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Abstract 

Background: The oocyte-to-embryo transition (OET) converts terminally differenti-
ated gametes into a totipotent embryo and is critically controlled by maternal mRNAs 
and proteins, while the genome is silent until zygotic genome activation. How the tran-
scriptome, translatome, and proteome are coordinated during this critical develop-
mental window remains poorly understood.

Results: Utilizing a highly sensitive and quantitative mass spectrometry approach, 
we obtain high-quality proteome data spanning seven mouse stages, from full-grown 
oocyte (FGO) to blastocyst, using 100 oocytes/embryos at each stage. Integrative anal-
yses reveal distinct proteome reprogramming compared to that of the transcriptome 
or translatome. FGO to 8-cell proteomes are dominated by FGO-stockpiled proteins, 
while the transcriptome and translatome are more dynamic. FGO-originated proteins 
frequently persist to blastocyst while corresponding transcripts are already downregu-
lated or decayed. Improved concordance between protein and translation or tran-
scription is observed for genes starting translation upon meiotic resumption, as well 
as those transcribed and translated only in embryos. Concordance between protein 
and transcription/translation is also observed for proteins with short half-lives. We built 
a kinetic model that predicts protein dynamics by incorporating both initial protein 
abundance in FGOs and translation kinetics across developmental stages.

Conclusions: Through integrative analyses of datasets generated by ultrasensitive 
methods, our study reveals that the proteome shows distinct dynamics compared 
to the translatome and transcriptome during mouse OET. We propose that the remark-
ably stable oocyte-originated proteome may help save resources to accommodate 
the demanding needs of growing embryos. This study will advance our understanding 
of mammalian OET and the fundamental principles governing gene expression.
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Background
Remodeling the terminally differentiated gametes into a totipotent zygote enables the 
birth of life. This process is tightly controlled by maternally supplied RNAs and pro-
teins accumulated during oogenesis [1, 2], as transcription is silenced at the end of 
the growing phase of oocyte until zygotic genome activation (ZGA) after fertilization 
[3–5]. Thus, meiotic resumption, fertilization, and early embryogenesis before zygotic 
genome activation are controlled by post-transcriptional regulation of maternal prod-
ucts. As a result, proteins are poorly predicted based on the transcriptomes as shown 
in Xenopus oocytes and early embryos [6]. Translation is expected to be more closely 
related to protein abundance as it reflects the protein-producing rate. Extensive tran-
scription-independent translational regulation of maternal mRNAs occurs during the 
oocyte-to-embryo transition (OET) [7, 8]. For example, RNAs of key regulators can 
be pre-transcribed during oocyte growth but remain “dormant” (without being trans-
lated) and only resume translation upon meiotic resumption [7]. Inhibition of trans-
lation with cycloheximide (CHX) in mouse oocytes or early embryos led to severe 
developmental arrests [9–13]. Nevertheless, it remains unclear how well it predicts the 
total protein abundance, as the latter also depends on the existing protein level and 
the protein degradation rate. Currently, a full understanding of the fundamental rela-
tionship between transcriptome, translatome, and proteome that governs mammalian 
OET is still lacking.

Proteome investigations have been performed in mammalian gametes and early 
embryos [14–18]. In mice, previous studies have identified 3,000–6,550 proteins in 
mouse oocytes and early embryos with 600–8,000 oocytes or embryos at each stage, 
using a label-free approach [15], the tandem mass tags (TMT) method [16], or sta-
ble isotope labeling by amino acids (SILAC) approach [17]. On the other hand, due to 
highly limited experimental materials, the complete translatome data in mammalian 
preimplantation development were previously not available. Recently, we and others 
developed ultrasensitive translatome profiling methods and mapped the translatomes 
in mouse and human oocytes and early embryos [11, 12, 19, 20]. Here, using a label-
free mass spectrometry strategy [21], liquid chromatography with tandem mass spec-
trometry (LC–MS/MS), we generated a high-quality proteome landscape in mouse 
oocytes and preimplantation embryos at the stages matching our transcription and 
translation datasets, using 100 oocytes or embryos per stage. By incorporating these 
three datasets, our study provides a unique opportunity to systematically investigate 
the relationship among the protein, translation, and transcription during mammalian 
OET. These data reveal distinct proteomes from transcriptomes and translatomes in 
oocytes and early embryos, shedding light on the multi-layered control of oocyte mat-
uration and embryogenesis.
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Results
LC–MS/MS efficiently quantifies the protein abundance

We sought to understand the relationship among the proteome, translatome, and 
transcriptome in mouse oocytes and early embryos. As previous proteome stud-
ies did not cover the full stages (Additional file 1: Fig. S1A) and it is not feasible to 
combine data from different methods, we first mapped the proteome landscapes 
using a highly sensitive label-free LC–MS/MS approach [21] at the stages matching 
those of the translatome and the transcriptome data we recently published [12]. To 
test its quantification capability, we first measured the protein abundance in FGOs 
with varying cell numbers (Fig. 1A). A total of 1,896, 3,072, 3,288, and 4,185 proteins 

