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Abstract 

DNA methylation signatures are usually based on multivariate approaches that require 
hundreds of sites for predictions. Here, we propose a computational framework named 
CimpleG for the detection of small CpG methylation signatures used for cell-type classi-
fication and deconvolution. We show that CimpleG is both time efficient and performs 
as well as top performing methods for cell-type classification of blood cells and other 
somatic cells, while basing its prediction on a single DNA methylation site per cell type. 
Altogether, CimpleG provides a complete computational framework for the delineation 
of DNAm signatures and cellular deconvolution.
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Background
DNA methylation (DNAm) is intrinsically related to chromatin structure and cell dif-
ferentiation and controls the expression of neighboring genes [1]. The stability of DNAm 
and the accuracy of genomic methods for quantification of DNA methylation levels 
makes DNAm a powerful molecular marker for the prediction of age [2–5] and strati-
fication of cancer patients  [6, 7]. Furthermore, some loci have a characteristic DNAm 
profile in specific cells and can therefore be used for cell-type characterization [8, 9] and 
estimation of cell proportions in tissues via cellular deconvolution [10, 11]. Development 
of such biomarkers was particularly eased by the rapidly growing number of available 
DNAm profiles that were measured with Illumina BeadChips, which can address up to 
850,000 CpG sites [12]. The epigenetic signatures that are generated with these genomic 
DNAm profiles often comprise more than 100 CpGs. While the integration of multi-
ple CpGs is considered to increase precision, it greatly hampers application in clinical 
settings, that require fast, standardized, and cost-effective analysis  [13]. To this end, 
targeted analysis of individual CpGs, e.g., with pyrosequencing, digital droplet PCR, epi-
TYPER, or amplicon sequencing may be advantageous [14].

A common approach for the detection of DNAm signatures is the use of statistical 
tests, which characterize differential methylated cytosines (DMC) between samples 
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in two biological conditions  [11]. Such approaches are provided by pipelines for 
analysis of DNAm [15–19] and are mostly based on the use of the limma moderated 
t-test  [20] or on fold change statistics  [21]. Elastic Net  [22, 23] is also commonly 
used for building DNAm-based models, due to its ability to cope with large dimen-
sional data by the selection of active features during model estimation. For exam-
ple, a frequently used epigenetic aging clock of Horvath is based on only 346 CpG 
sites [2] selected with Elastic Net, from DNAm data measured with Illumina Bead-
Chips (27k and 450k). Deep learning approaches displayed high predictive accuracy 
in cancer prediction, as recently shown in the prediction of primary or metastasis 
lung cancers  [24]. Neural networks, however, work on previously selected DNAm 
panels with only a small proportion of the initial DNAm sites ( ∼2000 DNAm sites) 
and do not indicate the importance of individual DNAm sites.

There are several methods focusing on the problem of reference-based cell 
deconvolution, i.e., estimating the proportions of cells in a mixture. Jaffe et al. uses 
t-statistics for the selection of the top 100 DNAm sites per cell type (50 hypo- and 
50 hyper-methylated). It then explores a nonlinear random effects model, to deter-
mine which coefficients are used as predictors for relative proportions of cells. 
This approach is implemented within the minfi package  [25]. The ENmix pack-
age [18] is similar to minfi, as it also implements a deconvolution method proposed 
in Houseman et  al.  [26], however, it allows for a flexible choice on the number 
of DNAm sites to be used. IDOL [10, 27] expands on the previous approaches. It 
first uses a t-test to select large cell specific DNAm signatures. These signatures 
are used to build models on a training mixture data set. IDOL iteratively removes 
DNAm sites, based on their predictive importance, until an optimal signature for 
the cell deconvolution problem is found. Finally, EpiDISH performs cell decon-
volution with a robust partial correlation based method. It uses for this DNAm 
signatures selected by a t−test, which also overlap with DNAse hypersensitive (or 
open chromatin) sites  [21]. Despite the success of these methods for cell decon-
volution and DNAm signature prediction, we are not aware of any computational 
approach tailored for the selection of small DNAm signatures for either cell type 
or cell deconvolution problems.

We have recently described studies on the use of few CpG sites for cell-type decon-
volution [13, 28]. Among others, we showed that DNAm signatures with two DNAm 
sites for fibroblast cells, which we used as a surrogate for fibrosis level, indicated 
lower survival rates in several cancer types. Building upon this work, we propose 
and formalize a computational framework named CimpleG for the detection of sim-
ple (small) CpG methylation signatures (Fig. 1A). In brief, CimpleG uses a univariate 
feature selection by combining a t-statistic measure with the Area under the Pre-
cision-Recall Curve (AUPR)  [29] to select the best DNAm sites for cell-type clas-
sification. We evaluate CimpleG and competing methods for their performance on 
cellular prediction on datasets with distinct types of blood cells and other somatic 
cells for cell-type prediction. Furthermore, we evaluate CimpleG and competing 
methods in the distinct problem of cell mixture deconvolution on three different cell 
mixture (real and artificial) datasets.
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Results
CimpleG framework

CimpleG is a computational framework for the selection of DNAm signatures for 
cell-type classification (Fig. 1A). It provides a novel feature selection metric to select 
small DNAm signatures. CimpleG initially uses a t-statistic score to pre-select active 
features followed by the area under the precision-recall curve (AUPR) for feature 
selection. The use of precision-recall curves instead of the usual ROC curves for fea-
ture selection  [29] was adopted due to the high imbalance of classes in DNAm cell 
classification problems, i.e., an average of 15 negatives for a positive example. Next, 
CimpleG ranks and selects the top candidate CpG sites by combining the score and 
the AUPR value. These are used to build univariate cell-type-specific classifiers and 
for cell-deconvolution (Fig.  1A). In addition, the CimpleG framework facilitates the 
use of alternative feature selection and classification methods (such as random for-
ests [30], Elastic Net [23], and Boosted trees (XGBoost) [31]).

Moreover, CimpleG provides two curated and pre-processed DNAm datasets with a 
compendium of DNAm arrays with 14 somatic cell types and eight different leukocytes 
(Fig. 1B–C). These data were pre-processed with well-known state-of-art DNAm-based 

Fig. 1  A Overview of CimpleG and statistics used for feature selection and downstream applications. B–C 
Principal component analysis of the DNAm datasets with somatic cells (B) or leukocytes (C). Only cell types 
highlighted in bold, for which we have samples in train ( ≥ 10 positive examples) and test data, were used as 
target classes. Cell types that are not present in the test data are only used as negative examples (non-target 
cells)
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methods such as SeSAMe [19], minfi [15], and watermelon [32]. The final somatic cells 
and leukocytes datasets have 576 and 365 samples with 143,291 and 284,706 CpG sites, 
respectively. We stratified these datasets in train and test samples such that data from 
the same study are only found as test or training data. Moreover, training and test data 
were pre-processed independently to avoid leak pre-processing [33] (see Tables 1 and 2 
for data characteristics). Principal component analysis of these two datasets shows some 
separation between major cell types (Fig. 1B–C), while closely related cells (Fibroblast 
and MSC cells in somatic cell data; CD4 and CD8 T cells in the leukocytes data) can only 
be discriminated with additional PCs (Additional file 1: Fig. S1).

