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Abstract 

Multimodal measurements of single-cell sequencing technologies facilitate a compre-
hensive understanding of specific cellular and molecular mechanisms. However, simul-
taneous profiling of multiple modalities of single cells is challenging, and data inte-
gration remains elusive due to missing modalities and cell–cell correspondences. To 
address this, we developed a computational approach, Cross-Modality Optimal Trans-
port (CMOT), which aligns cells within available multi-modal data (source) onto a com-
mon latent space and infers missing modalities for cells from another modality (target) 
of mapped source cells. CMOT outperforms existing methods in various applications 
from developing brain, cancers to immunology, and provides biological interpretations 
improving cell-type or cancer classifications.

Keywords: Optimal transport, Multimodal data alignment, Cross-modal inference, 
Single-cell multi-modality, Probabilistic coupling, Weighted nearest neighbor

Background
Single-cell sequencing technologies can measure different characteristics of single cells 
across multi-omics such as genomics, transcriptomics, epigenomics, and proteomics. 
Such high-resolution measurements have enabled exploring individual cells to reveal 
cellular and molecular mechanisms and study cell-to-cell functional variations. For 
example, sci-CAR, 10xMultiome, and scCAT-seq measure single-cell gene expression 
and chromatin accessibility [1–3], and CITE-seq measures gene and protein expression 
of single cells [4, 5]. However, simultaneous profiling of such multi-omics and additional 
modalities continues to be a challenging task especially because of high sequencing 
costs, low recovery of individual cells, and sparse and noisy data [6]. Owing to these 
challenges, single-cell multimodal data generation may not always be feasible. This leads 
to the question of how we can use available multi-modalities to infer missing modalities.

Several prior works have tackled modality inference. Seurat [7, 8], infers the missing 
modality of a cell by weighting nearest neighboring cells with multimodalities available. 
MOFA + [9] uses Bayesian factor analysis to identify a lower dimensional representation 
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of the data to infer the missing modality. However, they only work with multimodal data 
that must come from the same cells (i.e., fully corresponding). Alignment-based methods 
like non-linear manifold alignment [10] have been shown to align multimodalities with 
partial cell-to-cell correspondence information but have not been extended to cross-
modality inference. Machine learning has also emerged to help modality inference. For 
instance, TotalVI [5] builds a variational autoencoder that infers missing protein profiles 
from gene expression using CITE-seq data. Polarbear [11] also uses autoencoders; how-
ever, trains on both single and multi-modal data to infer each modality. However, such 
autoencoder-based approaches are unsupervised that learn the latent embeddings that 
likely lack biological interpretability and lack a mechanism to introduce prior knowl-
edge about underlying data distribution [12]. Moreover, training autoencoders typically 
requires considerable amounts of data and time with intensive hyperparameter tuning.

Optimal Transport (OT) is an efficient approach that uses prior knowledge about data 
distribution to find an optimal mapping between the distributions [13]. OT can also 
work on small datasets with limited parameters. Recently, OT has been applied to single-
cell multiomics data for various applications [14–17]. Schiebinger et al. [14] used OT to 
model the developmental trajectory of single-cell gene expression through unbalanced 
optimal transport. Single-cell integrative analysis frameworks like SCOT [15], SCOTv2 
[16], and Pamona [17] further extended the original OT problem for multi-omics data 
alignment. Another work [18] used OT with an additional entropic regularization term 
to improve the unsupervised clustering of single-cell data to understand cell types and 
cellular states better. However, OT has not yet been applied for cross-modality infer-
ence. Thus, we propose that integrating OT with multimodal data alignment can work 
for cross-modality inference and address the above limitations of prior works.

Particularly, we developed CMOT (Cross-Modality Optimal Transport), a computa-
tional approach to infer missing modalities of single cells. CMOT first aligns the cells 
with multimodal data (source) if the cells do not have complete correspondence, and 
then applies OT to map the cells from single modality (target) to the source cells via 
shared modality. Finally, CMOT uses the k-Nearest-Neighbors (kNN) of source cells to 
infer missing modality for target cells. Moreover, CMOT does not need paired multi-
modal data for alignment. We found that not only does CMOT outperform existing 
state-of-art methods, but its inferred gene expression is biologically interpretable by 
evaluating on emerging single-cell multi-omics datasets. Finally, CMOT is open source 
at: https:// github. com/ daife ngwan glab/ CMOT.

Results
Overview of Cross‑Modality Optimal Transport

CMOT (Cross-Modality Optimal Transport) is a computational approach for cross-
modality inference of single cells (Fig. 1). CMOT accepts available multimodal and single 
modality datasets as inputs. CMOT does not require that the available multimodalities 
have complete corresponding information, i.e., allowing a fraction of unmatched cells in 
the source.

CMOT first aligns a group of cells X and Y  (source) within available multi-modal 
data onto a common latent space (Step A), if the cells across multimodalities do not 
have complete correspondence. However, this is an optional step if the cells across 

https://github.com/daifengwanglab/CMOT
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multimodalities have complete correspondence. In this study, we used Non-linear 
Manifold Alignment (NMA) [19] to align the unmatched multimodalities. Next, 
CMOT applies optimal transport to map the cells with a single modality Ŷ  (target) 
to cells in the source from the same modality Y  by minimizing their cost of trans-
portation using Wasserstein distance (Step B). This distance can be regularized by 
prior knowledge (e.g., cell types) or induced cell clusters to improve mapping, and 
an entropy of transport to speed up OT computations. The optimal transport opti-
mization tries to find an efficient mapping π∗ between cells of Y  and Ŷ  that is used 
to transport cells in Y  to the same space as cells in Y  . Once transported, CMOT uses 
k-Nearest-Neighbors to infer the missing modality X̂  for the cells in target Ŷ  (Step C). 
Here, the missing or additional modality X̂  inferred by CMOT has the same number 
of features as X , and in the same space as X . Details about each step can be found in 
the “Methods” section.

We benchmarked CMOT with state-of-art methods [5, 7,-9, 11, 20, 21] on large-scale 
single-cell multi-omics (e.g., scRNA-seq and scATAC-seq (Additional File 1: Fig. S1A, 
Fig. S2A, Fig. S3A, Fig. S4A)). Also, we applied CMOT to additional omics datasets like 
protein expression. These datasets span across broad contexts including human and 
mouse brains, cancers and immunology, showing the generalizability of CMOT.