Fig. 1 Low-input LC–MS/MS efficiently quantifies the protein abundance. A Validation of LC–MS/MS 
quantification capability. Schematic showing the experimental design of validation with various numbers of 
FGOs (left). Scatter plots comparing  log2 transformed protein intensities of 100, 200, and 500 FGOs against 10 
FGOs (right). Lines representing the  log2 protein intensity with expected fold changes comparing with that 
of 10 FGOs are shown in red, and the reference line y = x is shown in black. iBAQ, intensity-based absolute 
quantification. B Schematic showing the experimental design of the MII oocytes treated with DMSO or CHX 
for 24 h or 48 h, followed by proteome profiling with LC–MS/MS. C Venn diagram showing the overlap of CHX 
repressed proteins and dormant mRNAs identified by Ribo-seq (based on ribosome protected fragments, 
RPF) [12] (RPF, MII oocyte/FGO > 2; mRNA, MII oocyte/FGO < 2). P-value calculated by Fisher’s Exact test is also 
shown. D Heat maps showing protein fold changes (FC) and protein intensities upon CHX treatment in MII 
oocytes for known dormant genes. RPF and mRNA levels are also shown. A CHX unaffected gene is shown as 
a control
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were identified from 10, 100, 200, and 500 FGOs, respectively (Additional file 1: Fig. 
S1B). Proteins consistently detected in all FGO samples (n = 1,813) were then used to 
evaluate the quantification capability of LC–MS/MS. Compared to the protein abun-
dance from 10 FGOs, that from 100, 200, and 500 FGOs increased correspondingly by 
roughly 10-, 20-, and 50-fold, respectively (Fig. 1A, right), demonstrating the superior 
quantification ability of our results. For further validation, we applied the protein syn-
thesis inhibitor cycloheximide (CHX) to oocytes (Fig.  1B), where a number of dor-
mant RNAs are known to be newly translated during FGO to MII oocyte maturation. 
CHX also did not affect the development of MII oocytes which are naturally arrested 
prior to fertilization. We did not choose FGOs as their maturation is blocked upon 
the CHX treatment [22, 23], and the differential translation would be confounded 
by the maturation defects. We observed 241 proteins down-regulated (24 h and 48 h 
treatments were combined  due to their  similarity) compared to the DMSO control 
(Additional file  1: Fig. S1C, top). Consistently, these proteins were poorly detected 
in FGOs but were highly abundant in untreated MII oocytes (Additional file  1: Fig. 
S1C, top), suggesting they were newly synthesized. A comparison with our Ribo-seq 
data revealed 102 (42.3%) of the 241 CHX-repressed proteins were translated from 
dormant mRNAs [12] which were lowly translated in FGOs but were highly trans-
lated in MII oocytes (at least two-fold upregulated) (Fig. 1C and Additional file 1: Fig. 
S1C, top), such as Cnot7, Pan2, Sin3a, and Btg4 (Fig.  1D). CHX-repressed proteins 
were significantly enriched for genes involved in cell cycle (e. g., Aurka, Cenpe, and 
Rad51), RNA stability (e.g., Cnot6l, Cnot7, and Pan2), chromatin organization (e.g., 
Ezh2, Sin3a, and Tet3), and histone modification (e.g., Hdac1/2, and Kdm1a/b) path-
ways (Additional file 1: Fig. S1D). Many of these genes are key regulators in meiosis 
resumption, maternal mRNA clearance, and epigenetic reprogramming during oocyte 
maturation. By contrast, CHX-unaffected proteins tended to be highly translated in 
FGOs, but are lowly translated in MII oocytes (hence insensitive to CHX) (Additional 
file  1: Fig. S1C, bottom). These proteins showed enrichment in housekeeping path-
ways, such as the amide metabolic process and intracellular protein transport (Addi-
tional file  1: Fig. S1D). Furthermore, the proteome measurements aligned well with 
our previous Western blot analyses [12] (Additional file  1: Fig. S1E). Overall, these 
data demonstrate that our proteome data are highly quantitative and sensitive for 
low-input samples.

Dynamic proteome distinct from the translatome and the transcriptome in oocytes 

and embryos

Next, we performed systematic profiling of protein abundance in FGO, MII oocyte, 
1-cell (1C), 2-cell (2C), 4-cell (4C), 8-cell (8C), and blastocyst (BL) embryos, using 100 
oocytes or embryos for each developmental stage (Fig. 2A). We collected the oocytes 
and embryos developed in vivo up to the 8C stage, and obtained blastocysts through 
in vitro culturing starting from the 8C embryos for the convenience of sample collec-
tion. It is worth noting that superovulation and in vitro culturing may influence the 
qualities of mouse embryos and their proteomes [24]. Early embryos were obtained 
from crosses of C57BL/6J female and PWK/PhJ male mice to match the genetic 
background of our translatome and transcriptome data [12]. Protein abundance 
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measurements were highly reproducible between replicates (R = 0.79–0.90) (Addi-
tional file 1: Fig. S2A), and a total of 5,933 proteins were detected (Additional file 2: 
Table S1). Compared to previous work [15–17], our study detected comparable pro-
teins with the fewest cells (Additional file 1: Fig. S2B, C) and covered the most com-
prehensive stages during OET (Additional file  1:  Fig. S1A). After correcting batch 
effects (Methods), 4,108 proteins that were consistently detected across batches and 
also detected in our Ribo-seq (based on ribosome protected fragments, RPF) and 
RNA-seq (mRNA) datasets [12, 25] were subsequently used for the downstream 

Fig. 2 Distinct global proteome, translatome, and transcriptome dynamics during mouse oocyte maturation 
and early development. A Schematic of mouse oocytes and preimplantation embryos used for LC–MS/MS, 
Ribo-seq, and RNA-seq. B Principal component analysis (PCA) of genes (n = 4,108) based on their protein, 
translation (RPF), and transcription (mRNA) levels. The sample points are colored by developmental stage 
and the replicates are connected with solid lines. The developmental trajectories of samples are shown in 
red lines. C Heat maps showing the Spearman correlation coefficients between pairwise developmental 
stages for protein, RPF, and mRNA. Arrows indicate the stages that show evident transitions for the proteome, 
translatome, or transcriptome. D Pie charts showing the proportions of stably and dynamically regulated 
(coefficient of variation > 0.2 of log2 transformed intensity across stages) proteins, RPFs, and mRNAs for 
detected genes (n = 4,108) in oocytes and early embryos
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analysis (Additional file  3: Table  S2). We then compared the temporal dynamics of 
the proteome, translatome, and transcriptome across developmental stages. Princi-
pal component analysis (PCA) and pairwise Spearman correlation analysis revealed 
the translatome and the transcriptome showed multiple transitions along the devel-
opment trajectory (Fig. 2B, C). Major transitions were observed at the FGO-to-MII, 
1C-to-2C, and 8C-to-blastocyst stages (Fig. 2B, C, arrows), aligning with three main 
events at these stages: meiotic resumption, zygotic genomic activation, and the first 
lineage specification, respectively. By contrast, the proteome was much less dynamic 
from FGO to 8C, before major transitions occurred during the 8C-to-blastocyst 
(Fig. 2B, C, arrows), consistent with the previous findings [16, 17]. Further coefficient 
of variation (CV) analysis (Methods) revealed the translation of 83.5% of genes and 
the transcription of 80.8% of genes were dynamically regulated throughout the course 
of oocyte maturation and early development (Fig. 2D). This difference is not due to 
bias introduced by previous gene filtering, as similar fractions of variable genes were 
identified for the translatome and the transcriptome using all expressed genes (with-
out requiring that they had to be detected by mass spectrometry, Additional file  1: 
Fig. S3). By contrast, only 52.2% of genes showed dynamic proteins in oocytes and 
early embryos.

We next investigated the temporal dynamics of individual proteins across develop-
mental stages. The K-means clustering analysis classified the detected proteins into six 
distinct groups (Fig. 3A, Additional file 3: Table S2). 1) The largest cluster included “Con-
stitutive” proteins which maintained high abundance across all developmental stages 
despite the dynamic changes at the RPF and mRNA levels (Fig. 3A, B, “Constitutive”). 
These proteins could be further classified based on their RPF and mRNA dynamics. In 
the  1st subgroup, the RPF and mRNA abundance were maintained at high levels across 
all stages similar to protein dynamics (Fig. 3A, “protein constitutive-RPF constitutive”), 
including genes that are involved in RNA splicing (e.g., Ddx5 and Hnrnp) and cell cycle 
(e.g., Pcna and Mcm2). The genes in  2nd subgroup were transcribed and translated in 
FGOs but were downregulated from the MII oocytes before they were reactivated after 
ZGA (Fig. 3A, “protein constitutive-RPF OET downregulated”). These genes were mainly 
involved in translation initiation (e.g., Rps and Rpl) and oxidative phosphorylation (e.g., 
Ndufs). The  3rd subgroup genes were lowly transcribed and translated in oocytes and 
early embryos (Fig.  3A, “protein constitutive-RPF low”), which are involved in small 
molecule catabolism (e.g., Gapdh) and Golgi vesicle transport (e.g., Golga4). These pro-
teins were likely accumulated during oocyte growth. The  4th subgroup included genes 
translated in oocytes and pre-ZGA embryos (2C-stage) but strongly downregulated 
afterward (Fig. 3A, protein constitutive-RPF maternal). The Rho GTPases signaling and 
nuclear envelope assembly genes were enriched in this group.