Benchmarking the cell‑type prediction problem

CimpleG was evaluated in comparison to different alternative methods to generate epi-
genetic signatures: decision trees, random forests, boosted trees, neural networks, and 
Elastic Net. We also considered a single-feature DNAm brute force classifier as a base-
line. This brute force algorithm evaluates all possible individual markers and ranks these 
by AUPR. Moreover, we also evaluated CimpleG variants only considering the AUPR 
(CimpleG AUPR) or the t-statistic (CimpleG Score), which is equivalent to the approach 
used by state-of-art DNAm analysis and cell deconvolution methods. This was to ensure 
that the combination of these metrics, was stronger than their individual use. Nota-
bly, some models (neural networks, random forests, and decision trees) could not cope 
with the high dimensional feature size of the datasets. This was mainly due to very large 
memory usage or days of execution time. Therefore, for these models, as a pre-training 
step, we have performed an unsupervised feature selection considering variance and 
co-variance of the DNAm sites  [34]. Next, we have used a cross-validation framework 
to optimize parameters for all methods. We evaluated three main benchmarking met-
rics, the classification performance as measured by the AUPR, the computational time 

Table 1  Somatic cells data summary

The highlighted rows indicate the cell types that were used to train the classifier.

The other cell types were only part of the training or test dataset for additional control

Train dataset Test dataset Total

Adipocytes 10 (2.4%) 3 (1.8%) 13 (2.3%)

Astrocytes 1 (0.2%) 0 (0%) 1 (0.2%)

Endothelial cells 32 (7.8%) 30 (18%) 62 (11%)

Epidermal cells 3 (0.7%) 0 (0%) 3 (0.5%)

Epithelial cells 16 (3.9%) 18 (11%) 34 (5.9%)

Fibroblasts 52 (13%) 39 (24%) 91 (16%)

Glia 10 (2.4%) 7 (4.2%) 17 (3.0%)

Hepatocytes 15 (3.6%) 3 (1.8%) 18 (3.1%)

iPS cells 13 (3.2%) 3 (1.8%) 16 (2.8%)

Leukocytes 182 (44%) 33 (20%) 215 (37%)

Mesenchymal SCs 56 (14%) 12 (7.3%) 68 (12%)

Muscle cells 3 (0.7%) 0 (0%) 3 (0.5%)

Muscle SCs 0 (0%) 6 (3.6%) 6 (1.0%)

Neurons 18 (4.4%) 11 (6.7%) 29 (5.0%)

Total 411 (100%) 165 (100%) 576 (100%)
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required and the number of features used by each model. We only build classifiers/sig-
natures for cell types with at least 10 samples in the training data (10 out of 14 in the 
somatic cells and 6 out of 8 in blood cells), however, we still keep cells with small sample 
sizes to be used as negative examples (non-target classes). See Additional file 1: Fig. S2 
for an overview of the experimental pipeline.

We observed that Elastic Net, CimpleG, and CimpleG (score) have the highest median 
AUPR for the somatic cells and the leukocyte dataset (Fig. 2A–B), indicating that these 
are the best performing models. By considering the means of ranks, we observed that 
Elastic Net, CimpleG, and CimpleG (score) are the three best classifiers in regards to 
their accuracy on the test datasets. Since the number of target samples differs per tar-
get cell type, a relevant question is if there is any association between the number of 
positive examples (target samples) and the classifier’s accuracy of individual methods 
(Additional file 1: Fig. S3). We observed that the top-performing methods (Elastic Net 
and CimpleG) have stable AUPR values across positive sample numbers, which indicates 
they are robust regarding a low number of positive samples. Regarding computational 
time, per signature, CimpleG took on average 55.3 s, Elastic Net needed on average 37.6 
min, while the Brute force algorithm required on average 6.61 h to generate a signature 
(Fig. 2C–D). Of note, the computing time of the algorithms presented here does not rep-
resent a crucial aspect of the analysis. This is because the computing times are much 
lower than the time necessary for measuring or pre-processing the DNA methylation 
data. These results indicate these three methods perform equally well in the DNAm-
based cell classification problem, while CimpleG provides a significant speed up for the 
feature selection problem.

Selection of DNA methylation sites

Another relevant point is the number of CpGs that are implemented in the signa-
tures derived by the different methods. Elastic Net selected the largest number of fea-
tures with 3378 unique features across all six models for the leukocyte cells (Fig. 3A) 
and 2345 unique features across all ten models for the somatic cells (Additional file 1: 
Fig. S4A). This is more than all other models combined. The single-feature classifiers 
(CimpleG and Brute force) selected in total 10 and 6 DNAm sites for somatic and 

Table 2  Leukocyte data summary

The highlighted rows indicate the cell types that were used to train the classifier.

The other cell types were only part of the training or test dataset for additional control.

NRBCs nucleated red blood cells

Train dataset Test dataset Total

B cells 50 (19%) 13 (12%) 63 (17%)

CD4 T cells 50 (19%) 13 (12%) 63 (17%)

CD8 T cells 50 (19%) 12 (12%) 62 (17%)

Granulocytes 32 (12%) 13 (12%) 45 (12%)

Monocytes 50 (19%) 24 (23%) 74 (20%)

Nk cells 29 (11%) 12 (12%) 41 (11%)

NRBCs 0 (0%) 12 (12%) 12 (3.3%)

T cells 0 (0%) 5 (4.8%) 5 (1.4%)

Total 261 (100%) 104 (100%) 365 (100%)
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leukocytes data respectively, one CpG per cell type. We observed a high overlap of 
these features with the ones selected by the Elastic Net, i.e., all 16 DNAm selected 
by CimpleG were also part of the DNAm sites selected by Elastic Net. Interestingly, 
features selected by random forests, neural networks or decision trees were quite 
distinct from other methods. This rose from the fact that these methods require the 
previous use of univariate filters, due to their incapacity to deal with large dimen-
sional inputs. Altogether these results show the ability of CimpleG in the delineation 
of small DNAm signatures.

Furthermore, it is interesting to look at the specific signatures generated by Cim-
pleG (Fig. 3B–G; Additional file 1: Fig. S4B–K) as these genomic locations could pro-
vide biological insight into the cells themselves (see Additional file  2: Table  S1 for 
complete results). Some DNAm sites are close to genes functionally related to cells, 
i.e., DNAm sites close to genes for CD4 (cg05044173, Fig. 3C) and CD8 (cg04329870, 
Fig.  3D) are selected as markers for CD4+ and CD8+ T cells. A DNAm site 
(cg01537765, Additional file 1: Fig. S4B) in the body of LIPE (Lipase E, Hormone Sen-
sitive Type) is selected as a marker for adipose cells. This gene is known to function 

Fig. 2  A–B Classification performance (AUPR) on the test set of the somatic cells (A) and leukocytes datasets 
(B). C–D Computational time required for each method to produce a signature including cross-validation 
and testing for the somatic cells (C) and leukocytes (D) datasets. E Mean ranks of the methods across all 
datasets based on the AUPR. The best method, Elastic Net, and its 95% confidence interval (Friedman and 
Nemenyi post hoc test) is highlighted in gray. Methods that do not overlap at all with the highlighted area, 
are significantly worse than the highlighted methods
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in adipose tissue by hydrolysing stored triglycerides to free fatty acids [35]. Finally, a 
CpG (cg10624122, Additional file 1: Fig. S4J) in the promoter of the epithelial mesen-
chymal transition related transcription factor, TWIST1 [36], is selected as a marker 
for mesenchymal stem cells. Moreover, other CpGs are close to genes with cell-spe-
cific expression patterns according to the human protein atlas  [37]. An example is 
the CpG cg10673833 (Additional file 1: Fig. S4I) close to the gene MYO1G, which is 
a good marker for lymphocytes; and the CpG cg23882131 (Additional file 1: Fig. S4E) 
close to MRGPRF, which is a marker for fibroblasts. While the functional association 
of other markers is not evident, it needs to be considered that DNAm status does not 
generally translate directly to the expression of neighboring genes.