Fig. 1 Cross-Modality Optimal Transport (CMOT): CMOT is a computational approach to infer missing 
modalities for existing single-cell modalities. It has three main steps: A Alignment (optional), B Optimal 
Transport, and (C) k-Nearest Neighbors inference. CMOT inputs two multi-modalities X  and Y (source), where 
the cells in X  and Y need not be completely corresponding. The cell-to-cell correspondence information 
between X  and Y can be specified through p . CMOT aligns X  and Y using non-linear manifold alignment 
(NMA) onto a common low-dimensional latent space if cells in X , Y do not have complete correspondence. 
Then, CMOT uses optimal transport (OT) to map the cells in source Y to the cells in target Ŷ  , where Y and Ŷ  
share modalities. CMOT minimizes the cost of transportation by finding the Wasserstein distance between 
cells in Y and Ŷ  which is further regularized by prior knowledge or induced cell clusters and entropy of 
transport. Finally, CMOT infers the missing modality X̂  for cells in Ŷ  using k-Nearest Neighbors (kNN). It 
calculates a weighted average of the k-nearest mapped cells in Y for every cell in Ŷ  , using their values from X  , 
and infers X̂
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Single‑cell gene expression inference from chromatin accessibility in human and mouse 

brain

Human brain

We first applied CMOT to single-cell human brain data with jointly profiled chromatin 
accessibility and gene expression by 10xMultiome (scATAC-seq and scRNA-seq of 8981 
cells) and inferred gene expression of cells from open chromatin regions (OCRs by peaks 
from scATAC-seq) [1]. We selected the top 1000 most variable genes & peaks (Addi-
tional File 1: Supplementary Methods). We randomly split the cells into 80% training for 
cross-validation and 20% testing set for evaluation. We split the training set into training 
and validation to find optimal parameters for the model using 5-fold cross-validation. 
For the alignment, we set K = 5, and latent dimension d = 20. For optimal transport, 
we set parameters λ = 200 and η = 1. For kNN modality inference, we set k = 600. Also, 
we used 10 major brain cell types from the dataset. However, to test CMOT’s perfor-
mance when such cell-type information is absent, we induced cell labels by two major 
cell clusters. We also tested CMOT’s performance for different levels of correspondence: 
p = 25%, 50%, 75%, 100%.

CMOT achieves a strong performance for gene expression inference on the testing 
data, outperforming state-of-the-art methods like Seurat and MOFA + (Fig. 2A, B). For 
instance, CMOT reports a mean cell-wise Pearson correlation r = 0.66 for p = 100%, 
significantly higher than both MOFA + (median r = 0.43, Wilcoxon rank-sum test 
p-value = 0) and Seurat (median r = 0.62, Wilcoxon p-value < 1.23e − 14). Even for par-
tial correspondences, CMOT has significantly higher performances (median r = 0.65 

Fig. 2 Single-cell gene expression inference from chromatin accessibility in developing human brain. A 
Cell-wise Pearson correlation (y-axis) of inferred and measured gene expression by different methods (x-axis): 
CMOT (p = 25%, 50%, 75%, 100%), Seurat, MOFA + (Additional File 1: Table S1-S4). See Additional File 1: Fig. 
S1 A and Additional File 1: Supplementary Methods for additional benchmarking. B Gene-wise correlation 
between the inferred and measured gene expression, comparing CMOT (y-axis) with MOFA + and Seurat 
(x-axis). Dots: Genes; Numbers: numbers of genes with improved inference by comparing methods. P-values 
are from one-sided Wilcoxon rank-sum tests. C Gene-wise AUPRC of cell type marker gene for classifying 
the cell type. Dashline: baseline = 0.1 (see the “Methods” section). D The measured (x-axis) versus inferred 
normalized expression (y-axis) of genes (dots) for one cell across four cell types: nIPC/GluN1(first), E.C./Peric. 
(second), IN (third), R.G. (last). E Heatmap showing different enriched terms ranked by -log10(adj. p-value of 
enrichment) values for the top 100 highly predictive genes within each cell type (see the “Methods” section). r 
is the Pearson correlation coefficient. p is the correlation p-value
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for p = 75%, and r = 0.63 for p = 50%) than MOFA + (Wilcoxon p-value < 2.8e − 294) 
and Seurat (Wilcoxon p-value < 3.43e − 10). Also, with low correspondence such as 
p = 25%, CMOT’s performance is still significantly higher than MOFA + (Wilcoxon 
p-value < 1.65e − 157). For gene-wise correlation (Fig. 2B), CMOT p = 100% and p = 75%, 
both outperform MOFA + for 836 versus 118 genes (Wilcoxon p-value < 5.38e − 118) 
and 827 versus 140 genes (Wilcoxon p-value < 1.78e − 165), respectively (Fig.  2B). 
Also, CMOT p = 100% outperforms Seurat for 494 versus 460 genes (Wilcoxon 
p-value < 2.42e − 2). For CMOT p = 75%, Seurat slightly performs better for 497 genes 
versus 471 for CMOT (Wilcoxon p-value < 3.01e − 1).

Next, we evaluated if the CMOT inferred gene expression to classify brain cell types. 
We used known cell-type marker genes provided along with the dataset and selected the 
top 8 highly predictive cells from each cell type within our inferred gene expression (see 
Additional File 2). Due to high imbalance of the number of cells within each cell type, we 
picked the number of cells based on the size of the smallest cell type. In this case, the cell 
type EC/Peric. had only 8 cells; therefore, we picked only 8 cells from the other cell types. 
We then calculated the AUPRC of the respective inferred genes in a one-vs-all manner 
for each cell type against the rest (“Methods”). CMOT obtains the higher AUPRCs for 
these genes against a baseline of 0.1 (Fig. 2C) for all cell types. The baseline is defined as 
the proportion of positives in the data. This suggests that the CMOT inferred expression 
is capable to distinguish cell types, providing the biological interpretability of the CMOT 
inference. Looking at individual cells (Fig. 2D), CMOT infers individual cell expression 
with high Pearson correlation and significance (p < 0.05). Furthermore, we also found the 
enriched functions and pathways relating to brain development from the top 100 highly 
predictive genes (Fig. 2E). For results of benchmarking on additional state-of-art meth-
ods, see Additional File 1: Fig. S1, Tables S1-S4, and Supplemental Methods.

Furthermore, we benchmarked CMOT with the state-of-art methods on a SNARE-seq 
dataset [22] consisting of jointly profiled gene expression and chromatin peaks in adult 
mouse brain (see Additional File 1: Fig. S2, Fig. S3, Tables S5-S8, S9-S10, and Supple-
mental Methods).

Inferring protein expression from gene expression in peripheral blood mononuclear cells

We applied CMOT to infer protein expression from gene expression of peripheral blood 
mononuclear cells (PBMCs) using emerging CITE-seq data [5]. We trained CMOT on 
6885 cells from PBMC10k, with parameters: K = 5, d = 15, λ = 1e02, η = 1, k = 100, and 
used the top 200 highly variable genes in the training data to find the k nearest neigh-
bors. We induced cell labels by identifying two clusters using gene expression for the 
label regularization in optimal transport. We evaluated CMOT, MOFA + , Seurat, and 
TotalVI’s using 3994 cells from a different dataset, PBMC5k. Here we show an independ-
ent evaluation of CMOT and other methods on PBMC5k while using PBMC10k as the 
training data (Additional File 1: Tables S11-S13). Additionally, we also show benchmark-
ing on PBMC10k, by splitting it into 80% training and 20% testing data (see Additional 
File 1: Fig. S7, Supplementary Methods, and Tables S14-S16).