2) “Maternal” proteins were highly expressed from FGO to MII oocytes and gradu-
ally degraded after fertilization with concordant transcription and translation dynamics 
(Fig. 3A, B, “Maternal”). These genes were primarily involved in oocyte development and 
fertilization (e.g., Cpeb1, Gnrh1, Izumo1r, and Tdrd5).

3) “OET downregulated” proteins were highly expressed in FGOs, but downregulated 
either from the MII oocytes or from the 2C embryos, before they reappeared in the 8C 
embryos or blastocysts (Fig. 3A, B, “OET downregulated”). Proteins in this class included 
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DNMT3A and DNMT3L, consistent with the global DNA demethylation after fertiliza-
tion and global re-methylation starting from the blastocyst [26]. They also included fac-
tors involved in mRNA splicing (e.g., snRNPs). Notably, inhibiting splicing could convert 
mESCs to totipotent blastomere-like cells (TBLC) [27] or 2-cell-like cells [28].

4) “OET upregulated” proteins were present at low levels in FGO but were up-regu-
lated upon meiotic resumption. The translation dynamics were consistent with protein 
changes exhibiting features of "dormant RNAs" (Fig. 3A, B, “OET upregulated”). These 
genes include regulators of mRNA deadenylation (e.g., Btg4, and Cnot6l) and chromatin 
organization (e.g., Sin3a, Ezh2, Eed, and Tet3) (Fig. 3B, “OET upregulated”). The upreg-
ulation of TET3 upon meiotic resumption is consistent with its role in the upcoming 

Fig. 3 Global proteome dynamics in mouse oocytes and pre-implantation embryos. A Heat maps showing 
the K-means clustering results based on protein dynamics in oocytes and early embryos (n = 4,108), with 
the corresponding RPF and mRNA levels mapped. The enriched GO terms and example genes are also 
listed. Constitutive proteins are further classified into four subgroups based on the dynamics of RPFs.  1st 
subgroup, protein constitutive-RPF constitutive;  2nd subgroups, protein constitutive-RPF OET downregulated; 
 3rd subgroup, protein constitutive-RPF low;  4th subgroup, protein constitutive-RPF maternal. B Line plots 
showing the protein, RPF, and mRNA dynamics across stages for genes from different clusters in (A). Left, the 
representative genes or gene families; right, the average signals for each cluster. Arrows indicate discordant 
dynamics among proteome (red), translatome (black), and transcriptome (black) datasets
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global DNA methylome demethylation [29] and also explains why it does not demethyl-
ate the oocyte genome. The upregulation of EED and EZH2, components for Polycomb 
repressive complex 2 (PRC2), is interesting as oocyte-inherited H3K27me3 enables the 
allele-specific expression of key imprinted genes (e.g., Gab1, Sfmbt2, and Slc38a4) and X 
chromosome genes (Xist) in early embryos [30–32].

5) “Embryonic” proteins are translated after ZGA, encoded by genes that are involved 
in ribosome biogenesis (e.g., Exosc and Rrp), histone modification (e.g., Kdm3a/b), and 
blastocyst development (e.g., Gata6, Gabpa, and Cdx2) (Fig. 3A, B, “Embryonic”). Nota-
bly, genes with stronger translation and transcription levels tended to show detectable 
proteins at the earlier stages (2-8C), while genes with weaker translation and transcrip-
tion did not exhibit detectable proteins until the blastocyst stage, likely due to the lim-
ited sensitivity of LC–MS/MS.

6) The last group included “Lowly expressed” proteins with low levels of RPFs and 
mRNAs, which were excluded from subsequent analyses.

Therefore, these results indicate that the proteome, translatome, and transcriptome 
undergo distinct reprogramming during oocyte maturation and embryogenesis. The 
proteome is less dynamic than the translatome and the transcriptome, with a large por-
tion of proteins remaining stable even when translation and transcription exhibit sub-
stantial changes.

FGO‑8C proteomes are dominated by FGO‑originated proteins

To better understand why the proteomes are distinct from the translatomes and the 
transcriptomes during OET, we first performed a systematic comparison at each 
stage. The correlations between translatome and transcriptome were high throughout 
development (R = 0.78–0.90) (Fig.  4A). By contrast, the proteome correlated poorly 
with the translatome (R = 0.27–0.44) and the transcriptome (R = 0.26–0.41), except in 
FGOs (R = 0.70 and 0.75, respectively) and blastocysts (R = 0.50 and 0.68, respectively) 
(Fig. 4A). The discrepancy between the proteome and the translatome or the transcrip-
tome from MII oocyte to 8C was evidenced by the downregulation of translation and 
transcription for “constitutive proteins” (Fig. 3B, "Constitutive", red and black arrows), 
the delayed degradation of maternal proteins (Fig. 3B, “Maternal”, red and black arrows) 
and the slow accumulation of embryonic proteins (Fig. 3B, “Embryonic”, red and black 
arrows) relative to transcription and translation.