Of note, some of the samples used in the leukocyte data were derived from cord blood 
or non-healthy samples. One important question is if the ontogenetic differences in 
hematopoiesis or specific diseases might affect the selected signatures. As observed in 
the Additional file 1: Fig. S5, in our analysis, none of covariates impact the DNAm values 
of the signatures derived by CimpleG.

Benchmarking the cell‑type deconvolution problem

Next, we evaluate DNAm signatures and model predictions on a cell deconvolution 
problem in leukocytes. For this, we use either the DNAm sites (for models with small 
signatures; CimpleG, Brute Force) or the model prediction scores (for Elastic Net, 
Random Forests, Boosted Trees, and Neural Networks) to build reference matrices 
for each model vs. cell type. We used these as input for the deconvolution method, 

Fig. 3  A Upset plot showing the total number of selected DNAm sites per method (y-axis) and how these 
are shared per method combinations (x-axis) for the leukocytes dataset. Connected dots in a column indicate 
the combination of methods considered in the x-axis. B–G Beta values of CpG sites selected by CimpleG on 
the test data. The color of the points corresponds to the target cell type, while points in black correspond to 
the cell types that are not the targets for that signature
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the non-negative least squares (NNLS) algorithm  [38], which is a common decon-
volution method for DNAm due to its simplicity and being among the top perform-
ers in a recent benchmarking study [39]. We inspect the performance of state-of-art 
deconvolution methods and frameworks (IDOL [27]; EpiDISH [21]; ENmix [18]; and 
minfi [15]). Methods were trained on an expanded leukocyte reference dataset with 
56 samples comprising 12 different cell types when possible. This is in contrast to 
the dataset that we have compiled for the classification problem, which had many 
more samples but covered only six major leukocyte cell types. Next, all methods 
were evaluated based on predictions on two artificial blood sample mixtures (Leu-
kocyte datasets 1 and 2) and a real mixture data set (Leukocyte dataset 3) that were 
recently reported by Salas et  al.  [27]. The Leukocyte 1 and 2 datasets are based on 
mixtures of twelve different cell types. Some of the deconvolution methods (EpiDISH, 
ENmix, and minfi) are based on pre-trained signatures/reference datasets with only 
six or seven major leukocytes. We therefore simplified the cell annotation of Leuko-
cyte 1 and 2 data sets by combining their annotation towards six major cell types for 
evaluation of these approaches. A similar procedure was performed in the Leukocyte 
data set 3, which only has mixture values for five major lymphocyte populations (see 
the “Methods” section for details). For all methods where it is possible to control the 
number of CpG sites (CimpleG, IDOL, and ENmix), we evaluate them with either a 
large signature (default parameters and 10-CpG sites per cell for CimpleG) or small 
signatures (1–2 sites per cell)1.

Considering the problem of deconvolution of major (5–6) leukocyte cells, we 
observe that IDOL had highest ranking when considering the lowest prediction 
error (lowest RMSE). IDOL was first in 2 out of the 3 data sets followed by CimpleG 
with 10 CpGs (second in 2 data sets) and minfi (one time first and another time 
third) (Fig.  4). If we only consider methods based on small signatures (CimpleG, 
IDOLmin, ENmix.min), we observe that generally, CimpleG has a lower RMSE than 
the competing methods. On average across these datasets, CimpleG had a mean 
RMSE of 0.0561, while the top three methods, IDOL, CimpleG.10, and minfi, had 
a mean RMSE of 0.0188, 0.0240, and 0.0281, respectively, using much larger signa-
tures. IDOLmin and ENmix.min had a mean RMSE of 0.0668 and 0.0743, respec-
tively. Similar results were observed on rankings based on R2 statistics (Additional 
file 1: Fig. S6–S7).

We also evaluated a selection of methods on the two artificial mixture data sets (Leu-
kocytes 1 and 2). Here, the deconvolution problem is on the more granular annotation, 
with 12 different leukocyte cell types (Additional file 1: Fig. S8). IDOL obtained the low-
est RMSE (with an average of 0.0199) followed by CimpleG with 10 CpGs (with an aver-
age of 0.0253). As before, CimpleG with a single CpG per cell type, obtained the lowest 
average RMSE when comparing with other small signature methods. CimpleG had an 
average RMSE of 0.0549 vs IDOLmins’ 0.0633.

A crucial aspect is the number of DNAm sites used for each methods. CimpleG only 
required 12 sites, while IDOLmin, ENmix.min, minfi, ENmix, CimpleG.10, EpiDISH, 
and IDOL required, respectively, 13, 24, 100, 100, 120, 333, and 1200 DNAm sites. 

1  For IDOL the minimum possible signature size is K classes + 1
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Therefore, CimpleG requires at least 10 fold less DNAm sites than top performing meth-
ods IDOL, CimpleG.10 and minfi. Altogether, we observe that CimpleG is a competitive 
approach for cell deconvolution when based on 10 CpG sites per cell type, while being 
the best performing method for small signatures.

Discussion
Despite a huge number of DNAm biomarkers based on large CpG signatures, hardly any 
of them have been translated to clinical practice [14]. Many of the epigenetic signatures 
comprise a multitude of CpGs, which requires microarray or deep-sequencing methods 
that are difficult and expensive to implement for routine applications. We propose here 
CimpleG, which explores both t-statistic and AUPR scores, to select a single DNAm site 

Fig. 4  RMSE (left) and its mean ranks (right) are shown for each classifier/deconvolution method and for the 
Leukocyte 1 (A–B), 2 (C–D), and 3 (E–F) data sets. Methods are ranking from top-down regarding the best 
performance (lowest RMSE). For the RMSE mean rank plots, the best method, and its 95% confidence interval 
(Friedman and Nemenyi post hoc test) is highlighted in gray. Methods whose average RMSE does not overlap 
at all with the highlighted area, are significantly worse than the top performing method. CimpleG.10 is based 
on 10 CpGs per cell type, while ENMix.min and IDOLmin are versions of IDOL and ENMix using the lowest 
possible number of CpGs
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per cell type of interest. In the context of cell signature selection, the performance of 
CimpleG was contrasted to other state-of-art methods, such as t-statistic, Elastic Net, 
Random Forests, Boosted Trees, and Neural Networks. Our results indicate that Elastic 
Net, which is broadly used for aging signatures [2], is the overall best method, but tends 
to select relatively large signatures that can comprise thousands of DNAm sites for its 
predictions. CimpleG performed as accurately as Elastic Net while focusing on only one 
DNAm site per cell type. An important, but poorly explored aspect, is the effect of bio-
logical variability on the cell signature and deconvolution methods. It is unclear how age, 
health status (i.e., infections or physiological diseases) might influence the cell specific 
signatures. While we observe low effects of some covariates, such as disease vs. healthy 
and age (new born vs. adult) in our data set, larger DNA methylation data with rich clin-
ical and sample annotation are required for an in depth analysis.

