unassigned and 
their indices were used as their “cell types”. Clusters 7 and 14 were identified as non-neu-
ronal clusters and were supported by the overlap criterion only. However, we noted that 
they are well separated in the UMAP plot, and both can be assigned to BRC or INTER. 
Through a closer examination of Additional file 1: Fig. S31 we decided to tag clusters 7 
and 14 with INTER and BRC cell types. The rest of the clusters were supported by two 
out of three criteria and were thus reliably annotated with cell types.

Cell type signature generation

The preprocessed combined scRNA-seq data from non-affected and affected individu-
als was further filtered for cells with library size, ribosomal content or mitochondrial 
content more than three median absolute deviations away from median. Also, only the 
genes with nonzero counts in at least 5% of all cells were kept. The signature was gener-
ated from all non-affected annotated clusters as well as three affected clusters. So, the 
final signature contained cell types CN, AS, CBC, INTER, BRC, and PGC from the non-
affected individual as well as NEC, Neuron, and cluster 11 from the affected individu-
als. The difference between the number of cell types used in the reference signature [9] 
and the total number of clusters [17] was due to the existence of multiple clusters being 
assigned to the same cell type and clusters representing the same cell type being present 
in both non-affected and affected samples.

The count-level expression of all the cells in the clusters annotated with a cell type 
were summed, then RPKM-normalized (using hg19 assembly) to generate the final cell 
type signature. Affected cell types/clusters were used in the signature if they were not 
found in data from the non-affected individual (NEC and Neuron) or if we were not 
certain about their annotation (cluster 11). Cluster 6 from the affected individual was 
excluded in the signature generation as it had conflicting cell type assignment evidence 
to INTER and CN, both of which had representatives via cluster 11 (having weak evi-
dence of being INTER) or non-affected clusters.

Preprocessing the bulk RNA‑seq data of affected and non‑affected groups

Pseudo-bulk mixtures were generated from the scRNA-seq data of the non-affected 
(DPD4) and affected (DPD1) individuals separately. One hundred pseudo-bulk mixtures 
were generated per individual by randomly sampling 100 cells without replacement and 
summing their count-level expression followed by RPKM-normalization. Furthermore, 
genes with zero expression in more than 20% of the samples were removed. Similarly, 
bulk RNA-seq profiles of non-affected and affected organoids (from 48 and 72 individu-
als respectively) were RPKM-normalized and filtered separately for the genes with zero 
expression in more than 20% of the samples. The bulk RNA-seq of affected and non-
affected samples were batch corrected using ComBat [45] to affected and non-affected 
pseudo-bulk mixtures, respectively. The deconvolution was performed using the batch-
corrected bulk RNA-seq data for each group separately.
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Differential gene expression analysis, clustering of genes, and gene set characterization

After deconvolving the batch-corrected bulk RNA-seq samples, for each cell type, dif-
ferential gene expression (DGE) analysis was performed with log2-transformed expres-
sion values for affected vs non-affected group using Limma package [46]. For cell type 
pairs (CBC-INTER and CN-Neuron) whose inferred proportion sum matched their true 
proportion sum—derived from the single cell data—DGE analysis was performed for 
the sum of their deconvolved bulk profiles. After DGE analysis, genes were clustered 
into 10 groups by k-means algorithm using their discretized expression log fold-change 
(logFC) for the nine cell types. The discretization was performed as follows: first, genes 
with absolute expression logFC greater than 5 in any cell type were excluded. Then the 
logFC of the remaining genes was discretized to values ±2,±0.2, and 0 according to the 
following assignment rule,

where g and c are gene and cell type indices, respectively.
Gene set characterization was performed using the David tool [47, 48] for each set 

of DE genes and cluster of genes. For each annotation cluster, the significant GO-term 
(FDR < 0.05) with the least FDR was only considered.