Strikingly, pairwise correlation analysis between developmental stages showed that the 
proteomes from FGOs to 8C embryos were all well correlated with the translatome of 
FGOs, though the correlation gradually decreased (Fig. 4B, left black box). These cor-
relations (e.g., 4C proteins vs FGO RPFs) were often much higher than those of the 
proteome-translatome at the same stages (e.g., 4C proteins vs 4C RPFs). A similar obser-
vation was made for the proteome-transcriptome analysis (Additional file 1: Fig. S4A, 
left black box). These results suggest the proteomes in oocytes and early embryos are 
dominated by the “FGO proteome”, likely due to the long-lasting proteins stockpiled in 
FGOs. In fact, among 103 strictly defined FGO-originated proteins with no or low trans-
lation after fertilization (RPF FPKM < 5 at the 1C stage and afterward), 58.3% of them 
were still detectable in blastocyst, such as CCDC136, SIRT5 and MTHFD1L (Fig. 4C), 
suggesting that the degradation of maternal proteins, in general, is slow in early embryos.
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Fig. 4 Correlation among protein, RPF, and mRNA during oocyte maturation and early embryo development. 
A Bar plots displaying the Spearman correlation coefficients between protein-RPF, protein-mRNA, and 
RPF-mRNA at each developmental stage. B Heat map showing the Spearman correlation coefficients 
between pairwise protein and RPF among different developmental stages. The black boxes indicate the 
highly-correlated stages. C Left, violin plot showing the protein levels of all proteins (n = 4,108). Blue dots 
are proteins that originated from FGOs but were not translated or lowly translated in early embryos (FGO 
originated, RPF FPKM < 5 at the 1C stage and afterward). Right, line plots show the protein, RPF, and mRNA 
dynamics of representative genes. D Heat maps showing the parent-of-origin dynamics of proteins in 
oocytes and early embryos, with the corresponding parent-of-origin mRNA levels mapped. The example 
genes are also listed. maternal, C57BL/6J; paternal, PWK/PhJ; n, gene number. E Line plots showing the 
parent-of-origin of proteins and mRNAs across developmental stages for example genes. F Heat map 
showing the Spearman correlation coefficients between protein changes and RPF changes among different 
developmental stages. The dashed lines represent synchronized (black), one-stage lagging (red), and 
two-stage lagging (blue) changes. Arrows indicate the example transition stages that are highly correlated 
between protein changes and RPF changes
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As a separate validation to the analyses above, the highly variable genome sequences 
between C57BL/6J and PWK/PhJ strains provide an opportunity to investigate parent-
of-origin dynamics of oocyte-originated and embryonic proteins. A total of 484 proteins 
with non-synonymous protein variations caused by SNPs were identified by LC–MS/
MS, among which 173 variant proteins showed differential expression between the two 
alleles at one or more developmental stages in early embryos (Fig. 4D, Additional file 4: 
Table S3). Among them, 117 proteins were likely maternal proteins that originated from 
the oocyte and persisted in early embryos with no paternal-originated protein detected 
(Fig. 4D and E, “oocyte-specific”), including known maternal factors such as ZP2, GDF9, 
DPPA3, NLRP5  and PLAT. Consistently, their paternal RNAs were generally low in 
early embryos, suggesting the absence of zygotic transcription. Oocyte-originated tran-
script levels also reduced abruptly after ZGA. In addition, 56 proteins displayed oocyte 
expression and persisted until the embryonic stage, with paternally-derived proteins 
also detected at certain stages after ZGA, mostly at the blastocyst stage (Fig. 4D and E, 
“oocyte-embryonic”). In agreement with the protein dynamics, transcripts of maternal 
origin were present throughout oocytes and early embryos, and transcripts of paternal 
origin emerge after ZGA. We also identified 21 and 4 proteins that were only detected 
in embryos and showed exclusively maternal and paternal origin, respectively. However, 
the majority of them showed biallelic mRNA expression in embryos, raising the possibil-
ity that they  could be false positives due to detection dropout in LC–MS/MS. Overall, 
these results indicate the FGO-originated proteins can persist until blastocyst, even in 
cases where their mRNAs have been degraded.

Interestingly, the translatome and transcriptome after ZGA also poorly correlated with 
the proteome at the same stage, but strongly correlated with the proteomes of the blas-
tocyst and, to a lesser extent, 8C embryos (Fig. 4B and Additional file 1: Fig. S4A, right 
black box). This finding is consistent with the above observation that many genes were 
transcribed from the 2C stage, yet their proteins were not detected until the 8C or blas-
tocyst stage (Fig.  3A and 4D). Indeed, when analyzing the changes between consecu-
tive stages, protein changes after ZGA often correlated with RPF/mRNA changes at the 
one or two preceding stages (Fig. 4F and Additional file 1: Fig. S4B, red and blue dashed 
line). For example, the protein changes between the 2C-to-4C and the 4C-to-8C tran-
sition better correlated with translation and transcription changes from the preceding 
1C-to-2C transition than those changes at the same stage (Fig. 4F and Additional file 1: 
Fig. S4B, black arrows). Therefore, the detectable protein changes lag behind the transla-
tion and transcription changes, which likely reflects both the latencies associated with 
protein synthesis and maturation [33] and the limited sensitivity of LC–MS/MS.

Protein changes were partially contributed by transcription and translation changes

Despite the relatively stable proteome, we then focused on proteins that did show 
changes along oocyte development and embryogenesis and asked to what extent could 
transcription and translation changes explain their dynamics. To do so, we identified 
the up- and down-regulated proteins, RPFs, and mRNAs between each of the two 
consecutive stages. Among the 4,108 proteins, 1,983 (48.3%) proteins showed differ-
ential abundance in at least one stage transition (|fold change| ≥ 2 and P-value < 0.05) 
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(Fig. 5A, Additional file 5: Table S4). Only small numbers of differentially expressed 
proteins (DEPs) (n = 85–334) were identified at each consecutive transition before the 
8C stage. The 8C-to-blastocyst transition displayed the largest number of DEPs (938 
up-regulated and 542 down-regulated) (Fig. 5A), accordant with the reported major 
transition period [16, 17]. DEPs before ZGA were mainly involved in RNA splicing, 
cell cycle, and protein localization (Additional file 1: Fig. S5A). DEPs after ZGA were 
associated with small molecule catabolism, DNA metabolism, ribosome biogenesis, 
and cell pluripotency (Additional file  1: Fig. S5A). These terms are consistent with 
the metabolic switch in the early embryos [34] and the establishment of pluripotency 
in the blastocyst [35]. Meanwhile, much larger numbers of genes (n = 579–2,044) 
showed differential RPFs and mRNAs at each consecutive stage (Fig.  5A) and only 
small percentages of them (6.1%-31.8%) overlapped with DEPs (Additional file 1: Fig. 
S5B, C), suggesting the mRNA and RPF changes do not necessarily lead to signifi-
cant changes in proteins. We next sought to estimate the contribution of translation 
and transcription to protein dynamics. As protein alteration was delayed relative 
to changes in translation and transcription (Fig.  4F and Additional file  1: Fig. S4B), 
the DEGs of mRNA and RPF from the current and the preceding two stages were 
all considered. If the protein changes were accompanied by corresponding mRNA 
changes, we considered that such protein changes are likely explained by mRNA 
changes (mRNA contributed). In most cases (93%), mRNA changes are also associ-
ated with RPF changes. For the rest protein changes, if they were not accompanied by 
apparent mRNA changes but were associated with RPF changes, we considered them 
as “RPF-only contributed”, in which protein dynamics are potentially explained by 
mRNA-independent translation regulation. The results showed changes of 43 ~ 63% 
DEPs could be explained by changes in either mRNA or RPF (|mRNA change| > 2 or 
|RPF change|  > 2) before ZGA (Fig.  5B). The up-regulation of proteins before ZGA 