Another major scientific contribution of this work is the comparative analysis of Cim-
pleG and state-of-art cellular deconvolution methods. We evaluated 13 approaches 
including four state-of-art cell deconvolution frameworks in two artificial mixtures and 1 
real mixture data set for classification of major (5–6 cell types) or specific (12 cell types) 
leukocyte cells. Our results confirm the previously reported superior performance of the 
IDOL algorithm [27]. IDOL is the only deconvolution method performing DNAm signa-
ture selection in two steps, it first delineates cell-type-specific features from DNAm with 
isolated cells. This signature is then refined using a training mixture data set. Neverthe-
less, CimpleG obtained competitive results when selecting 10 CpGs per cell type. More 
importantly, CimpleG obtained the overall smallest error (RMSE) in all evaluated data 
sets, when compared to IDOLmin and ENmix.min. Moreover, we observe that these 
results are equivalent for data that is either based on artificial (leukocyte datasets 1 and 
2) or real mixtures (leukocyte dataset 3), despite the fact that CimpleG’s signatures were 
100x smaller than standard deconvolution methods.

While the deconvolution of hematopoietic subsets is just one example for epigenetic 
signatures, it also addresses a relevant clinical need. Current flow cytometric measure-
ments are only applicable for fresh blood samples and do not facilitate analysis of dried 
blood spots, coagulated material, or retrospective analysis. Furthermore, it is not trivial 
to standardize flow cytometry settings. These clinical needs can be met by epigenetic 
deconvolution of leukocyte subsets  [28, 40, 41]. However, for clinical translation, it is 
crucial to have very robust and standardized measures that are applicable over decades. 
The entire process, including data analysis, has to be accredited for clinical application, 
and this is usually hampered for genome wide analysis with changing analytical plat-
forms [14]. In principle, epigenetic diagnostics with genome-wide analysis is feasible - 
deep sequencing technology is also used for screening of mutations and chromosomal 
abnormalities in the clinics - however, the accreditation process is more challenging, as 
compared to targeted assays. For example, the Illumina BeadChip microarray platforms 
are so far not accredited for clinical diagnostics. The very small epigenetic signatures 
derived by CimpleG are thus a big advantage for clinical application, as they facilitate 
development of analytical procedures with targeted assays for specific genomic regions, 
e.g., by pyrosequencing, ddPCR, or amplicon sequencing. In fact, we have recently used 
CimpleG to identify cell-type-specific CpGs for various hematopoietic subsets that 
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could be validated by ddPCR in fresh blood samples and dried capillary blood from fin-
ger pricks of 150 patients (Hubens et al., manuscript currently under revision).

Furthermore, it is crucial to consider the right metrics, when evaluating cell decon-
volution methods for predictive performance. Common metrics include the root mean 
squared error (RMSE) and the R-squared ( R2) [10, 25, 27]. We have noticed during our 
analysis that the commonly used R2 , which evaluates how well the predicted cell pro-
portions fit to the model, might be associated with a large RMSE (Additional file 1: Fig. 
S9–S10). In this context, the problem arises when the estimated model systematically 
over-estimates (or under-estimates) the predicted proportions. An alternative for this is 
the diagonal R2 , which evaluates the error of the fit to the diagonal line where true pre-
dictions should lie. As shown in our example (see Additional file 1: Fig. S11), we observe 
that the values from the commonly used R2 definition (denoted R2(fit) here) can be small 
despite large RMSE and systematic over-estimation of cell proportions. A similar issue 
has been previously discussed on statistical literature [42, 43]. In our view, the R2 (in all 
its different forms) should not be used for evaluation of cell deconvolution, whereas the 
RMSE is a much more appropriate metric.

Altogether, the CimpleG framework can be seen as a general pipeline for DNAm signa-
ture selection. It is implemented in R and provides functionalities to estimate both small 
DNAm signatures (using CimpleG), but also to derive Elastic Net and other machine 
learning methods evaluated here. It provides two large, manually curated and normalized 
datasets for the testing and benchmarking of methods. Moreover, cell-type classifiers can 
be integrated with the NNLS method for cellular deconvolution, which makes it the first 
end-to-end pipeline for the estimation of cell-specific small DNAm signatures to cellular 
deconvolution. We are not aware of any other computational package addressing these.

There are further aspects to be explored in the future. One technical problem usu-
ally encountered in array based DNA methylation data sets is missing values, which usu-
ally increase with data set size. Currently, none of the evaluated deconvolution workflows, 
except for CimpleG, supports predictions with missing values via imputation [44]. Further 
problems are the impact of missing reference cell types or the use of CimpleG signatures for 
cell-of-origin detection from circulating cell free DNA [45]. From a technical perspective, 
there is a need for data structures for the efficient handling of ever-increasing DNAm data-
sets. Another relevant issue are approaches for automatic integration with data repositories 
such as Gene Expression Omnibus. Note, however, that the lack of a consistent cell-type 
annotation, i.e., as provided in cell ontology [46], on such repositories, makes manual cell-
type annotation still a requirement.

Conclusion
We propose a computational framework named CimpleG for the detection of small CpG 
methylation signatures used for cell-type classification and deconvolution. Small signa-
tures are important due to their potential application in clinics. Our extensive bench-
marking for both cell-type detection and cell deconvolution indicates that CimpleG is 
fast and can perform as well as state-of-the-art approaches, which require large DNA 
methylation signatures. This works also provide two large benchmarking data sets with 
either leukocytes and epithelial cells, which represents a useful benchmarking resource 
for future approaches. Taken together, CimpleG provides a valuable tool for clinician 
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scientists as an easy-to-use stand-alone framework for the identification of CpG sites 
that are best suited as a biomarker for targeted DNAm analysis.

Methods
CimpleG for signature selection

CimpleG receives as input a matrix X ∈ (0, 1) ⊂ R
p×n , where xij represents the DNAm 

values for site i in observation j, n is the number of observations and p is the number 
of DNAm sites. This essentially describes a matrix of beta-values. The beta-value is the 
ratio of methylated probe intensity versus the overall intensity in the Illumina methyla-
tion assays  [47, 48]. Alternatively, CimpleG can also, receive as input a matrix of M-val-
ues, these are the log2 ratio of intensities of methylated versus unmethylated probes [47], 
a metric widely used in microarray assays and that shows some statistical advantages 
specifically when looking at the low and high end of the methylation range [47]. Cim-
pleG also receives a vector y ∈ {0, 1}p , which is 1 if observation j is of a cell type of inter-
est and zero otherwise (others).