As shown in Fig. 3A, CMOT achieves a median cell-wise Pearson correlation = 0.86 for 
p = 100%, significantly outperforming MOFA + (r = 0.79, Wilcoxon p-value < 6.9e − 57) 
and TotalVI (default parameters) (r = 0.61, Wilcoxon p-value 0) as well as comparable 
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with Seurat. For instance, we show two cells and their Pearson correlation of inferred 
versus measured protein expressions (r = 0.99, p = 1.4e − 11 and r = 0.98, p = 6.1e − 11) 
in Fig. 3B. Moreover, even for partial correspondences, p = 25%, 50%, 75%, CMOT per-
forms consistently with significantly higher cell-wise correlation than MOFA + (Wil-
coxon p-values 0,0,0) and TotalVI (Wilcoxon p-values < 8.36e − 58, 1.73e − 45, 
5.25e − 12). Also, for inferring individual protein expression, CMOT has high correla-
tions for all proteins, consistent with state-of-art methods (Fig. 3C), with some exam-
ples shown in Fig. 3D. Rest of the proteins along their inference statistics are reported in 
Additional File 1: Fig. S5 and Additional File 1: Tables S11-S13.

Inference of gene expression using chromatin accessibility for drug‑treated lung cancer 

cells

Next, we applied CMOT to 100nM dexamethasone (DEX)-treated A549 single-cells 
from lung adenocarcinoma. The DEX-treated 2641 cells were profiled after 0, 1, and 3 h 
of treatment for gene expression and open chromatin regions (OCRs) using sci-CAR 
experiments [2]. We focus on the CMOT’s performance for gene expression inference 
from peak signals of OCRs. We stratified-split the dataset into 80% training and 20% test 

Fig. 3 Inferring protein expression from gene expression in single-cell peripheral blood mononuclear cells. 
A Cell-wise Pearson correlation (y-axis) of inferred and measured protein expression by different methods 
(x-axis): CMOT (p = 25%, 50%, 75%, 100%), Seurat, MOFA + , TotalVI (Additional File 1: Tables S11-S12). B The 
measured (x-axis) versus inferred normalized expression (y-axis) of 14 proteins (dots) for two select cells. C 
Pearson correlations of inferred and measured expression (y-axis) of individual proteins (x-axis) by CMOT 
(p = 100%, 75%), Seurat, MOFA + , TotalVI (Additional File 1: Table S13). D UMAPs of inferred and measured 
expressions for three proteins: TIGIT (r = 0.45; p = 6.18e − 197) (top), CD16 (r = 0.75; p = 0) (middle), CD8a 
(r = 0.55; p = 3.11e − 312) (bottom) (Additional File 1: Table S13). The intensity represents the protein 
expression level. r is the Pearson correlation coefficient. p is the correlation p-value
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cells using the treatment hours. We used the treatment hours as the classes for label reg-
ularization in optimal transport for training cells. We trained CMOT with the param-
eters K = 5, d = 10, λ = 1e02, η = 5e − 3, and k = 500 and used the top 20 highly variable 
OCRs in scATAC-seq to find the k nearest neighbors. Again, we found that CMOT 
shows a consistent performance across different cell-to-cell correspondence information 
(p) with high correlation. CMOT (p = 100%) infers gene expression with a mean Pear-
son correlation of 0.52, similar to MOFA + and outperforming Seurat (median correla-
tion = 0.5, Wilcoxon p-value < 1.27e − 05) (Fig. 4A).

Moreover, CMOT shows a high gene-wise Pearson correlation outperform-
ing Seurat for 636 versus 547 genes (Fig.  4B, Additional File 1: Table  S21). Although 
MOFA + reports a higher gene-wise Pearson correlation for some genes than CMOT 
(Fig.  4B, Additional File 1: Table  S21), we still see that CMOT’s inferred expres-
sion shows the transitory trend of key druggable marker genes across drug-treatment 
hours. Figure 4C shows three key genes, identified as makers of early (ZSWIM6) [26] 
and late (PER1, BIRC3) [23–25] events of treatment. Also, we performed enrichment 
of the 435 high correlation genes identified by CMOT (versus MOFA + in Fig. 4B) (see 
Additional File 3 for list of genes). As shown in Fig. 4D, we saw a higher enrichment of 
terms associated with DEX-treated A549 cells like TGF-beta signaling, along with effects 
on DEX treatment in general, like Mental disorders as compared to enrichment given 
by MOFA + (Additional File 1: Fig. S6, Additional File 2). Lastly, we also found that the 

Fig. 4 Inference of gene expression for drug-treated A549 lung cancer cells using chromatin accessibility. A 
Cell-wise Pearson correlation (y-axis) of inferred and measured gene expression by different methods (x-axis): 
CMOT (p = 25%, 50%, 75%, 100%), Seurat, MOFA+ (Additional File 1: Tables S17-S20). See Additional File 1: 
Fig. S4 A and Supplementary Methods for additional benchmarking. B Gene-wise correlation between the 
inferred (y-axis) and measured (x-axis) expression, comparing CMOT with MOFA + and Seurat. Dots: Genes; 
Numbers: Gene numbers above and below the dotted line. P-values are calculated by a one-sided Wilcoxon 
rank-sum test (Additional File 1: Table S21). C CMOT inferred normalized gene expression trend (y-axis) across 
treatment hours (x-axis). Key genes: PER1 and BIRC3 [23–25] are markers for glucocorticoid receptor (GR) 
activation seen later in treatment (3 h). ZSWIM6 [26] is a key gene of early events of DEX treatment (0 h, 1 h) 
(see Additional File 2 for top 100 highly predictive genes). D Enriched terms associated with CMOT inferred 
gene expression using 435 genes with a higher gene-wise Pearson correlation compared to MOFA+ ’s 748 
genes (B, Additional File 1: Fig. S6B). E The measured (x-axis) versus inferred normalized expression (y-axis) of 
genes (dots) for three select cells. r is the Pearson correlation coefficient. p is the correlation p-value
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cell-wise correlations between inferred and measured gene expression are also signifi-
cantly highly correlated in each treatment hour (Fig. 4E). For results of benchmarking on 
additional state-of-art methods, see Additional File 1: Fig. S4, Supplemental Tables S17-
S20, and Supplemental Methods.