Fig. 5 Analyses of differentially expressed genes during oocyte maturation and early embryo development. 
A Bar plots showing the numbers of differentially expressed mRNAs, RPFs, and proteins between consecutive 
developmental stages (|fold-change| ≥ 2 and P-value < 0.05 with Student’s t-test). B Bar plots showing the 
percentages of differentially expressed proteins (DEPs) that could be explained by mRNA changes, additional 
RPF changes, or neither at each pair of consecutive developmental stages. mRNA, |mRNA change| > two-fold; 
RPF only, |RFP change| > two-fold and |mRNA change| < two-fold; mRNA + RPF unexplained, |mRNA 
change| < two-fold and |RPF change| < two-fold
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was mainly achieved by increasing translation efficiency (RPF-only contributed, 
27–63%). After ZGA, the changes in mRNA expression could explain the variance of 
39 ~ 59% of proteins, while the additional translational control accounted for a rela-
tively small extra portion (11 ~ 21%) of protein variance (Fig. 5B). The rest changes in 
protein abundance (20 ~ 57%) were independent of the counterparts in mRNA or RPF 
(|mRNA change| < 2 and |RPF change| < 2, Fig. 5B), indicating possible post-transla-
tional regulation. Taken together, these results show that translational and post-trans-
lational controls likely contribute substantially to protein dynamics prior to ZGA, 
while transcriptional regulation contributes most to protein changes after ZGA.

Fig. 6 Protein-RPF concordance is linked to the initial protein abundance and the protein half-life. A Bar  
plots showing the percentages of proteins that showed high (R > 0.5), medium (R > 0.2 and R < 0.5), or low  
(R < 0.2) correlation (Spearman) with RPF for “All” proteins (n = 4,108) and different protein groups in Fig. 3A.  
B Box plots showing the protein-RPF correlation based on the protein abundance in FGOs. C Box plots  
showing half-lives determined in mouse embryo neuron [37] or embryonic fibroblast cell line NIH3T3 [36] for  
different protein groups. D Box plots showing protein half-lives for different protein-RPF correlation groups. 
The significance for all plots was calculated by Wilcoxon rank-sum test (two-tailed). ***, P-value < 0.001;  
**, P-value < 0.01; ns, non-significant
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Protein concordance with translation and transcription correlates with its oocyte stock 

level and half‑life

We were curious about what protein features would predict better correlations between 
protein and translation or transcription during development. Therefore, we calculated 
the protein-mRNA and protein-RPF correlation for individual genes across developmen-
tal stages (gene-wise correlation, Fig. 6A and Additional file 1: Fig. S6A, B). The correla-
tion differed widely among genes, with median values of 0.18 and 0.19 for protein-RPF 
and protein-mRNA, respectively (Additional file 1: Fig. S6A, B). Correlations based on 
protein-mRNA and protein-RPF were largely consistent (R = 0.76) (Additional file 1: Fig. 
S6C, left), with a small group of them (29.2%) showing discordance (Additional file 1: 
Fig. S6C, pink and blue shades). For example, OET upregulated and embryonic proteins 
tended to show better protein-RPF correlation than protein-mRNA (Additional file  1: 
Fig. S6D, E, left). This was consistent with OET-upregulated genes being upregulated for 
translation without changing mRNAs upon meiotic resumption. By contrast, constitu-
tively expressed proteins were better correlated with mRNA than RPF as their proteins 
remained stable despite downregulation of translation upon meiotic resumption (Addi-
tional file  1: Fig. S6D, E, right). Note that such a higher correlation between mRNA-
protein compared to RPF-protein does not contradict a closer relationship between 
translation and protein, but rather caused by the stable protein and mRNA levels due 
to different reasons (a large amount of stable FGO protein and the lack of transcrip-
tion during OET, respectively). Overall, about 25% of proteins showed high correlations 
with translation (R > 0.5, high), 24% of proteins showed modest correlations (R = 0.2–0.5, 
medium), and the rest 51% of proteins were lowly correlated (R < 0.2, low) (Fig.  6A, 
“All”). A similar trend was observed for the correlation of protein-mRNA (Additional 
file 1: Fig. S7A, “All”). As expected, “constitutive proteins” displayed the lowest correla-
tion. This can be attributed to the fact that the RPFs and mRNAs for a significant pro-
portion of them were downregulated from MII oocytes to early embryos (Fig. 3A, RPF 
for constitutive proteins), while new proteins were continuously produced, albeit at a 
growingly slower speed. As a result, the correlation between RPF/mRNA and protein 
even became negative (Additional file 1: Fig. S7B-C,  2nd and  3rd subgroups). By contrast, 
proteins of maternal, OET up- and down-regulated, and embryonic groups showed bet-
ter correlations with translation and transcription (Fig.  6A and Additional file  1: Fig. 
S7A), consistent with the notion that developmental genes are under rapid control while 
housekeeping genes are subjected to protein "buffering" to transcript fluctuations [36] 
(see Fig. 3B for examples).

Notably, constitutive proteins are both abundant in FGOs and are stably present 
throughout development (Fig.  3A), partially explaining the low protein-RPF correla-
tion. Indeed, genes showing the highest protein levels in FGOs had the lowest protein-
RPF correlations (Fig. 6B and Additional file 1: Fig. S7D). Two possible reasons for the 
remarkable stability of “constitutive proteins” could be envisioned. 1) These proteins 
were accumulated in large quantities during oocyte growth. As a result, de novo pro-
tein synthesis after meiotic resumption only contributed to a small portion of the total 
protein and hence did not substantially affect its total levels. 2) These proteins may be 
resistant to degradation. Currently, no protein half-life datasets are available in mouse 
oocytes and early embryos. Given protein half-lives are highly conserved among cell 
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types [37–39], we utilized two protein half-life datasets from mouse embryonic neurons 
[37] and mouse embryonic fibroblast cell line NIH3T3 [36]. Indeed, constitutive proteins 
showed the longest half-lives among all classes (Fig. 6C). Globally, proteins showing high 
or medium correlation with RPF had shorter half-lives, while those with low correla-
tion had longer half-lives (Fig. 6D and Additional file 1: Fig. S7E). It was reported that 
proteins with intrinsically disordered regions (IDRs) had shorter half-lives than those 
without IDRs [40]. Indeed, we found proteins with high protein-RPF or protein-mRNA 
correlations are more likely to contain IDRs than those with low correlations (Addi-
tional file 1: Fig. S7F). Taken together, the high abundance and long half-life of protein 
likely  contribute to the discordance between protein and translation or transcription 
during mouse oocyte maturation and early embryo development.

