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Abstract 

Deep learning models such as convolutional neural networks (CNNs) excel in genomic 
tasks but lack interpretability. We introduce ExplaiNN, which combines the expres-
siveness of CNNs with the interpretability of linear models. ExplaiNN can predict TF 
binding, chromatin accessibility, and de novo motifs, achieving performance compa-
rable to state-of-the-art methods. Its predictions are transparent, providing global (cell 
state level) as well as local (individual sequence level) biological insights into the data. 
ExplaiNN can serve as a plug-and-play platform for pretrained models and annotated 
position weight matrices. ExplaiNN aims to accelerate the adoption of deep learning in 
genomic sequence analysis by domain experts.
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Background
High-throughput genomics methods such as ATAC-seq [1] or ChIP-seq [2], which 
respectively assess genome-wide accessibility of chromatin and binding of transcrip-
tion factors (TFs), allow functional annotation of DNA elements. The sheer scale of the 
data generated by these methods precludes manual analyses. Machine and deep learning 
have become pervasive in large-scale genomic analyses due to their ability to identify 
meaningful features in massive datasets (reviewed in [3, 4]). For instance, deep learning 
models have shown superior performance in predicting genome folding [5], chromatin 
accessibility states [6–9], gene expression levels [10–12], and TF binding sites (TFBSs; 
reviewed in [13]).

While increasingly complex models are now feasible, some are opaque; they do not 
readily reveal the features and properties that underlie their predictions [14]. For genom-
ics, there are multiple approaches to improve the interpretability of deep learning mod-
els (reviewed in [15]), of which we focus on filter visualization and attribution methods.
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For convolutional neural networks (CNNs) and related models, a powerful interpreta-
tion approach is to visualize the filters of the first convolutional layer as position weight 
matrices (PWMs), a common format in bioinformatics to represent TFBS patterns [16], 
by separately aligning the set of sequences activating each filter [17]. The resulting filter 
PWMs can be assigned a biological annotation by comparing them to TF binding pro-
files from reference databases like JASPAR [18]. While filter visualization provides an 
overview of the genomic features that the model has learned in the first layer, the success 
of this approach is highly dependent on model architectural choices such as max pool-
ing or filter sizes [19]. Moreover, it is difficult to interpret how the model combines the 
learned motifs within the deeper layers. Furthermore, to gain interpretability at a global 
level (i.e., how each filter influences the model’s predictions), the filters must be nulli-
fied sequentially, which is both computationally intensive and dependent on arbitrary 
thresholds [8, 9].

Attribution methods quantify the importances of individual nucleotides in the input 
sequences using forward- (e.g., in silico mutagenesis [6, 20]) or back-propagation [21, 
22]. These importance scores can be the basis for further clustering of activating sub-
sequences into PWMs [23], which, as with filter visualization, can in turn be annotated 
biologically by comparing them to known TF motifs. Although attribution methods pro-
vide local interpretability by identifying important nucleotides in the input sequences, 
quantifying the contribution of each feature to the overall model’s predictions (i.e., 
global interpretability) remains challenging [24]. Noteworthy, neither approach is trans-
parent as to how the model makes predictions.

Unlike deep learning models, linear models are interpretable and transparent: the 
basis on which they make predictions can be readily understood by evaluating the 
learned feature coefficients. Agarwal and colleagues recently introduced neural addi-
tive models (NAMs), which combine features of deep learning and linear models [25]. 
NAMs compute predictions as a linear combination of outputs from independent deep 
learning models, each tuned to one input feature, resulting in the levels of explainability 
much appreciated in linear models without compromising on accuracy.

In this study, we present ExplaiNN (explainable neural networks), a fully interpret-
able and transparent, sequence-based deep learning model for genomic tasks inspired 
by NAMs. We evaluate ExplaiNN on different tasks, demonstrating that it performs as 
well as state-of-the-art models while yielding similar interpretations to more complex 
approaches, both locally and globally, but in less time and in a more intuitive and simple 
manner. Next, we show that the motifs learned by the convolutional filters of ExplaiNN 
are equivalent to those discovered by de novo tools on the same data. Finally, we apply 
ExplaiNN as a plug-and-play platform for JASPAR PWMs and pre-trained deep learning 
models with which to interpret genomic data, such as by distinguishing the individual 
roles of TFs with highly similar DNA-binding specificities.