Cross‑modality inference between gene expression and chromatin accessibility 

to distinguish cancer types

Finally, we tested CMOT to see how well it can infer between two modalities, especially 
for relevantly small datasets. We used a pan-cancer scCAT-seq dataset which jointly 
profiled 206 single-cell gene expression and chromatin accessibility on OCRs for three 
cancer cell lines: HCT116, HeLa-S3, and K562 [3]. We stratified split data into 80% train-
ing and 20% testing sets using cancer-type information. We induced our cell labels for 
training cells for label regularization in optimal transport. For gene expression infer-
ence from OCR peaks, we identified two clusters in chromatin peaks and vice versa. We 
trained CMOT with the following parameters for gene expression inference from chro-
matin peaks: K = 5, d = 10, λ = 5e03, η = 1, k = 40, and used the top 150 highly variable 
OCRs to find the k nearest neighbors. For inferring gene expression from binarized OCR 
peaks, we evaluated the inferred expression using the same metrics (cell-wise and gene-
wise Pearson correlation) as above.

CMOT significantly outperforms both MOFA + and Seurat, with a cell-wise mean 
correlation of 0.67 compared to 0.47 (Wilcoxon p-value < 6.81e − 17) and 0.63 (Wilcoxon 
p-value < 1.32e − 05), respectively (Fig.  5A, Additional File 1: Tables S22-S25). Moreo-
ver, CMOT (p = 100%) yields an improved gene-wise correlation for 6235 genes ver-
sus 3764 against Seurat (Wilcoxon p-value < 1.59e − 31), and 8259 versus 1740 against 

Fig. 5 Cross-modality inference between gene expression and chromatin accessibility can distinguish 
cancer types. A Cell-wise Pearson correlation (y-axis) of inferred and measured gene expression by different 
methods (x-axis): CMOT (p = 25%, 50%, 75%, 100%), Seurat, MOFA + (Additional File 1: Tables S22-S25). B 
Silhouette score (x-axis) across measured and inferred gene expressions (x-axis), and measured chromatin 
peaks (Additional File 1: Table S26). C PCA of inferred gene expression. D Gene-wise correlation between the 
inferred and measured expression, comparing CMOT (y-axis) with MOFA + and Seurat (x-axis). Dots: Genes; 
Numbers: Gene numbers above and below the dotted line. E Peak-wise AUROC, comparing CMOT (y-axis) 
with MOFA + and Seurat (x-axis). Dots: Peaks; Numbers: Peak numbers above and below the dotted line. 
P-values are calculated by a one-sided Wilcoxon rank-sum test
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MOFA + (Wilcoxon p-value = 0) (Fig. 5D). Moreover, CMOT’s inference is particularly 
useful to identify the cancer type specific cell clusters. For instance, we calculated the 
silhouette score (see the “Methods” section) to see if the cells from the same cancer lines 
exhibit similar gene expression patterns. CMOT reports a high median silhouette score 
of 0.74 compared to the measured gene expression (0.25), measured chromatin peaks 
(0.27), and inferred expressions from Seurat (0.61) and MOFA + (− 0.07) (Fig. 5B, Addi-
tional File 1: Table  S26). As shown in Fig.  5C, the cancer cells from three cancer cell 
lines can be separated using CMOT-inferred gene expression, suggesting the capabil-
ity of CMOT inference to reveal cancer-type-specific expression. Then, we evaluated 
the CMOT’s OCR peaks inference from gene expression. We trained CMOT with the 
parameters: K = 5, d = 10, λ = 1e03, η = 1, k = 10, and used the top 50 highly variable 
genes to find the k.nearest neighbors. We also stratified split the data into 80% training 
and 20% testing sets using cancer-type information. We normalized CMOT’s inferred 
peaks and then binarized them by a cutoff of 0.5, and then calculated the peak-wise area 
under the receiver operating curve (AUORC) of the inferred binarized peaks relative to 
the binarized measured profile. We also found that CMOT significantly outperforms 
both MOFA + and Seurat with Wilcoxon p-values < 9.42e − 77 and 9.48e − 10, respec-
tively, for OCR peak inference from gene expression (Fig. 5E, Additional File 1: Fig. S8, 
Additional File 1: Table S27-S28).

Discussion
With the advent of new single-cell technologies, data is generated with even greater pre-
cision. However, most of these technologies continue to profile a single modality for each 
cell, creating a need for robust cross-modality inference frameworks to jointly study the 
underlying that can infer additional or missing modalities for such cells.

In this study, we introduce CMOT as a computational approach that integrates mani-
fold alignment, regularized optimal transport, and k-Nearest Neighbors (kNN) for 
cross-modality inference. By applying emerging single-cell multimodal data, we demon-
strated that CMOT was able to predict multimodal features of single cells such as gene 
expression, chromatin accessibility, and protein expression. Note that CMOT does not 
require paired samples for aligning multimodalities as shown by its out performances 
over state-of-arts in some applications. This attribute is particularly useful since joint 
multimodal profiling is typically challenging and sometimes costly and single modality 
data is thus still widely favored. To demonstrate this, we evaluated CMOT and other 
state-of-art methods on single-profile scRNA-seq and scATAC-seq dataset [1] and found 
that CMOT outperforms all methods (Additional File 1: Fig. S14). Moreover, CMOT is 
more computationally efficient and faster than state-of-art methods (Additional File 1: 
Table S29). In the paper, CMOT primarily used nonlinear manifold alignment (NMA) to 
align multimodalities for achieving the best inference. However, CMOT is flexible and 
the user can substitute NMA with their preferred alignment method, e.g., SCOT [15, 
16], MMD-MA [27], and WNN [8].

Furthermore, the optimal transport step in CMOT leverages the information within 
shared modalities between source and target cells to compute a mapping matrix through 
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Wasserstein distances between them. These distances quantify and minimize the geo-
metric discrepancy of the distributions and map the two distributions for improving 
cross-modal inference in CMOT.

Additionally, we see that the overall correlation scores of all methods consistently vary 
across datasets. We attribute this variation in correlation across datasets to factors like 
the number of available cells, total features used, and the sparsity of the datasets used in 
training. We noticed a higher correlation for datasets either with more training cells or a 
high number of features. However, data sparsity continues to be a challenge with single-
cell profiling technologies and therefore affects inference performance for such datasets.

Nonetheless, we also examined CMOT’s potential limitations. First, nonlinear mani-
fold alignment comes with a high computational cost as the data size increases. It needs 
to compute Laplacians and similarity matrices of multimodal inputs which scale quad-
ratically with the datasets and slow CMOT’s computations over large datasets. How-
ever, this can potentially be sped up by using other alignment methods like SCOT [15, 
16] or Unioncom [28]. Second, Optimal transport assumes a mass-balancing approach 
between the source and target distributions, where every s (e.g., a cell) in the source has 
to map to a point in the target. This is a relatively strong assumption requiring a bal-
anced data distribution between the source and target to fit a conservative transport 
plan. Given many imbalanced datasets in the real world, this limitation can be improved 
by recent optimal transport techniques such as SCOTv2 [16] through emerging unbal-
anced optimal transport approaches [29, 30].