Protein dynamics could be predicted by translation and the initial stock protein abundance

Given the discordance of protein and RNA/RPF, we next asked if we could predict pro-
tein dynamics given the translation profile and the initial protein abundance in FGO. 
Based on a mass-action kinetics model for the protein dynamics prediction [6, 41], 
the expected protein abundance at a specific time was determined by the initial pro-
tein abundance in FGO ( P0 ), the newly synthesized protein level, and also the degraded 
protein level over time (Fig. 7A, “ P0 + RPF model”). The newly synthesized protein was 
calculated by RPF level times a protein-specific constant α. To simplify the model, we 
assumed the degradation rate kd for each protein to be invariant across development. For 
each protein, the parameters α and kd could be inferred by minimizing the average dif-
ference between the observed and predicted proteins across all time points (Methods). 
The results showed the P0 + RPF kinetic model could well predict the protein dynam-
ics throughout development (Fig. 7B), as exemplified by genes Rps21 and Btg4 (Fig. 7C). 
Notably, the P0 + RPF model, but not the RPF-only model which did not consider the 
initial protein abundance, could well predict the dynamics for constitutive proteins, 
especially at stages when the translation was repressed (Fig. 7B, red boxes), supporting 
the buffering effects of existing proteins against translation and transcription perturba-
tion. The median correlation between predicted and measured protein abundance was 
0.62 for the P0 + RPF model, a striking improvement over the RPF only model (R = 0.23) 
or the simple protein-RPF correlation (median R = 0.18) (Fig.  7D). These results sug-
gest that our simple kinetic model with the initial protein abundance and RPF is able to 
explain a large portion of the observed mRNA-protein discordance during mouse OET.

Discussion
Using a highly sensitive and quantitative LC–MS/MS approach, we systematically deter-
mined the proteome of mouse oocytes and early embryos and investigated its rela-
tionship with the corresponding translatome and transcriptome. Our results revealed 
distinct reprogramming of gene expression during oocyte maturation and embryo devel-
opment at three levels. The largest transitions of both transcriptome and translatome 
occurred at the 2C stage (Fig.  2C), while the greatest global proteome change took 
place later, between the 8C and the blastocyst stage (Fig. 2C). Moreover, the proteome 
showed much fewer dynamically regulated genes (52.2%) than the translatome (83.5%) 
and the transcriptome (80.8%) during OET (Fig. 2D and Fig. 7E). One major reason for 
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Fig. 7 Protein dynamics could be predicted by RPF dynamics plus the initial protein abundance. A 
The kinetic models used for protein dynamics prediction. In the RPF-only model, protein abundance is 
determined by protein synthesis and degradation. In the P0 + RPF model, the initial protein level  (P0) is 
additionally considered. α, constant from translation to protein; kd , degradation rate; RPFt : translation level at 
time t; Pt : protein abundance at time t. B Heat maps showing the observed protein and RPF levels with the 
corresponding predicted protein dynamics using RPF-only and P0 + RPF models mapped. Red boxes indicate 
stages that show differential signals between observed protein and RPF. C Dot-line plots showing the 
protein levels predicted by the P0 + RPF model (line) and observed from LC–MS/MS (dot) for representative 
genes (right). RPF level at each stage is also shown (left). D Histogram showing the Spearman correlation 
coefficients between observed protein abundance and RPF level (blue) or predicted protein levels by 
RPF-only (green) and P0+RPF models (red). E Summary model of the protein and RPF dynamics in mouse 
oocytes and early embryos



Page 16 of 25Zhang et al. Genome Biology          (2023) 24:166 

the discrepancy between proteome and transcriptome/translatome is the dominance of 
FGO-stockpiled proteins in the proteomes of early embryos. Remarkably, among 103 
strictly defined FGO-originated proteins (with minimal translation after fertilization), 
58.3% could still be detected in blastocyst (Fig. 4C). These data underscore the impor-
tance of directly determining protein levels rather than relying on RNA or translation 
levels when studying oocytes and early embryos. Using a kinetic model, we showed that 
protein levels during mouse OET could be partially predicted with the initial protein 
abundance and translation profiles. Of note, the presence of stable oocyte proteins in 
OET appears to be an evolutionarily conserved feature as it was also observed in Xeno-
pus [6].

One interesting question is why proteins in oocytes and early embryos are so stable. 
One possible reason is protein production is expensive for cells. The amino acid syn-
thesis and polypeptide assembly could consume 50% of ATPs in rapidly growing yeast 
cells [42]. Therefore, stabilizing proteins may be especially efficient and energy conserv-
ing considering oocytes are often arrested at the diplotene stage even for years. It was 
reported that certain proteins are synthesized only once during the oocyte growth and 
execute important functions in the embryo [43, 44], underscoring the need for stability 
of these proteins. For example, CENP-A at mouse oocyte centromeres has been shown 
to persist over a year, which underpins the transgenerational inheritance of centromere 
identity through the female germline [43]. In addition, considering the sheer sizes of 
oocytes and embryos relative to somatic cells, the long-lasting oocyte-stockpiled pro-
teins may be especially beneficial for embryos to save precious transcription resources 
for embryo-specific transcripts [45].

By contrast, the translatome and transcriptome experienced significant changes dur-
ing oocyte maturation and early development. Another intriguing question is whether 
all such dynamic transcription and translation are functional given some of them do not 
appear to profoundly impact the proteome. This is particularly relevant to a group of 
genes that are translated in FGOs but stop translation upon meiotic resumption. Such 
dynamic translation contrasts the remarkably stable protein levels (Fig. 3A and 7E, pro-
tein constitutive-RPF OET downregulated). We speculate that the downregulation of 
translation and mRNAs may partially arise from the global deadenylation upon meiotic 
resumption [12, 46–48] as part of the cellular efforts to conserve resources especially 
when transcription is silent. In addition, the metabolism of nucleotides was reported to 
be increased during oocyte maturation [49]. The resulting nucleotide metabolites, such  
as purine and pyrimidine, may provide materials for later DNA and RNA synthesis  
during ZGA.

Our data revealed the protein variance in mouse oocytes and early embryos could be 
partially (43 ~ 80%) explained by translation and transcription changes (Fig. 5B). How-
ever, about 20 ~ 57% could not be explained by transcription and translation regula-
tion (Fig. 5B). Similarly, it was reported only ~ 40% of differences in protein levels were 
attributed to variation in mRNA expression in mouse NIH3T3 cells [36]. Of note, pro-
tein levels can be regulated at the post-translational levels [50, 51]. How it plays a role 
in OET remains to be investigated in the future. Finally, it is worth noting that due to 
the limitation of detection sensitivity of LC–MS/MS, lowly expressed proteins were not 
analyzed here. New low-input proteomic technologies with improved sensitivity will be 
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instrumental to study low-abundance proteins, such as transcription factors, to further 
elucidate the regulation of OET.

Conclusions
In this study, through integrative analyses of datasets generated by ultrasensitive mass 
spectrometry, we reveal distinct dynamics of the proteome compared to the translatome 
and the transcriptome during mouse OET. Specifically, for an extended period of oocyte 
maturation and early embryonic development, the proteomes are dominated by FGO-
stockpiled proteins, while the transcriptome and translatome exhibit dynamic changes. 
Therefore, transcription and translation cannot simply be used to infer the protein lev-
els during OET when post-transcriptional regulation is prevalent. We propose that the 
remarkably stable oocyte-originated proteomes may help conserve resources to accom-
modate the demanding needs of fast-growing embryos. These results not only illuminate 
the regulation of mammalian OET at different levels but also shed light on the funda-
mental principles controlling gene expression.