Results
ExplaiNN is a glass box deep learning model for genomics

ExplaiNN is a deep learning approach for genomic tasks trained on one-hot encoded 
sequences inspired by NAMs [25]. Predictions are computed as a linear combination 
of multiple independent CNNs (hereafter referred to as units), each consisting of one 
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convolutional layer with a single filter followed by exponential activation, which has 
been seen to improve the motif representations learned by CNN filters [26], and two 
fully connected layers (Fig. 1 (A)). ExplaiNN provides global interpretability, as the filter 

Fig. 1 The ExplaiNN model and its application to TFBS prediction in OCRs. A ExplaiNN takes as input one-hot 
encoded DNA sequences. Architecturally, it is composed of multiple independent CNNs (i.e., units), each of 
which comprising one convolutional layer with a single filter, batch normalization, exponential activation, 
and max pooling, and two fully connected layers with batch normalization, ReLU activation, and dropout. 
The final linear layer of ExplaiNN (i.e., the output) combines the outputs from each unit (denoted here using 
Xs). B Performances (AUPRC; y-axis) of ExplaiNN models trained using increasing numbers of units (x-axis) 
on predicting the binding of 50 TFs in OCRs (green line). The performances of DanQ [7], a deep CNN with 
3 convolutional layers (i.e., DeepCNN), and two shallow CNNs with 1 convolutional layer (i.e.,  CNN1 and 
 CNN1Exp featuring an exponential activation function instead of ReLU) are provided as baselines (gray lines). 
C Pairwise comparison of the individual performances (AUPRC) of the 50 TFs from the previous dataset 
between the ExplaiNN model trained using 100 units and either DanQ (green dots) or the DeepCNN (gray 
dots). D Number of binding modes (y-axis) detected with ExplaiNN using increasing numbers of units 
(x-axis). E Number of binding modes detected with DanQ, the DeepCNN, and ExplaiNN trained using 100 
and 300 units on the previous dataset using either filter visualization (no pinstripes) or TF-MoDISco [23] 
clustering on DeepLIFT [22] attribution scores (pinstripes). The 50 TFs in the dataset are represented by 33 
unique binding modes (dashed line), some of which are detected using different combinations of models 
and interpretive approaches (green); other detected binding modes (i.e., different from those 33) are shown 
in gray. F Heatmap of the final linear layer weights of the ExplaiNN model trained using 100 units, with rows 
representing units with assigned biological annotations based on their Tomtom [27] similarity to known TF 
profiles from the JASPAR database [18] and columns representing the 50 TFs predicted by the model. More 
than one filter can learn the same TF motif representation, but some may not contribute to the model’s 
predictions (black arrows). G (top) Visualization of importance scores for a unit annotated as FOXA1 from the 
ExplaiNN model trained using 100 units. This unit contributes the most to the prediction of FOXA1 binding. 
(bottom) Filter nullification analysis for the seven DanQ filters annotated as FOX TFs. The results are consistent 
with the unit importance scores. AUPRC, area under the precision-recall curve; CNN, convolutional neural 
network; OCR, open chromatin region; ReLU, rectified linear unit; TF, transcription factor; TFBS, TF binding site
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of each unit can be mapped to a TF profile from JASPAR using Tomtom [27] (see the 
“Methods” section), thus assigning a biological annotation to that unit. The main dif-
ference between ExplaiNN and a standard CNN is that the learned weights of each 
unit from the final linear layer (i.e., the coefficients) are interpretable, similar to a linear 
model. In addition, ExplaiNN can also provide local interpretability by multiplying the 
output of each unit by the weight of that unit for each input sequence (hereafter referred 
to as unit importance scores; see the “Methods” section).