CimpleG characterizes a DNAm site i, for the cell type of interest, by the difference in 
means (Eq. 1) and the sum of variances (Eq. 2).

where µcell
i =

j 1(yj=1)xij

|1(yj=1)| ,µother
i =

j 1(yj=0)xij

|1(yj=0)|  , and 1 is an indicator function. Similarly, 

varcelli  and varothersi  provides variance estimates for DNAm site i.
CimpleG first selects active features such that �i is high and σi is low. For this, it ranks 

DNAm sites according to a with

where b is a non-negative even constant integer that determines how much importance 
features with high difference in means should have. The larger b is, the larger the bias 
will be towards selecting DNAm sites with a higher difference in means � , regardless of 
the sum of variances σ . Of note, for b = 1 , Eq. 3 is equivalent to a t-student statistic for 
the comparison of mean values of two groups. We set b to 2 as default. Finally, a quan-
tile function Q(p) is used to generate a threshold below which sites with a value of a are 
selected. By default, we select 0.5% sites as active features.

CimpleG performs a balanced stratified K-fold cross-validation loop on the train-
ing data and uses the previous procedure to find the f active features for each fold. 
CimpleG sets k = 10 as a default number of folds, unless the number of target class 
samples n < k , in which case k = n . To evaluate individual features as one-feature 
classifiers, it uses an area under the precision-recall curve (AUPR) procedure. This 
methodology is inspired by a feature selection method based on the area under the 
curve (AUC) proposed by Chen and Wasikowski [29]. In short, we evaluate the pre-
cision and recall for a linear classifier xi in regards to y. CimpleG adopts an AUPR 

(1)�cell
i = µcell

i − µothers
i

(2)σ cell
i = varcelli + varothersi

(3)acelli =
σ cell
i

(�cell
i )b
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curve instead of AUC as an accuracy metric, as it makes the procedure less affected 
by class imbalance [49].

After evaluation of all folds, we compute a final metric by considering DNAm sites i, 
which minimizes the score ai , while maximizing the average AUPR values in training 
and validation ( AUPRti and AUPRvi , respectively) and being active features ( fi ) in most 
folds, that is:

where i denotes a given feature. Finally, α1 and α2 are constants by which we control how 
strong the influence of a and the AUPR values will have on the final score. We set these 
as 0.8 and 0.2, respectively. We then use this score to rank all active features for a given 
cell type.

Data for the cell‑type classification problem

We have compiled and curated two human cell-type DNA methylation datasets that 
were measured with Illumina Infinium Human Methylation 450k and EPIC BeadChip 
arrays and deposited in the Gene Expression Omnibus (GEO) [50, 51]. Cell-type infor-
mation and other metadata were also obtained from GEO. Note that although some 
samples are shared between the somatic cells and leukocyte datasets, these were treated 
as independent datasets and therefore the samples were processed and treated as part of 
their respective dataset.

Somatic cells

We have searched for DNAm array data with an emphasis on purified, well-charac-
terized, non-malignant cells in GEO. After manual curation, we had 576 samples, 
spanning over 14 different cell types, from 46 distinct studies (see Table  1 for overall 
statistics) [13]. We provide a detailed sample sheet in Additional file 2: Table S2, which 
includes GEO sample IDs (GSMs), GEO series/studies IDs (GSEs), cell type, assigned 
dataset (train/test) and relevant covariates.

Leukocyte cells

As with the previous dataset, we have searched for DNAm array data in GEO; how-
ever, here, we focused on purified leukocytes. After manual curation, we had 365 
samples, for eight different cell types from 12 different studies (see Table 2 for overall 
statistics). We provide a detailed sample sheet in Additional file  2: Table  S3, which 
includes GEO sample IDs (GSMs), GEO series/studies IDs (GSEs), cell-type, train/
test dataset assignment, and relevant covariates.

DNA methylation data and quality control

Both datasets were independently pre-processed. Raw data (.IDAT files) was down-
loaded from GEO. If .IDAT files were not available, the tabular data with probe inten-
sities was used. For datasets where IDAT files were available, the SeSAMe pipeline 

(4)Ccell
i =

(α1 ∗ a
cell
i + α2 ∗ AUPR

cell
ti + α2 ∗ AUPR

cell
vi )

fi
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(sesame R package v1.16.1 [19]) was used setting the pre-processing code argument 
to “QGCDPB.” Briefly, this includes, probe filtering regarding low mapping qual-
ity, single sample normalization (ssNoob)  [15], nonlinear dye-bias correction and 
p-value with out-of-band array hybridisation masking/filtering. For samples where 
only intensity matrices were available, beta mixture quantile normalization (BMIQ, 
wateRmelon R package v1.34.0 [32]) for type II bias correction was used. After merg-
ing the data obtained from the .IDAT files and the tabular data with probe intensi-
ties, we remove samples for which over half of the probes are missing, followed by 
eliminating all probes that still have missing data. Furthermore, we only considered 
CpGs that were provided by the 450K and EPIC BeadChip platforms. With this pro-
cedure, the final datasets have 143,291 and 284,706 features for the somatic and leu-
kocyte cells, respectively. This process filters out a large number of probes, however 
ensures that the probes kept have a higher mapping quality and should generalize 
better in unseen datasets.

Additional DNAm methods for classification

CimpleG also allows the user to train classifiers using a number of different machine-
learning algorithms to generate complex methylation signatures. For this, we explore 
methods exposed by the tidymodels framework [34] and provide a wrapper around five 
popular models with different levels of complexity (Elastic Net, Decision Trees, Random 
Forests, Boosted Trees, and Neural Networks). Each method has a set of hyper-param-
eters that need to be tuned in order to produce proper results. We chose a sensible set 
(in regards to computational resources) of hyper-parameters to be tuned via grid-search 
in a stratified cross-validation (CV) loop. After the CV loop, we fit the models on the 
whole training dataset with the previously tuned hyper-parameters. Due to the fact that 
some methods did not cope with the original feature size (Decision Trees, Random For-
ests, and Neural Networks) of DNA methylation data (>100,000 features), we had to 
apply a filter as a pre-training step in order to remove features that are highly sparse, 
features that show linear combinations between them and features that have large abso-
lute correlations with other variables. These filters are applied as a pre-training step. The 
implementation of these methods is out of the scope of this paper but we describe them 
briefly here.

Elastic Net

Elastic Net  [22] is a regularized linear regression method that is able to perform fea-
ture selection in arbitrarily large datasets. It can also be used for two-class classification 
problems within a logistic regression framework. Elastic Net has a regularization param-
eter � that controls penalization, where higher values indicate higher penalisation (lower 
number of features). Additionally, the mixture parameter α controls the type of regu-
larization, where if α = 0 we have a pure ridge regression model, and if α = 1 we have a 
lasso regression model. Here, we optimize both α and � during cross-validation. We used 
the glmnet package [23] as the underlying engine for these models.
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Decision Trees

Decision Trees are simple models that are defined by a set of if/else statements creat-
ing a tree-based structure. These models are very easy to understand, but they tend to 
be inaccurate and unstable and also have several hyper-parameters to tune. We used 
the rpart package[52] as the underlying engine for these models. Here, we consider 
the maximum tree-depth as the single parameter to be tuned during the CV loop, 
while most other parameters are set as default values. The exceptions are the engine-
specific parameters “maxsurrogate” and “maxcompete” which were set to 2 and 1, 
respectively, in order to reduce execution times.