Methods
Animal maintenance

All animal maintenance and experimental procedures used in this study were carried 
out according to the guidelines of the Institutional Animal Care and Use Committee 
(IACUC) of Tsinghua University, Beijing, China. C57BL/6  J and PWK/PhJ mice were 
purchased from Vital River and Jackson Laboratory respectively and raised in a local 
core facility.

Oocyte and early embryo collection

Pre-implantation embryos were collected from 4-week-old C57BL/6J female mice mated 
with PWK/PhJ males. To induce ovulation, the female mice were intraperitoneally 
injected with pregnant mare’s serum gonadotropin (PMSG, 5 IU) and human chorionic 
gonadotrophin (hCG, 5 IU). Fully grown oocytes (FGOs) (> 70 μm) were collected from 
the ovaries of C57BL/6J female mice 48  h after PMSG injection. MII oocytes or pre-
implantation embryos were collected at the following time points after hCG stimula-
tion: MII oocytes (14–16 h), 1-cell embryos (27–29 h, PN5), 2-cell embryos (46–48 h, 
late 2-cell stage), 4-cell embryos (54–56 h), 8-cell embryos (62–65 h). For blastocysts, 
embryos were collected at the 8-cell stage and cultured to blastocysts in vitro in KSOM 
medium (Millipore, MR-121-D). Oocytes and embryos were collected in the M2 
medium (Sigma, M7167). The zona pellucida was gently removed by treatment with 
acidic Tyrode’s solution (Sigma, T1788).

Cycloheximide (CHX) treatment of mouse MII oocytes

To validate the quantification capability of LC–MS/MS, MII oocytes were collected 
and cultured in M2 medium containing either 0.1% DMSO or 100 μg/ml CHX (Sigma, 
C4859) for 24 h or 48 h.
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Sample preparation for LC–MS/MS

For the proteome quantification, 100 oocytes or embryos of each developmental stage 
were harvested with two replicates. In addition, 10, 100, 200, and 500 FGOs were col-
lected for the LC–MS/MS quantification ability validation. The oocytes or embryos 
were deprived of the zona pellucida in warm acidic Tyrode solution and washed with 
1X PBS three times. Oocytes/embryos were then resuspended in lysis buffer (1% 
sodium deoxycholate, 10  mM TCEP, and 40  mM 2-chloroacetamide in 20  mM Tris–
HCl, pH 8.5), boiled for 5  min, and sonicated to denature proteins, shear DNA and 
enhance cell disruption. Proteins were digested by trypsin and LysC with a ratio of 1:100 
(enzyme:protein) and desalted by SDB-RPS StageTips. The eluted peptides were dried in 
SpeedVac and resuspended in 0.1% formic acid for analysis by mass spectrometry.

LC–MS/MS analysis

An UltiMateTM 3000 RSLCnano system, directly interfaced with a Q Exactive HF-X 
mass spectrometer was used here for LC–MS/MS analysis. Peptides were loaded to a 
trap column (75 µm × 20 mm, 3 µm C18,100 Å, 164,535, Thermo Fisher Scientific) with a 
max pressure of 620 bar using mobile phase A (0.1% formic acid in H2O), then separated 
on an analytical column (samples of FGOs to 8-cell embryos used 75  µm × 500  mm, 
3 µm C18,100 Å, 164,570, Thermo Fisher Scientific; samples of blastocysts used 100 μm 
inner diameter, packed in house with ReproSil-Pur C18-AQ 1.9  μm resin from Dr. 
Maisch GmbH) with a gradient of 4–60% mobile phase B (80% acetonitrile and 0.08% 
formic acid) at a flow rate of 250 nl/min for 280 min. The MS analysis was operated in 
data-dependent acquisition (DDA) mode, with one full scan (300–1800 m/z, R = 60,000 
at 200 m/z) at automatic gain control (AGC) of 3e6, followed by top 40 MS/MS scans 
with high energy collision dissociation (AGC of 1e5, maximum injection time (IT) 
100 ms, isolation window 1.6 m/z, normalized collision energy of 27%).

Processing of raw LC–MS/MS data

Raw LC–MS/MS data of the proteome were processed by MaxQuant [52] software (v 
1.6.2.10) for protein identification searching against the mouse UniProtKB database 
(September 2019 release). The search criteria were as follows: full tryptic specificity was 
required; two missed cleavages were allowed; carbamidomethylation (C) was set as the 
fixed modifications; oxidation (M) and acetylation (protein N terminal) were set as the 
variable modifications; ion mass tolerances were set at 10 ppm for all MS acquired in an 
Orbitrap mass analyzer. The false discovery rate was set to 0.01 for proteins and pep-
tides and determined by searching a reverse database. Protein abundance was quantified 
using iBAQ intensity and log (base 2) transformed.

LC–MS/MS protein intensity pre‑processing

The LC–MS/MS data in this study were performed in three batches (see below table).

Batch Sample

1 FGO_rep1, MII_rep1, 1C_rep1, 2C_rep1, 4C_rep1, 8C_rep1

2 FGO_rep2, MII_rep2, 1C_rep2, 2C_rep2, 4C_rep2, 8C_rep2

3 FGO_rep3, FGO_rep4, BL_rep1, BL_rep2
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100 FGOs (1–2 replicates) were included in every batch to correct batch effects. Spe-
cifically, batch 1 was selected as the reference. FGO proteins detected in all three batches 
were used, and the differences of median intensities (across all proteins) in FGOs 
between batch 2/3 and batch 1 were computed as the batch correction factor. The inten-
sities of proteins for all samples in the same batch were then corrected by subtracting the 
corresponding batch correction factor.

Next, as there are four replicates of FGOs, we averaged two replicates from batch 
1 and batch 2 as the new replicate 1 and averaged the two replicates in batch 3 as the 
new replicate 2. FGO proteins that were only detected in one replicate were excluded. 
27 genes that were not detected at any stages in the translatome or the transcriptome 
data were also discarded, leading to 4,108 genes for the downstream analysis. Wherever 
appropriate, average intensities were calculated using replicates in which the proteins 
were detected.

RNA‑seq and Ribo‑lite library preparation and sequencing

For blastocysts, RNA-seq libraries were generated using the Smart-seq2 protocol as 
described previously [53]. Ribo-lite libraries were generated using the protocol described 
previously [12]. The RNA-seq and Ribo-seq data of all other stages were generated in 
our previous work [12].

RNA‑seq data processing

Raw reads were trimmed by Trim Galore v0.4.2 and then mapped to the transcriptome 
of mm9 by STAR v2.5.3a [54] with parameters –outFilterMultimapNmax 20 –outSAM-
strandField intronMotif. The gene expression level was calculated by Cufflinks v2.2.1 
[55] based on the annotation of mm9 from the UCSC genome browser. The average 
FPKM from two replicates was calculated.