As a proof of concept, we trained ExplaiNN to predict the binding of 50 TFs to open 
chromatin regions (OCRs) from a reference dataset describing the binding of 163 TFs 
to > 1.8  M 200-bp long OCRs that we repurposed for this study [28] (see the “Meth-
ods” section). A key hyperparameter in ExplaiNN is the number of independent units 
to be used. To assess the impact of this hyperparameter on model performance, we 
trained multiple ExplaiNN models using increasing numbers of units (from 1 to 200). 
As expected, the performance of ExplaiNN improved with the number of units used, 
plateauing at around 100 units (Fig. 1 (B)). For comparison, we evaluated four additional 
models on the same dataset (see the “Methods” section): a CNN with one convolutional 
layer  (CNN1); a  CNN1 with exponential activation function  (CNN1Exp); a deep CNN 
with three convolutional layers (DeepCNN); and DanQ [7], a hybrid deep learning 
model with convolutional and recurrent layers. ExplaiNN outperformed all three CNN 
models as measured by average area under the precision-recall curve (AUPRC) and, 
when using more than 100 units, nearly reached the performance of the more complex 
DanQ (Fig. 1 (B)). Focusing on the ExplaiNN model trained with 100 units, it outper-
formed the DeepCNN model for most TFs, performing only slightly worse than DanQ 
(Fig. 1 (C)).

Next, we visualized the filters of each ExplaiNN model and assigned them TF bind-
ing modes from JASPAR, which we defined based on the hierarchically clustered groups 
of DNA-binding profiles included in the database (Additional file 1; see the “Methods” 
section). As with performance, the number of binding modes recovered by the model 
increased with the number of units used (Fig. 1 (D)). For comparison, we provide the 
number of binding modes recovered by the DeepCNN and DanQ when applying filter 
visualization, as we did with ExplaiNN, or when using TF-MoDISco [23] clustering on 
DeepLIFT [22] attribution scores (see the “Methods” section). Out of 33 different bind-
ing modes associated with the set of 50 TFs analyzed, ExplaiNN models trained with 100 
and 300 units recovered 19 and 21, respectively, which is a similar number as DanQ (19 
when applying filter visualization and 20 when using DeepLIFT and TF-MoDISco) and 
greater than obtained for the DeepCNN model (Fig. 1 (E)).

An advantageous feature of ExplaiNN is that one can readily visualize the final linear 
layer weights for global interpretation purposes (Fig. 1 (F); see the “Methods” section). 
For example, units with filters annotated as FOX motifs had high positive weights for 
predicting the FOXA1 class. Similarly, CEBP-, CTCF-, and Ets-like units had high posi-
tive weights associated with predicting the classes of CEBP factors, CTCF, and Ets fam-
ily members, respectively. However, some units had negative weights for predicting the 
class of their annotated TF (Fig. 1 (F); highlighted with arrows). To delve further into the 
contribution of each unit to the prediction of each class, we computed unit importance 
scores (see the “Methods” section). Visualization of the importance scores of a FOX-like 
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unit in a heatmap confirmed its importance for predicting the FOXA1 and AR classes 
(Fig. 1 (G); top panel), in agreement with the observation that FOXA1 helps shape AR 
signaling in prostate cells [29]. Visualizing unit importance scores also revealed an 
aspect as to why several CTCF-like units had negative weights for predicting the CTCF 
class: the importances of these units for the CTCF class were negligible, suggesting that 
the model was not using them to make predictions for that class (Additional file 2: Fig. 
S1). The same was true for units annotated as CEBP and Ets with negative weights for 
those classes (Additional file 2: Fig. S1). Finally, we calculated the impact from nullifying 
the FOX-like filters in the DanQ model one at a time (Fig. 1 (G); bottom panel; see the 
“Methods” section) and, as expected, the impact scores from the filter nullification pro-
cess were consistent with the unit importance scores.

Taken together, these analyses demonstrated that ExplaiNN performs comparably to 
more complex models, at least for TF binding prediction. In addition, ExplaiNN pro-
vided local and global interpretation quickly and readily compared to using DeepLIFT 
followed by TF-MoDISco or filter visualization and nullification.