Random Forests

Random Forests is an ensemble based method that builds predictions by combining 
decision trees in a bagging fashion. In essence, random forests create a large ensem-
ble of independent decision trees, which are based on a random and small selection 
of features, and then builds its predictions using a combination of the predictions of 
all the individual decision trees. We used the package ranger  [53] as the underlying 
engine for these models. Here, we set the number of independent decision trees as 
the parameters to be tuned during the CV loop, while other parameters, except for 
“oob.error,” “respect.unordered.factors,” and “importance,” were set to default. The 
aforementioned engine-specific parameters were set to “FALSE”, “order,” and “impu-
rity_corrected,” respectively. This was in order to save on computation time, to better 
fit our experimental design (2-class classification problem) and to be able to measure 
feature importance after model training.

Boosted Trees

Boosted Trees are also models that are built on ensembles of decision trees. While 
boosted trees also typically create a large number of decision trees, the selection 
of samples and features are based on the predictive performance of the previously 
trained decision trees. To perform predictions all the decision trees in the ensem-
ble are combined to produce a result. Here, we used the package xgboost [54] as the 
underlying engine for boosted trees. Similarly to the random forests models, we set 
the number of trees in the ensemble as the parameter to be tuned during the CV loop. 
To improve computation times and to better fit our experimental design, we set the 
parameter “mtry” to 100. Furthermore, we set the engine-specific parameters “objec-
tive” to “binary:logistic,” “eval_metric” to “aucpr,” and finally, “maximize” to “TRUE”. 
Other parameters were kept as default as per the tidymodels interface.

Neural Networks

Neural Networks are models that work with the concept of combining layers of inter-
connected computational neurons (perceptrons) to produce a prediction. Here we 
focus on a simple, feed-forward neural network with three layers, the input layer, a 
single hidden layer, and the output layer. We used the nnet package [55] as the under-
lying engine for our networks. In our wrapper implementation, we set the number of 
hidden units (perceptrons in the hidden layer) and the complexity penalty parameter 



Page 16 of 28Maié et al. Genome Biology          (2023) 24:161 

as the parameters to be tuned during the CV loop. To have a sensible computational 
footprint, we kept the epochs (number of training iterations for each network) to 100, 
as default. However, due to the nature of our data (high-dimensionality, even after 
filtering), we had to set the engine-specific parameter “MaxNWts,” which controls 
the maximum number of weights in the model, to one million, otherwise, the models 
would not fit. This parameter is necessary but makes the fitting process more compu-
tationally expensive.

Experimental design

The overall design is shown in Additional file 1: Fig. S2. First, we divided the data into 
a train and a test set. The train set was used to train and fit the models within a cross-
validation setup while the test set was used as an independent assessment of the models 
after training concluded. The split in the data was manually curated. To avoid bias, we 
had to ensure that (1) samples from the same study were exclusively in the train set or 
the test set and (2) whenever possible given (1), the proportion of samples for a given 
cell type across the different cell types was kept stable between the train and test sets so 
that these were as balanced as possible. Normalization was performed independently for 
the train and test data as previously described. Since some algorithms (neural networks, 
decision trees and random forests) cannot cope with the high dimensionality of the data, 
CimpleG enforces, during training but before the cross-validation step, a correlation, a 
co-linearity and a variance-based filter. Therefore, for these three algorithms, the uni-
verse of features is reduced to 360 and 402 CpGs for the somatic and leukocytes datasets 
respectively.

Next, we performed model training for every evaluated approach and for every rel-
evant cell type within the somatic cells and leukocyte datasets (Tables 1 and 2, respec-
tively). Note that, each model is trained independently for each different target class. 
This means that, for example, we will have six different and trained random forest mod-
els for the leukocytes dataset (that has 6 different target classes). For model selection 
and parameter optimization, we performed stratified cross-validation (10-fold) in the 
training dataset. The same folds were used for all evaluated models and cell types. See 
the text above for a description of the optimized parameters. Finally, we assess the per-
formance of each method using the test dataset. The classification performance of each 
method is evaluated using the Area under the Precision-Recall curve. Other metrics 
considered for the evaluation and comparison of the models were the time of execution 
(which includes model optimization) and the number of selected features (if supported 
by the method). To quantitatively understand how each model ranks against the other, 
we computed the overall mean ranks (based on the AUPR) as well as the Friedman-
Nemenyi post hoc tests. With these, we can assess if different methods perform signifi-
cantly better than others (Fig. 2).

CimpleG for cell deconvolution

Let V be a matrix with DNAm levels of mixture samples, W is the cell-type specific 
methylation values (our reference matrix) and H would be the unknown cell-type pro-
portions per sample. Cell deconvolution can be posed as a matrix factorization problem, 
that is:
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Given that all these matrices are positive, this problem can be solved with a non-nega-
tive least square algorithm (NNLS) [39].

For our signatures, we generate W in two distinct ways depending on the type of 
model the signatures originated from. If the signatures were generated from one of 
the simple methods (CimpleG or brute-force), then we take their DNAm site selec-
tion and build a reference matrix using the average DNAm values of each CpG per 
class label. Otherwise, for each machine learning method, we build the reference 
matrix by using the average classification score per classifier, per cell type. To per-
form cellular deconvolution on the matrix V, we again use two different approaches. 
For the simple methods, we take the methylation level of the DNAm signature sites. 
However, for the complex methods, we use the classification score of each classifier 
for the different samples. Taken together, the W and V matrices are fed to the NNLS 
algorithm to reconstruct H.

For all methods within CimpleG, in the likely scenario that the data we are trying to 
deconvolve includes missing values, CimpleG will perform mean-imputation so that 
deconvolution can take place and it will warn the user of how many probes were miss-
ing and if applying this procedure makes sense for their data. Although the main focus 
of CimpleG is on the of use small signatures, before training, the user can also choose 
to perform deconvolution using the default CimpleG procedure but with a higher 
number of probes (i.e., CimpleG.10 in Fig.  4). Furthermore, CimpleG also allows the 
user to use other deconvolution algorithms such as non-negative matrix factorization 
(NMF) [56], robust partial correlations (RPC) [21], Cibersort [57] and constrained pro-
jection (CP) [26]. The last three methods are supported in the back-end by the EpiDISH 
package [21].

Competing methods for cell deconvolution

In order to assess how the deconvolution performed by CimpleG (and the methods 
included therein) compares to other state-of-the-art methods, we selected a number 
of methods widely used for reference-based deconvolution of DNAm data. These were 
IDOL  [10, 27], EpiDISH  [21], minfi  [15, 25], and ENmix  [18]. Furthermore, whenever 
possible, we gauge how, for the same method, having signatures of different sizes (Cim-
pleG, IDOL, and ENmix) affects its performance. Of note, most methods (EpiDISH, 
minfi, and ENmix) provided their own CpG signatures. This is not the case for CimpleG 
and IDOL, which both explore a 12 cell-type reference data set (see below) for DNAm 
signature delineation.

IDOL

IDOL (Identifying Optimal Leukocyte-differentially methylated region Libraries, 
v0.0.0.9000)  [10, 27] is a method specifically targeting the problem of cell mixture 
deconvolution. It can be used both as a standalone workflow, capable of identify-
ing and using a panel of probes for deconvolution, as well as using a pre-generated 

(5)
V = W ·H .
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reference signature. In this study we focus on the former, as most methods (see below) 
already cover the latter.