Also, CMOT can adapt other optimal transport variants to even transport different 
modalities between the source and target cells. For instance, Gromov Wasserstein dis-
tance can map distributions from different modalities [31, 32]. Moreover, CMOT has 
the potential to work with additional single-cell modalities like the morphology and 
electrophysiology of single neuronal cells from Patch-seq [33]. In addition to inferring 
modalities, CMOT has the potential to be extended to infer the sample labels such as 
phenotypes across modalities, e.g., via label transferring [8]. For example, it can predict 
cell types or disease states of single cells for the modalities without such information.

Conclusion
In this study, we introduced CMOT as a computational framework that can successfully 
infer additional or missing modalities for cells with single modalities. We applied CMOT 
to single-cell datasets of different scales and profiles (e.g., gene expression, peaks, pro-
teins), which can be easily extended to other modalities and applications. CMOT uses 
the underlying data distributions of multimodalities and uses optimal transport to 
find efficient mappings between available multimodalities and the target single modal-
ity, without requiring prior assumptions about their distributions. Moreover, CMOT’s 
design is computationally efficient.
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Methods
Cross‑Modality Optimal Transport (CMOT) workflow

CMOT workflow for cross-modality inference can be divided into 3 steps including an 
optional first step:

Step A (optional): Alignment to project the cells with available multimodal data 
(source cells) onto common low-dimensional latent space.
Step B: Optimal transport to map cells with the single modality (target cells) to the 
aligned source cells from the same modality.
Step C: k-Nearest-Neighbors to infer the missing or unprofiled modality of target 
cells using another modality of nearest mapped source cells.

We describe each step in detail below by introducing the necessary notations:

Step A: Alignment of source cells with multimodal data

We set this as an optional step if the cells across available multimodalities do not have 
a complete correspondence. That is, if cells across modalities have none to partial cor-
respondence between them, then CMOT first aligns them. Although users are free to 
use their choice of alignment in such scenarios, we use Nonlinear Manifold Alignment 
(NMA) [19].

Alignment is an important step that accounts for when the source cells have partial 
correspondence. NMA is based on a manifold hypothesis that high dimensional mul-
timodal datasets have similar underlying low dimensional manifolds, and therefore, 
they can be projected onto a common manifold space that preserves the local geometry 
of each modality and minimizes the differences between the manifolds of modalities. 
We define X = {xi}i=1,..,sX and Y = {yj}j=1,..,sY  as two multimodal measurements of sX , 
sY  source cells in Modalities X , Y  respectively, where xi ∈ RdX and yj ∈ RdY  represent 
the measurements of dX features in ith cell of Modality X , and dY  features in jth cell of 
Modality Y  , respectively. We also define WX ∈ RsX×sX and WY ∈ RsY×sY  as cell similarity 
matrices for X and Y  , respectively, where each similarity matrix is constructed by con-
necting a cell with its K  nearest neighboring cells within the modality. The partial prior 
known cell-to-cell correspondence information can be quantified by p (0 < p < 100%) 
to quantify the partial prior known cell-to-cell correspondence information (for exam-
ple, p% of paired cells across modalities) and encode this information as a cross-modal 
similarity matrix W ∈ RsX×sY  . NMA then learns two mapping functions �X and �Y  that 
project xi and yj to �X (xi) ∈ Rd and �Y

(
yj
)
∈ Rd , respectively onto a common manifold 

space with dimension d ≪ min(dX , dY ). The d-dimensional manifold preserves the local 
geometry of each modality and minimizes the distances between corresponding samples 
after projection. Solving manifold alignment can be reformulated as manifold co-regu-
larization in reproducing kernel Hilbert spaces. The manifold alignment optimization 
finds optimal mapping functions �∗

X , �∗
Y  by solving the following:
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, where the first two terms preserve the local geometry within each modality, the simi-
larity matrices WX and WY  model the relationships of the cells in each modality that can 
be identified by K-nearest neighbor graph, and the third term preserves the correspond-
ence information across X and Y  modeled by W  . The parameter µ controls the trade-off 
between conserving the local geometry of each modality and cell-to-cell correspond-
ences across modalities. Here, we set µ to 0.5. This allows equal importance to both 
preserving the local geometry of each modality as well as cell-to-cell correspondences, 
thereby eliminating the need for assuming underlying assumptions about data distribu-
tions of modalities.

We also need to add an additional non-zero constraint to avoid mapping of all cells 

onto a latent space  with dimension zero: P
T
DP = I , where P =

⎡
⎢
⎢
⎣

Φ
X

Φ
Y

⎤
⎥
⎥
⎦
 , 

�X =

[
�X (x1), ....,�X

(
xsX

)]T , �Y =

[
�Y

(
y1

)
, ....,�Y

(
ysY

)]T , D is the diagonal matrix 
with  diag(

∑
i W

1,i
X ...

∑
i W

SX ,i
X ) and diag(

∑
j W

1,j

Y
...
∑

j W
SY ,j

Y
) as diagonal elements, and 

I is the identity matrix [18, 34].
Also, two modalities are not required to have a complete correspondence between the 

cells. Therefore, W  is a binary correspondence matrix between cells of X and Y  such that 
if p=100%, i.e., 100% correspondence across cells in X and Y  , W  would be an identity 
matrix. For p<100%, Wi,j = 1 if xi and jth cells from Modalities X and Y  respectively are 
the corresponding cells and 0 otherwise. After alignment, the resulting d-dimensional 
modalities share a common latent space that can easily be compared using Euclidean 
distances. For instance, for every cell yj ∈ Y  , we find an aligned cell xj,a ∈ X by find-
ing the closest cell in X using the Euclidean distance. To implement our alignment step, 
we used the non-linear manifold module from our published Python package ManiNet-
Cluster [34].

Unless otherwise stated, we use the term CMOT for our model trained with full cor-
respondence ( p=100%).

Step B: Optimal Transport to map source and target cells by shared modality

The optimal transport theory [35, 36] tries to find the most efficient mapping π∗ that 
transports one probability distribution to another with minimum transportation cost. A 
mapping π ∈

∏(
Y , Ŷ

)
 represents transport plan to map cells from source ( Y  ) and tar-

get ( ̂Y  ) modalites, where 
∏(

Y , Ŷ

)
 contains all probabilistic mappings between the 

source ( Y  ) and target ( ̂Y  ) cells. We define Ŷ = {ŷj}j=1,..,s
Ŷ
 as the target single modality 

measurement with sŶ  cells, where ŷj ∈ RdY  represents the measurement of dY  features in 
jth cell of Modality Ŷ  . The classical OT distance (Wasserstein distance) gives the map-
pings between two probability distributions as the transportation cost. Let C be the cost 
matrix where C ∈ R

+sY×s
Ŷ  and Ci,j represents the pairwise cost of mapping the source 

cell yi ∈ Y  to the target cell ŷj ∈ Ŷ . For discrete probability distributions like Y  and Ŷ  
over the same metric spaces (i.e., matched features of the shared modality), we define the 
OT problem as:

�∗
X ,�

∗
Y =

argmin
︸ ︷︷ ︸
�X ,�Y

µ
∑

i,k ��X (xi)−�X (xk)�
2WXi,k

+ µ
∑

j,m ��Y

(
yj
)
−�Y

(
ym

)
�
2
WYj,m

+(1− µ)
∑

i,j ��X (xi)−�Y

(
yj
)
�
2
Wi,j
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where the first term computes the Frobenius dot product 〈., .〉F between the cost matrix 
C and π . The set 

∏
 is defined as 

∏(
Y , Ŷ

)
= {π ∈ R

+sY×s
Ŷ : π1s

Ŷ
= 1sY ,π

T1sY = 1s
Ŷ
}.