Ribo‑seq data processing

Raw reads were trimmed by cutadapt v1.14 and then mapped to mouse rRNA sequences 
(mm9) using Bowtie2 v2.2.2 [56] with parameters –seed = 23. Those aligned to rRNA 
were discarded, and the rest reads were mapped to the transcriptome of mm9 using 
STAR v2.5.3a [54] with parameters –outFilterMismatchNmax 2 –outFilterMultimapN-
max 20 –outFilterMatchNmin 16 –alignEndsType EndToEnd. The gene expression lev-
els were then calculated by Cufflinks v2.2.1 [55] based on the annotation of the CDS 
regions, defined by the mm9 refFlat database from the UCSC genome browser. We next 
calculated the average FPKM for replicates.

Clustering analysis

The K-means clustering of LC–MS/MS signal was conducted using Cluster 3.0 [57] with 
the parameters -g 7 (Euclidean distance) -k 10 -r 100. The embryonic proteins detectable 
at different stages after ZGA were merged into one cluster. Heat maps were generated 
using Java Treeview.
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Identification of dynamically and stably expressed genes for the proteome, translatome, 

and transcriptome

To estimate the global dynamic extents for proteome, translatome, and transcriptome 
during OET, the coefficient of variance (CV) analysis was applied to estimate the overall 
variance of each gene across developmental stages. For mRNAs and RPFs, genes that 
expressed (FPKM >  = 1) at one or more stages were selected. Genes with CV > 0.2 of 
log2 transformed intensity of protein, RPF, or mRNA were considered as dynamically 
expressed across stages. The rest genes were regarded as stably expressed.

Analyses of parent‑of‑origin dynamics of proteins

The single nucleotide polymorphisms (SNPs) between the C57BL/6N and PWK/PhJ 
mouse strains were downloaded from Sanger database (https:// www. mouse genom es. 
org/ snps- indels/) and annotated using ANNOVAR [58] based on the mm9 genome 
assembly. A customized protein allele database was constructed using ANNOVAR 
with the parameters “annotate_variation.pl -buildver mm9 -geneanno –seq_pad-
ding 30 -dbtype knowngene”. The mouse UniProt protein sequences were updated by 
replacing the specific amino acids of nonsynonymous variants. For each nonsynony-
mous variant, peptides of 61 amino acids were generated, comprising 30 amino acids 
upstream and downstream of the variant residue. Subsequently, the LC–MS/MS data 
were searched against this allele peptide database using MaxQuant [52], with a false 
discovery rate of 0.01 for peptide detection.

The intensity of allele peptides from different batches was processed in the same 
manner as protein intensity to eliminate batch effects. The intensities of different 
allele peptides from the same proteins were averaged. To detect proteins exhibit-
ing allele-specific expression (ASE), a t-test was performed between alleles with a 
P-value < 0.05 and a |fold change| greater than 2. The proteins exhibiting ASE at any 
stage of early embryos were identified.

Analyses of parent‑of‑origin dynamics of RNAs

The paired-end reads of RNA-seq were first aligned to a modified mm9 genome where 
all polymorphic sites were N-masked, using hisat2 [59]. After that, the polymorphic 
sites were identified on the aligned reads. Reads that did not contain SNP informa-
tion or contained conflicting allelic polymorphic sites were classified as unassigned. 
Read pairs in which both reads were assigned to the same parental allele or one read 
was assigned to one parental allele and the other was unassigned were classified as 
allelic reads for downstream analysis. The abundance of RNA alleles was quantified by 
StringTie [60] using the refFlat database from the UCSC genome browser.

DEP and DEG analyses

The differentially expressed proteins (DEPs) between two consecutive stages based on 
LC–MS/MS and differentially expressed genes (DEGs) based on RNA-seq and Ribo-
seq were identified by twofold change and Student’s t-test P-value < 0.05. The DEPs 
for CHX treatment of MII oocytes were defined by a fourfold change.

https://www.mousegenomes.org/snps-indels/
https://www.mousegenomes.org/snps-indels/
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Prediction of intrinsically disordered regions (IDRs)

All validated open reading frames (ORFs) in the mouse genome were downloaded 
from UniProtKB/SwissProt (September, 2019 release). The intrinsic disorder regions 
were predicted for all protein sequences using the web tool IUPred2A based on the 
energy estimation [61]. We analyzed the lengths and locations of disordered segments 
in the protein sequences with an in-house script. Residues with a prediction score 
above 0.5 were considered as disordered and only regions that contained more than 
30 continuous disordered residues were set as IDRs. This length cut-off for IDR was 
selected based on previous studies [62, 63] showing that there is a minimum length 
of about 30 residues that allows a disordered protein terminus to efficiently initiate 
degradation [64].

Quantification and statistical analysis

The reproducibility between replicates and correlations among protein and RPF or 
mRNA were estimated with Spearman rank correlation. All box and violin plots were 
plotted using R and Python. Statistical significance for the enrichment of dormant RNA 
in CHX repressed proteins was assessed with Fisher’s Exact test. The significance of the 
association between protein-RPF/mRNA correlation and protein FGO abundance, pro-
tein half-life time, and IDR was estimated with Wilcoxon rank-sum test (two-tailed).

Gene ontology analysis

The Metascape web tool [65] was used to identify the enriched Gene Ontology terms. 
The terms for each functional cluster were summarized to a representative term and 
P-values were plotted to show the significance.

Prediction of protein dynamics

Following a previous study [6], we built a kinetic model to predict protein dynamics 
across developmental stages based on the law of mass action. In brief, assuming the spa-
tially and temporally constant rates of synthesis and degradation, the expected change in 
protein level over time is given by

where p(t) is the abundance of proteins at time t, r(t) is the abundance of translating 
mRNAs (i.e., RPF), α is the transition rate from mRNA translation to protein, and kd is 
the degradation rate of protein. For each protein, the parameters α and kd can be inferred 
by giving the measurements of r(t) and p(t) and the initial protein abundance p0 . Math-
ematically, we aimed to minimize the difference between the observed protein level pi 
at time ti and the predicted protein level p(ti|p0,α, kd) on average over all observed time 
points i, which can be formulated as

dp(t)
dt

= αr(t)− kdp(t),

min
{α,kp}≥0

∑
i

(
p(ti|p0,α, kd)− p̂i

)2
.
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We determined the parameters α and kd in the above optimization problem by the 
function fmincon in MATLAB using the respective RPF and protein abundance data and 
initial protein abundance p0 , which was termed as P0 + RPF model. To assess the effects 
of p0 on protein prediction, we set p0 as 0 when solving the above optimization problem, 
which was termed as RPF only model. Of note, because RPF data were only measured at 
specific time points, we thus utilized the piecewise interpolation to approach r(t) . The 
abundance of RPF at any time t  (Ih(t)) is given by

where n is the number of time points with RPF data.
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