IDOL’s training process consists of two different steps. First using its function Can-
didateDMRFinder.v2, it selects a panel of candidate probes. This selection is based on 
t-tests run across the contrasts, in this case cell-types, in the data. The dataset used here 
was the Purified 12 leukocytes data (see below) with 56 different cell-specific samples, 
covering 12 different cell-types. Under our experimental setup, this step reduces the 
number of probes available for consideration from 689,105 down to 3540. Then it uses 
its iterative approach, with the IDOLoptimize function by exploring a training mixture 
data set to optimize the selection of probes to solve the cell mixture deconvolution prob-
lem. This process is guided through the use of the RMSE and R²(fit) metrics to deter-
mine if a given subset of probes, provides a better result than the previous iteration. We 
use the same mixture data set (6 samples of artificial mixtures) as used in [27]. Finally, 
with the selection finished, deconvolution is run with the projectWBCnew function. The 
deconvolution method itself being based on the often called Constrained Projection 
(CP) algorithm [26].

As mentioned above, for the refining of DNAm signatures, we use the same mixture 
training dataset as in [27]. Six samples, artificially mixed, composed of 12 different cell 
types. These were samples with the accession numbers GSM5121366, GSM5121364, 
GSM5121357, GSM5121367, GSM5121362, and GSM5121365. The pre-processing pro-
cedure applied to these data was the same as the one used for the Purified 12 leukocytes 
data (see below).

We should note that the IDOLoptimize step can take a rather long amount of time, 
with IDOL taking exactly 2 h to execute, while IDOLmin took a little over 9 min to 
execute. This was achieved while running in parallel on a 6-core setup, with otherwise 
default parameters, except for the libSize parameter which was set to 13 for IDOLmin 
(12 cell-types + 1, as this was the minimum that allowed it to run) and 1200 for IDOL to 
reflect the optimal procedure in described in its most recent study [27]. For comparison, 
CimpleG.10, running in a single core took a little under 5 min to execute.

EpiDISH

EpiDISH (Epigenetic Dissection of Intra-Sample Heterogeneity, v2.14.1) [21] is a method 
also specifically targeting the problem of cell mixture deconvolution. Although it allows 
for the selection of differentially methylated probes, it is more tailored for the use of 
its pre-generated whole blood reference datasets for deconvolution. For benchmark-
ing purposes, we use EpiDISH with default parameters and we use as reference their 
centDHSbloodDMC.m dataset. In this dataset, EpiDISH leverages the information of 
DNAse Hypersensitive Sites along with other purified blood cells data, from the Reinius 
et  al. study  [58], generated with the Illumina Infinium Human Methylation 450k plat-
form to improve their deconvolution performance. EpiDISH uses by default the RPC 
algorithm for deconvolution, which is used in our evaluation. As previously mentioned, 
it supports three different algorithms RPC, Cibersort and CP.
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minfi

The R package minfi (v1.44.0) is an all encompassing package for the analysis of DNAm 
data generated with the Illumina Infinium Human Methylation BeadChips [15]. For the 
deconvolution of cell mixtures, it provides the function estimateCellCounts  [25]. It is 
important to note that, unlike other methods, minfi requires a specific type of object 
to perform their deconvolution estimations. This object is an RGChannelSet, a specific 
object from this package that is basically devoid of any pre-processing. By default, dur-
ing computation, estimateCellCounts will normalize the data, applying quantile nor-
malization. This step normalizes the user data along with minfi’s reference data. It uses 
quantile normalization, by default, for the type of data that we are analyzing, blood cells. 
However to make normalization more consistent with other data sets evaluated here, we 
opted to set the parameter controlling this, “processMethod,” to preprocessNoob. This 
approach was used in all of minfi’s related benchmarking analysis.

To perform its predictions, minfi uses by default a pre-generated reference dataset for 
deconvolution, “FlowSorted.Blood.450k.” This dataset is based on samples assayed as 
part of the Reinius et al. study [58] as well. It is provided in the form of an R package [25] 
and it needs to be installed prior to running minfi to deconvolve the data. To perform 
deconvolution it first computes which probes would be best to perform this task. By 
default, for the type of data in this study, it selects the 100 probes with the highest mag-
nitude in effect between contrasts (50 hyper- and 50 hypo-methylated) as selected by 
its F-stat p-value threshold ( p < 1e−8 ). Then, to compute the actual inferences, it uses 
the selected probes combined with an implementation of the CP algorithm described in 
Houseman et al. [26].

ENmix

ENmix (v1.34.0) is, similarly to minfi, an all encompassing package for the analysis of 
DNAm data from the Illumina Infinium Human Methylation platform  [18]. For the 
deconvolution of cell mixtures it provides the function estimateCellProp. It uses a pre-
generated reference dataset “FlowSorted.Blood.450k” and uses the same DNAm selec-
tion procedure and deconvolutuion algorithm (CP) as minfi. It is more flexible than 
minfi, as it allows the use of pre-processed DNAm data (any matrix representation with 
methylation values) and it allows the user to choose if quantile normalization should 
be applied or not. We have set the parameter controlling normalization (normalize) to 
“FALSE”. More importantly, it allows the user to pick the number of probes with the 
highest magnitude in effect (hyper- and hypo-methylated) to be used for deconvolution. 
We should note that although ENmix allows you to set this parameter (nProbes) to 1, 
their implementation makes it so that it will always select 1 probe which is hyper-meth-
ylated and 1 probe which is hypo-methylated, effectively doubling the number of probes 
it is actually selecting. If nProbes is set to 50, the selection of probes should mirror the 
selection done by minfi.

Benchmark data for the cell deconvolution problem

To evaluate the performance of the different methods for deconvolution we used data 
compiled in Salas et  al.  [27]. This includes a reference data set with 12 purified cell 
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types, which is used for cell signature detection. For deconvolution, we explore here 
two artificial and one real leukocyte mixture datasets with fluorescence-activated cell 
sorting (FACS) data associated to it. One note, training IDOL requires an additional 
mixture data set (see IDOL description above), which is not used for benchmarking to 
avoid bias.

Purified 12 leukocytes data

This dataset is a subset of the data with the GEO accession number GSE167998. Com-
prising 56 different purified leukocyte samples spanning across 12 different leukocyte 
subtypes (Additional file 2: Table S4). These leukocyte subtypes are neutrophils (neu), 
eosinophils (eos), basophils (bas), monocytes (mono), B naive cells (bnv), B memory 
cells (bmem), CD4 T naive cells (cd4nv), CD4 T memory cells (cd4mem), T regulatory 
cells (treg), CD8 T naive cells (cd8nv), CD8 T memory cells (cd8mem), and natural killer 
cells (nk).

To process these data, we have acquired the raw data (.IDAT files) from GEO. We have 
pre-processed the data with the data processing pipeline from SeSAMe [19] (openSes-
ame function, sesame R package v1.16.1), setting the pre-processing code argument to 
“QGCDPB.” With this setting, the pipeline will perform the following tasks in this order: 
mask probes of poor design, mask all but cg-probes, infer channel for Infinium-I probes, 
apply non-linear dye-bias correction, perform detection p-value masking using out-
of-band probes and finally perform background subtraction using out-of-band probes 
(often called noob normalization). After pre-processing, we removed the masked probes 
from our data. Further, using Illumina’s EPIC platform annotation, we have removed 
probes associated with sexual chromosomes. In the end we have a matrix with beta-val-
ues for 56 samples across 689,105 probes.