The second term, also called entropic regularization, calculates the entropy of trans-
portation for π where �s(π) = −

∑
i,jπ

(
i, j
)
logπ

(
i, j
)
. Entropic regularization addresses 

the computational complexity of OT as the sample size increases [37]. The intuition 
behind this term is to relax the sparsity constraints of the OT problem by increasing its 
entropy so that π∗ is denser, as source cells ( Y  ) are distributed more towards target cells 
( ̂Y  ). The resulting formulation is strictly convex and can be solved through Sinkhorn’s 
Algorithm [22]. The parameter � weights the entropic regularization. As the parameter 
increases, the sparsity of π∗ decreases, giving a smoother transport.

The third term is the label regularizer [37], �c =
∑

j

∑
c�π

(
Ic, j

)
�
q

p
 , where Ic contains 

the index of rows in π related to the source cells ( Y  ) that belong to class c if we have such 
prior knowledge, e.g., known cell types. Hence, π

(
Ic, j

)
 is a vector containing the coeffi-

cients of the jth target cell in Ŷ  . The norm ‖.‖qp denotes the lp norm to the power of q 
(here we set p=1 and q=0.5). The parameter η weights the label regularization. The intu-
ition behind this term is to penalize the mappings that match together samples from dif-
ferent labels. This means that even if we do not have the label information for the target 
cells ( ̂Y  ), we can promote group sparsity within the columns of π such that each target 
cell is only associated with a class. However, in the absence of such label information, we 
can compute our own labels through unsupervised clustering techniques like hierarchi-
cal clustering to induce cell clusters as labels for source cells in Y  . Finally, to map the 
source cells ( Y  ) to the target space ( ̂Y  ), we use barycentric mapping using Y (t) = π∗Ŷ  
[37]. Now, we can easily compare Y (t) and Ŷ  using euclidean distance. To solve the regu-
larized OT optimization step, we used Domain Adaptation functions (ot.da) provided in 
the Python package Python optimal transport (POT) [38].

Identify outlier cells in target modality Some cells from the target modality ( ̂Y  ) may 
have a different distribution (e.g., belonging to a cell type absent in source modality). For 
such cells, the inference is difficult and may even lead to false predictions. To avoid this, 
we add an additional mechanism to identify and remove such cells. We use the optimal 
coupling π∗ and the cost matrix C calculated in step B, and compute an element-wise dot 
product P = π *T ◦ CT , where P ∈ Rs

Ŷ
×sY  . Then, we find any outliers within P using the 

Isolation Forest (IF) algorithm [39]. The Isolation Forest (IF) algorithm isolates samples 
by randomly selecting a feature and then randomly selecting a split value between the 
minimum and maximum values of the selected features. Since this algorithm is prone to 
the curse of dimensionality, we first apply principal component analysis (PCA) to P and 
use components that explain at least 95% variance. We then apply the IF to the lower 
dimensional P . We tested this mechanism by randomly replacing cells with noise in the 
DEX-treated A549 dataset (see Additional File 1). Additionally, CMOT provides a warn-
ing to users informing them about the percentage of poorly mapped cells that can be 
removed to avoid incorrect inferences.

π∗ =
argmin

π ∈ �

(
Y , Ŷ

)
�π ,C�F − ��s(π)+ η�c(π)
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Step C: k‑Nearest Neighbors to infer the additional modality of target cells

Finally, we apply k-Nearest Neighbors (kNNs) to infer the missing modality X̂ of target 
cells in Ŷ  . For each target cell  ŷj ∈ Ŷ  , we find its kNN in Y (t) using Euclidean distance. 
Let Sj = {clj : l = 1, 2, ..k} be the set of k nearest neighboring cells of ŷj in Y (t) , where clj 
is a cell in Y (t) . For cells in Sj , we use their values from the aligned modality X to define 
another setQj = {qlj : l = 1, 2, ...k} , where qlj represents the profile of the cell clj within the 
aligned modality X . Finally we calculate the weighted average of the profiles of all cells in 
Qj to get x̂j . This is calculated as:

where wl
j is the weightage given to qlj such that wl

j = e

(
−

√
�ŷj−ylSj

�
2
)

 . Thus, we get the cor-
responding modality X̂ for Ŷ . We used sklearn’s [40] nearest neighbor function for kNN 
implementation.

Single‑cell multi‑omics datasets

We tested CMOT on four single-cell multiomics datasets: (1) Gene expression and chro-
matin accessibility of single cells in human and mouse brains (scRNA-seq and scATAC-
seq) [1, 22]; (2) Gene and protein expression of peripheral blood mononuclear cells 
(CITE-seq) [5]; (3) Gene expression and chromatin accessibility of A549 lung cancer 
cells (sci-CAR) [2]; (4) Gene expression and chromatin accessibility of pan-cancer cells 
(scCAT-seq) [3]. All details on data and data processing are available in Additional file 1: 
supplementary methods.

Partial correspondence in multi‑omics data

Joint profiling of single cells is challenging and therefore, it may not always be feasi-
ble to get completely corresponding cells across profiled modalities. In such scenarios, 
there could be partial to no correspondence across cells of multimodalities. For exam-
ple, a 50% cell-to-cell correspondence between modalities means that only 50% of the 
cells have been jointly profiled between the modalities. As a result, training on partially 
corresponding multimodalities for cross-modality inference can lead to misleading or 
wrong inferences. Therefore, to address this problem, CMOT first aligns such partially 
corresponding datasets and then performs inference. In this paper, we have used data-
sets that have a 100% correspondence originally, so that we can validate the inference 
performance. However, we simulate different levels of cell-to-cell correspondence by set-
ting the p value in non-linear manifold alignment (Methods Step A). In particular, we 
randomly chose p percent cells for whom correspondence information is assumed avail-
able, while the remaining cells are treated as non-corresponding. We report CMOT’s 
performance when trained on p=25%, 50%, 75%, 100% cell-to-cell correspondence lev-
els, and show that CMOT’s cross-modality inference performance can beat state-of-the-
art methods that require 100% cell-to-cell correspondence for training.

x̂j =

k∑

l=1

wl
j q

l
j
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Datasets preprocessing and feature selection

Human brain

The human brain dataset was generated by 10xGenomics, containing gene expression 
and open chromatin regions multiome data from the same cells (8981 cells) profiled from 
post-conceptual week 21 (PCW21) [1]. We filtered out peaks and genes that occurred in 
less than 3 cells. For scATAC, we normalized the peaks using term frequency-inverse 
document frequency (TF-IDF) transformation using RunTFIDF [41] to identify the top 
1000 most variable peaks. For scRNA, we performed normalization and variance stabili-
zation using SCTransform [42] and picked the top 1000 most variable genes. The result-
ing data includes gene expression and chromatin regions of 8981 for 1000 genes and 
regions respectively.