Model

BEDwARS is a Bayesian probabilistic model for cell type proportion deconvolution spe-
cifically designed to adjust for deviations between the reference cell type signatures and 
the true cell type signatures. The deconvolution is formulated as

where G,C , and N  represent the number of genes, cell types, and samples with bulk 
expression profiles, respectively. X is the bulk expression matrix to be deconvolved, 
with each column being a G-dimensional vector and each dimension representing the 
bulk expression of a gene in a sample. S is the “true” (but unknown) signature matrix, 
with each column being the G-dimensional expression signature of a cell type. W  is the 
(unknown) proportions matrix, with each column being a C-dimensional vector and 
each dimension representing the proportion of a cell type in a sample. E contains the 
unmodelled bulk gene expression noise which has N (0, σ) distribution for all genes and 
bulk samples. Prior distributions for S and W  are defined as follows:

where Srgc is the reference expression of gene g in cell type c . Equation (2) is the key mod-
eling assumption addressing the deviations between the known reference signature and 

Discretized
�
logFCgc

�
=






−2, logFCgc < −2

−0.2, logFCgc ∈ (−2,−0.2)

0, logFCgc ∈ (−0.2, 0.2)

0.2, logFCgc ∈ (0.2, 2)

2, logFCgc > 2

(1)XG×N = SG×CWC×N + EG×N

(2)log
(
Sgc

)
∼ log

(
Srgc

)
+N

(
0, σ 2

c log(S
r
gc)

)
, ∀
(
g , c

)
∈ {1, . . . ,G} × {1, . . . ,C}

(3)Wi ∼ Dirichlet(αW0), ∀i ∈ {1, . . . ,N }



Page 26 of 30Ghaffari et al. Genome Biology          (2023) 24:178 

the unknown true signature underlying the bulk profiles X . It states that the (log trans-
formed) expression of a gene in a cell type deviates from the corresponding value in the 
reference signature by an amount that is normally distributed with zero mean and a vari-
ance that is gene- as well as cell type-dependent. This variance term, σ 2

c log(S
r
gc) in Eq. (2), 

is proportional to the (log transformed) reference signature value, thus allowing greater 
deviations for more abundant genes, and the constant of proportionality σ 2

c  is cell type-
dependent, allowing different cell types to exhibit globally more or less deviations. W0 , a 
C-dimensional probability vector is the mean of a Dirichlet distribution and can be set 
by user based on prior knowledge of cell type proportions. However, as such informa-
tion is not commonly available, the value of W0 is set to 

[
1
C

]

C
 by default. α controls the 

variance of the Dirichlet distribution and its high values are associated with low varia-
tion. We also defined priors for the parameters of the distributions above,

whereβs , βb,αmin , and αmax were set to 1, 5, 0, and 30 for all the tests performed. These 
values can be set by user. For example, βs can be set to smaller values to reduce the 
amount of perturbation added to the reference signature. The Half Cauchy prior was 
used for the standard deviation as suggested by Gelman [49].

Inference of parameters was done by maximizing the posterior probability of all 
parameters given the bulk expression profiles X,

where � =
{
S,W , {σc}

C
c=1, σ ,α

}
 . Metropolis–Hastings (MH) sampling was used for 

maximum a posteriori estimation. In implementing MH algorithm, multiple chains 
were run in parallel to sample from the posterior distribution. In all chains, S was initial-
ized with the reference signature, α and σ were initialized by sampling from their cor-
responding priors and columns of W  were initialized with W0 . For {σc}Cc=1 , equal number 
of chains were initialized with [0.01]Cc=1 , [0.1]

C
c=1 , [1]

C
c=1 and by sampling from the prior. 

The “best” chain was selected to estimate the parameters. The criterion for selecting the 
best chain was the mean squared error between X and X̂ = ŜŴ  , restricted to marker 
genes identified using the reference signature. For all tests reported in this work, the set 
of genes with at least four-fold higher expression in one cell type compared to the oth-
ers were chosen as markers. The inference of parameters was done by averaging over 
the samples drawn by the best chain after its burn-in period. BEDwARS runs multiple 
chains in parallel on GPU and is implemented in PyTorch. The number of chains used 
for benchmarking and DPD-deficiency deconvolution experiments were set to 150 and 
100, respectively.

Memory and run time analysis

All methods evaluated were run in their default setting. B-mode batch correction was 
used in CIBERSORTx. The run time and memory requirements of BEDwARS, Baye-
sPrism, and CIBERSORTx are reported in Additional file  1: Table  S10 for deconvolu-
tion of Segerstolpe-T2D pseudo bulk profiles using Baron signature. A complete guide 

σc ∼ HalfCauchy(βs), ∀c ∈ {1, . . . ,C}
σ ∼ HalfCauchy(βb)
α ∼ Unif(αmin,αmax)

θ̂ = argmax
θ
Pr(�|X) = argmax

θ
Pr(X |�)Pr(�)
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to computing the memory and run time requirements of BEDwARS is provided on its 
GitHub page.
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deficiency. In each annotation cluster the first GO with significant FDR (FDR < 0.05), highlighted with yellow, was 
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