Mixture Leukocyte dataset 1

This dataset with GEO accession number GSE182379, contains a total of 12 different 
artificially-mixed-leukocyte samples, with the same cell types as in the “Purified 12 leu-
kocytes data” above (Additional file 2: Table S5). For this dataset we have downloaded 
the processed data from GEO. In the end we have a matrix with beta-values for 12 sam-
ples across 865,859 probes.

In the experiments where we needed to combine the leukocyte subsets into larger 
groups, we simply summed up the predictions (or the true values) of the more refined 
subsets into the combined groups. We have combined neutrophils, eosinophils and 
basophils into granulocytes (gran); B naive cells and B memory cells into B cells (bcells); 
CD4 T naive cells, CD4 T memory cells and T regulatory cells into CD4 T cells (cd4t); 
and finally, CD8 T naive cells and CD8 T memory cells into CD8 T cells. Monocytes and 
NK cells were unaffected by this change. For simplicity, we refer to this dataset as Leuko-
cyte dataset 1.
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Mixture Leukocyte dataset 2

This dataset is a subset of the data with the GEO accession number GSE167998. It 
includes 6 samples of artificially mixed leukocytes (Additional file 2: Table S6). Twelve 
different leukocyte subtypes were used to produce these mixes. The same pre-processing 
pipeline was used as for the “Purified 12 leukocytes data” (see above). In the end we have 
a matrix with beta-values for 6 samples across 689,105 probes. The same procedure to 
combine leukocyte subsets into larger groups applied in Leukocyte dataset 1 was also 
applied to this dataset. For simplicity, we refer to this dataset as Leukocyte dataset 2.

Mixture Leukocyte dataset 3

This dataset is a subset of the data with the GEO accession number GSE110530. In total 
this dataset contains 12 samples, however only 5 of these contain partial FACS infor-
mation. These are the samples we use for our evaluation (Additional file  2: Table  S7). 
These samples are real blood samples from a male adult volunteer taken across differ-
ent points in time. The same pre-processsing pipeline was used as for the “Purified 12 
leukocytes data” (see above). In the end we have a matrix with beta-values for 5 samples 
across 729,973 probes.

Notably and in contrast with the other datasets, the FACS information available for 
these samples only covers 5 different cell types. These are CD4 T cells (cd4t), CD8 T cells 
(cd8t), granulocytes (gran) and monocytes (mono). The last cell type was the CD3- frac-
tion of lymphocytes and it is represented as being the sum of B and NK cells (nont_b_
and_nk). Given this, for the predictions made for these samples, we have summed up the 
cd4t, cd8t and gran groups as described before (see Leukocyte dataset 2). Furthermore, 
we have summed up bcells and nk into the nont_b_and_nk group.

Experimental design for cell deconvolution

The objective of this experiment is to evaluate different deconvolution methods under 
different datasets. Some of these methods need to be trained a priori to create a decon-
volution reference matrix (W in Eq.  5), while others use pre-generated deconvolution 
reference datasets derived from other experimetns to perform their inferences.

First we focus on the methods that need to be trained. These are IDOL and Cim-
pleG (and methods under their respective umbrellas). We train CimpleG, CimpleG.10, 
elasticnet (ElasticNet), boostedtree (XGBoost), neuralnet (Neural network), randfor-
est (Random forests) and decisiontree (Decision tree) with the “Purified 12 leukocytes 
data” with default parameters. The exception being the train_only parameter which was 
set to “TRUE” as this dataset is too small for a train-test split to be performed. Here, 
the cross-validation step described in the “CimpleG for signature selection” section is 
still performed. For CimpleG.10, the parameter “n_sigs” is set to 10 (instead of 1, the 
default). As mentioned previously, IDOL (and IDOLmin) need to be trained in two sepa-
rate steps. The first training step, using the “Purified 12 leukocytes data” was performed 
with default parameters and is the same for both IDOL and IDOLmin. For the second 
step (optimization), the libSize parameter was set to 1200 for IDOL and 13 for IDOL-
min, and the numCores parameters was set to 6 (default is 4) in order to speed up the 
computation time.
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Next, we performed the cell deconvolution predictions by using default settings. We 
have capped predicted proportions to 0 in case negative values were present. We always 
generate predictions for the more granular classes (12 leukocyte subsets) for the meth-
ods that can do so (CimpleG and IDOL). We then sum up these inferences to accom-
modate the broader cell-type groups, 5 or 6 major leukocyte groups depending on the 
dataset.

We should note that, for most methods, the same signatures were used across 
deconvolution. The exceptions are minfi and ENmix, which perform feature selection 
at each deconvolution run and might select distinct signatures. Taking CimpleG as an 
example, for the deconvolution problem, CimpleG was trained once on the expanded 
leukocyte reference. Then this trained model was used to evaluate the three differ-
ent leukocyte datasets as well as their more broadly annotated, simplified versions. 
ENmix and minfi however, due to the nature of using pre-generated reference data-
sets, and the implementation of their deconvolution algorithms, only really select 
which probes will be used for deconvolution at the time of deconvolution. This means 
for example, that ENmix.min can use two distinct sets of signatures when trying 
to deconvolve Leukocyte dataset 1 and Leukocyte dataset 2. Thus, with that caveat 
(marked with a ∗ ), we have in ascending order of number of signatures required for 
deconvolution the methods: CimpleG (12), IDOL.min (13), ENmix.min (24∗ ), minfi 
and ENmix (100∗ ), CimpleG.10 (120), EpiDISH (333), and IDOL (1200).

To quantitatively evaluate the performance of different methods for deconvolution 
we compute the root mean squared error (RMSE, Eq. 6) and two different versions of 
the R-squared metric. The R-squared ( R2 , Eq. 7) [42, 43], and the R-squared of the fit 
( R2(fit) , Eq. 10). We compute the RMSE as:

where truei are the true values of sample i, predi are the predicted values for sample i and 
n is the total number of samples.

We compute R2(diagonal) as:

where truei are the true values of sample i, true is the mean of all true values, predi are 
the predicted values for sample i and n is the total number of samples. Given the linear 
model fit T = a ∗ pred + b estimated by the deconvolution model, we first estimate the 
residuals

and the R2(fit) can be defined as:

(6)RMSE =

√

∑n
i=1(truei − predi)2

n

(7)R2 = 1−

∑n
i=1(truei − predi)

2

∑n
i=1(truei − true)2

(8)resi = truei − T(predi),

(9)R2 = 1−

∑n
i=1(resi)

2

∑n
i=1(predi − predi)2

.
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Finally, the statistic is adjusted to consider sample size:

where n is the number of samples and p is the number of variables used for the linear fit. 
The value of Eq. 10 approaches that of Eq. 9, the higher the number of samples is. This is, 
in short, the procedure done when trying to calculate the R2 using the functions lm and 
summary in R (the programming language).

In this study we also refer to these metrics as R2 diagonal and R2 fitted for ease 
of understanding. We compute these R2 metrics because their use is common place, 
however we argue that these should not be employed for the evaluation of deconvolu-
tion results (see Discussion). To rank the performance of each method is in compari-
son to its peers, we use the Friedman and Nemenyi post hoc test. This test ranks and 
evaluates, for each given metric, if the performance of a given method is significantly 
worse than the performance of the others.
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