Peripheral Blood Mononuclear cells

The Peripheral Blood Mononuclear cells (PBMC) dataset [5] was generated by CITE-
seq, containing genes and proteins from the same cells. This data contains cells from 
two experiments performed on PBMCs: 6855 cells from PBMC10k and 3994 cells from 
PBMC5k. We preprocessed multiome data from two experiments independently. For 
scRNA-seq, we performed normalization and variance stabilization using SCTransform 
[42] and picked 2960 highly variable genes. We identified the variable genes in PBMC10k 
first and used them as a reference to subset genes in PBMC5k scRNA data. For protein 
expression, we performed centered log-ratio (CLR) normalization using Seurat’s func-
tions in both PBMC10k and PBMC5k. The resulting PBMC10k data dimension was 
6855 by 2960 for gene expression and 6855 by 14 for protein expression. The resulting 
PBMC10k data includes gene and protein expression data of 3994 cells for 2960 genes 
and 14 proteins.

Dexamethasone‑treated A549 cells

The dexamethasone (DEX)-treated A549 dataset [2] was generated using a sci-CAR 
experiment for single cells from the A549 lung adenocarcinoma cell line. The data con-
tains jointly profiled 2641 cells after 0, 1, and 3 h of 100 nM DEX treatment for gene 
expression and open chromatin regions. We used a preprocessed dataset previously used 
by Jin et al. [43], and filtered out lowly expressed cells by gene expression. We reduced 
the dataset to 2391 cells. For scRNA, we used all 1183 genes. For scATAC, we picked the 
top highly variable 1183 peaks. The resulting data includes gene expression and chroma-
tin regions of 2391 cells for 1183 genes and regions respectively.

Pan‑cancer cell lines

This dataset contains three cancer cell lines [3]: HCT116, HeLa-S3, and K562, gener-
ated by joint profiling of 206 single cells using scCAT-seq containing gene expression 
and open chromatin regions. We used a preprocessed dataset previously used by Huiz-
ing et al. [18], however, we reduced the number of genes and peaks to 10,000 by select-
ing the most variable features. We binarized the scATAC profile where we set all values 
greater than 0 to 1 and 0 otherwise. The resulting data includes gene expression and 
chromatin regions of 206 cells for 10,000 genes and regions respectively.
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Runtime evaluations

We compare CMOT’s running time with state-of-art methods MOFA + , Seurat, 
TotalVI, and Polarbear for the best-performing parameters used for cross-modality 
inference (Table S29). We benchmarked all methods on Intel Xeon Gold 6242R CPU 
@3.10  GHz × 40 with 251.4GiB RAM and NVIDIA RTX A6000 GPU, Hierarchical 
Clustering.

We induced cell labels for datasets with no prior knowledge (e.g., cell types). We use 
these labels for label regularization in OT optimization (see Methods and Materials Step 
B) to improve the mappings between cells in the source ( X ) and target ( Y  ) modalities. 
To induce cell labels, we performed hierarchical clustering of training and validation sets 
combined using the scikit-learn clustering functions [23].

Training and cross‑validation

We split the human brain [1], PBMCs [5], DEX-A549 lung cancer [2], and pan-cancer [3] 
datasets into 80% train and 20% test.

We trained all methods: Seurat [7, 8], MOFA + [9], TotalVI [5], and Polarbear [11] 
using default parameters for all datasets except DEX-treated A549 [2]. For modality 
inference in Seurat [7, 8], we integrated the training modalities first, and then we inferred 
the missing modality using FindTransferAnchor and TransferData functions [7] between 
the integrated training modalities and source test modality. For MOFA + [9], we input 
the missing modality as NA values and trained the model on the multimodalities. We 
trained TotalVI [5] autoencoder with default parameters, with latent distribution set to 
“normal,” on the training set. Finally, we trained Polarbear and Polarbear co-assay mod-
els [11] using default parameters on the training set.

To identify the highest performing parameters for Steps B and C of CMOT, we per-
formed 5-fold cross-validation on the training set. We reported the best-performing 
parameters for each dataset in the Results.

For the DEX-treated A549 dataset, we tuned parameters for all methods (Additional 
File 1: Fig. S9) and benchmark inference performance of CMOT against state-of-arts 
(Fig. 4A, Additional File 1: Fig. S4).

Parameter selection

In Step A, we found the optimal alignment by testing different values of d common man-
ifold dimensions and K nearest neighbors for building the similarity within each modal-
ity (Additional File 1: Fig. S10). In Step B and Step C, we performed cross-validation to 
select the regularization coefficients � and η for optimal transport, and top highly vari-
able features and k-nearest neighbors for modality inference. In particular, we chose the 
optimal number of features and k-nearest neighbors based on CMOT’s performance 
saturation (Additional File 1: Fig. S11). Also, for all datasets, applied in this paper, we 
held out a 20% testing set to report CMOT’s performance. For datasets with no prior 
knowledge (e.g., cell types), we induced cell labels by cell clusters through hierarchi-
cal clustering of the training set, when training the final model (see Additional File 1: 
Supplementary Methods). We split the training data into training and validation sets to 
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select parameters through 5-fold cross-validation (see Additional File 1: Supplementary 
Methods).

Evaluation

Inference versus measurement

To evaluate CMOT’s inferred gene and protein expressions, we calculated Pearson’s cor-
relation coefficient between the inferred and measured expression values of each cell 
(cell-wise). Also, we computed the gene-wise correlation between inferred and meas-
ured expression values across cells for each gene [11]. For peak inference in open chro-
matin regions, we used AUROC to evaluate the quality of CMOT’s binarized inferred 
peaks [11]. We computed peak-wise AUROC between individual inferred peak profiles 
versus measured profiles. This evaluation also applied to the state-of-art methods that 
we compared. We reported the number of genes with improved correlation/AUROC 
w.r.t. these methods along with a one-sided Wilcox rank-sum test p-value for each [11].

Classifying known cell type using inferred expression

For the human brain data with known brain cell type information, we evaluated the 
CMOT inferred expression of cell-type marker genes for classifying the cell type and 
calculated the AUPRC of the classification [11]. To this end, given a cell type, we labeled 
all cells that belong to the cell type as positive and the rest as negative. Specifically, we 
evaluated the Top 8 marker genes from each cell type, due to disproportionate cell-type 
distribution within the dataset, using a total of 80 cells. We then defined a baseline = 0.1 
for the AUPRC as the ratio of the number of positives versus total cells.

Clustering cancer types using inferred gene expression by silhouette score

For the pan-cancer dataset, we evaluated CMOT to separate the cancer types. In par-
ticular, we assessed if CMOT’s inferred gene expression data can cluster the cells and 
cell clusters corresponding to different cancer types [3], using the silhouette score. The 
silhouette score S(m) of a cell m belonging to the cluster CM is calculated as:

where E(m) =
min

M �= N

∑
d(m,n)
|CN |

 is the inter-cluster distance defined as the average dis-

tance to the closest cluster of cell m except that which it’s a part of (i.e., n ∈ CN ) and 
e(m) = 1

|CM |−1

∑
d(m, n) is the intra-cluster distance defined as the average distance to 

all other cells in the cluster to which it’s a part of (i.e. n ∈ CM ,m �= n ). We calculated the 
silhouette scores by the Python package Scikit-learn [40].

Gene set enrichment analysis

We used Metascape [44] to perform gene set enrichment analysis for the highly predic-
tive genes by CMOT.

S(m) =
E(m)− e(m)

max(E(m), e(m))
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Comparison with state‑of‑arts

We compared CMOT with existing state-of-the-art methods, Seurat [7, 8], MOFA + [9], 
TotalVI [5], Polarbear [11], bindSC [20], and GLUE [21]. First, for the human brain data 
[1], we benchmarked CMOT against Seurat and MOFA + for the human brain data 
(Fig.  2); additionally, we also benchmarked CMOT against other state-of-art methods 
(Additional File 1: Fig. S1). Next, for the CITE-seq data [5], we compared CMOT with 
Seurat, MOFA + , and TotalVI (Fig. 3, Additional File 1: Fig. S7). We added TotalVI to 
the comparison since it was specifically designed for CITE-seq datasets. For the DEX-
treated A549 dataset [2], we benchmarked CMOT against Seurat and MOFA + (Fig. 4), 
as well as other state-of-art methods (Additional File 1: Fig. S4). For the pan-cancer 
dataset [3], we benchmarked Seurat and MOFA + due to the small dataset size. Finally, 
we benchmarked additional state-of-art methods on the mouse brain dataset [22] (Addi-
tional File 1: Fig. S2, Fig. S3).

Supplementary Information
The online version contains supplementary material available at https:// doi. org/ 10. 1186/ s13059- 023- 02989-8.

Additional file 1. Supplementary Tables S1-S29, Supplementary Figures S1-S13, Supplementary Methods

Additional file 2. Top predictive genes by CMOT in human brain [1] and DEX-treated A549 lung cancer cells [2]

Additional file 3. CMOT versus MOFA + inferred genes in DEX-treated A549 lung cancer cells [2]

Additional file 4. Review history

Acknowledgements
Results presented in this paper were partially obtained using the Chameleon testbed supported by the National Science 
Foundation [45]. We thank Dr. Xiang Huang for proof reading.

Review history
The review history is available as Additional File 4.

Peer review information
Andrew Cosgrove was the primary editor of this article and managed its editorial process and peer review in collabora-
tion with the rest of the editorial team.

Authors’ contributions
D.W. conceived the study. D.W. and S.A. designed the methodology, performed analysis and visualization. S.A. 
implemented the software. D.W. and S.A. edited and wrote the manuscript. All authors read and approved the final 
manuscript.

Authors’ Twitter handles
@daifengwang (Daifeng Wang); @sayalialatkar (Sayali Anil Alatkar)

Funding
This work was supported by National Institutes of Health grants, R21NS128761, R21NS127432, R01AG067025 to D.W., 
P50HD105353 to Waisman Center, National Science Foundation Career Award 2144475 to D.W., and the start-up fund-
ing for D.W. from the Office of the Vice Chancellor for Research and Graduate Education at the University of Wiscon-
sin–Madison. The funders had no role in study design, data collection, and analysis, decision to publish, or manuscript 
preparation.

Availability of data and materials
CMOT is implemented as an open-source Python package available at https:// github. com/ daife ngwan glab/ CMOT [46], 
and the latest release is hosted by Zenodo [47] under the GNU General Public License v3.0.
The single-cell human brain data was downloaded from https:// github. com/ Green leafL ab/ brain chrom atin/ blob/ main/ 
links. txt [1]. The mouse brain dataset from GLUE was downloaded from http:// downl oad. gao- lab. org/ GLUE/ tutor ial/ 
Chen- 2019- RNA. h5ad, http:// downl oad. gao- lab. org/ GLUE/ tutor ial/ Chen- 2019- ATAC. h5ad [21], and from https:// noble. 
gs. washi ngton. edu/ ~ranz0/ Polar bear/ data/ for Polarbear [11]. The A549 dataset was downloaded from https:// github. 
com/ sqjin/ scAI/ tree/ master/ data [43]. The preprocessed scCAT-seq pan-cancer dataset was downloaded from https:// 
github. com/ canti nilab/ OT- scOmi cs/ tree/ main/ data [18]. The CITE-seq PBMC dataset was downloaded from the scvi-tools 
website https:// docs. scvi- tools. org/ en/ stable/ tutor ials/ noteb ooks/ total VI. html [5].
The single-cell developing human brain dataset is available in the Gene Expression Omnibus (GEO) with the accession 
number GSE162170 [48]. The mouse brain dataset is available in GEO with the accession number GSE126074 [49]. The 
A549 dataset is available in GEO with the accession numbers GSM3271040 and GSM3271041 [50]. The pan-cancer is 

https://doi.org/10.1186/s13059-023-02989-8
https://github.com/daifengwanglab/CMOT
https://github.com/GreenleafLab/brainchromatin/blob/main/links.txt
https://github.com/GreenleafLab/brainchromatin/blob/main/links.txt
http://download.gao-lab.org/GLUE/tutorial/Chen-2019-RNA.h5ad
http://download.gao-lab.org/GLUE/tutorial/Chen-2019-RNA.h5ad
http://download.gao-lab.org/GLUE/tutorial/Chen-2019-ATAC.h5ad
https://noble.gs.washington.edu/~ranz0/Polarbear/data/
https://noble.gs.washington.edu/~ranz0/Polarbear/data/
https://github.com/sqjin/scAI/tree/master/data
https://github.com/sqjin/scAI/tree/master/data
https://github.com/cantinilab/OT-scOmics/tree/main/data
https://github.com/cantinilab/OT-scOmics/tree/main/data
https://docs.scvi-tools.org/en/stable/tutorials/notebooks/totalVI.html


Page 19 of 20Alatkar and Wang  Genome Biology          (2023) 24:163  

available in GEO with the accession number GSE81861 [51]. The PBMC datasets are available at 10 × Genomics (PBMC5K 
[52]; PBMC10K [53]).
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