ExplaiNN captures homotypic but not heterotypic cooperative interactions

Given the architecture of ExplaiNN, in which each unit filter is independent of the rest, 
we expected that it would not be able to learn nonlinear interactions such as heterotypic 
cooperativity between pairs of TF motifs. In contrast, DeepSTARR is a CNN trained on 
STARR-seq data to predict the activities of Drosophila developmental and housekeep-
ing enhancers that can capture these types of interactions [30]. For each pair of motifs 
analyzed, the authors of DeepSTARR performed a distance dependence analysis by slid-
ing one motif along randomly generated sequences in the center of which they embed-
ded the second motif. Accounting for additive effects, they observed that the output of 
DeepSTARR increased when the two motifs were proximal, suggesting that the model 
had learned heterotypic cooperative interactions. To check whether this was also the 
case for ExplaiNN, we trained it on the same dataset and compared its performance 
to DeepSTARR by calculating the Pearson correlation coefficient (PCC) between pre-
dicted and actual enhancer activities (see the “Methods” section). ExplaiNN performed 
worse than DeepSTARR on both developmental (PCC = 0.61 vs. 0.68) and housekeep-
ing (PCC = 0.71 vs. 0.74) enhancers, which we attributed to the greater presence of 
nonlinear interactions in this particular dataset. Next, following the specifications from 
DeepSTARR, we performed a distance dependence analysis between the housekeep-
ing TFs Dref, Ohler1, and Ohler6 (see the “Methods” section). As a negative control, we 
slid the 5-mer GGGCT. As expected, DeepSTARR was able to learn distance depend-
encies between the three motifs (Fig.  2). This was not the case for ExplaiNN: during 
the analysis, the resulting model outputs using the three motifs were similar to sliding 
GGGCT (Fig. 2). While these results were expected given the architecture of ExplaiNN, 
we wondered if the fully connected layers would be able to capture homotypic coop-
erative interactions between pairs of instances of the same TF motif. We repeated the 
previous distance-dependent analysis but this time sliding a second instance of the motif 
that had been fixed at the center of the sequences. We observed that both ExplaiNN 
and DeepSTARR consistently captured homotypic cooperativity for Dref and Ohler6; 
however, for Ohler1, the distance dependencies obtained from the two methods were 
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non-concordant (Fig. 2). To confirm whether the fully connected layers were responsible 
for learning these interactions, we trained a second ExplaiNN model on the DeepSTARR 
dataset in which the fully connected layers of each unit had been replaced with a global 
max pooling layer, after which we repeated the distance dependencies analysis. This 
model without fully connected layers was unable to learn any distance dependencies: 
results were similar to the negative control (Additional file 2: Fig. S2). Taken together, 
and as we had anticipated based on its architecture, ExplaiNN is not suitable for detect-
ing heterotypic cooperative interactions; however, the fully connected layers within each 
unit allow homotypic cooperativity to be learned.

Fig. 2 Exploring the limitations of ExplaiNN in capturing nonlinear interactions. Cooperativity (residual 
fold change; y-axis) plotted as a function of distance (x-axis) between the motifs of the housekeeping TFs 
Dref (top row; yellow), Ohler1 (middle row; blue), and Ohler6 (bottom row; green) for DeepSTARR [30] (left 
column) and ExplaiNN (right column). The 5-mer GGGCT is provided as a negative control (light gray). TF, 
transcription factor
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ExplaiNN learns high‑quality motifs comparable to de novo motif discovery tools

De novo motif discovery methods continue to emerge and improve [31–36]. With 
the dramatic escalation in the size of datasets, the execution time of these methods is 
increasingly a limitation. Furthermore, many de novo motif discovery methods are 
assay-specific, as exemplified by the DREAM5 challenge evaluation on protein bind-
ing microarray (PBM) data [37], requiring an extensive adjustment of parameters for 
their application to different assays. We sought to explore the capacity of ExplaiNN 
for efficient de novo motif discovery within a unified platform. For each of the 163 TFs 
from the previous dataset, we trained a model with 100 units and then visualized the 
filters and importance scores of each unit, resulting in 100 PWMs for each TF (see 
the “Methods” section). As expected, PWMs derived from visualizing filters associ-
ated with important units performed better: for 139 TFs (85.3%), the best-performing 
PWM was derived from the filter of one of the 10 most important units (Fig. 3(A)). Next, 
we applied STREME [34], a state-of-the-art method for de novo motif discovery, on 
the same sequences used for training the ExplaiNN models to discover 100 motifs for 
each TF (see the “Methods” section). Pairwise comparison of the performances of the 
best PWMs obtained by each method revealed subtle differences (Fig.  3(B)), although 
PWMs discovered by STREME were superior for TFs with small training datasets 
(Fig. 3(C)). Notably, the execution times exhibited by the two methods differed greatly, 
with ExplaiNN being > 100 times faster for TFs with large training datasets of ≥ 50,000 
sequences (Fig. 3(D)). These differences were consistent with recent reports related to 
the benefits of GPU-enabled de novo motif discovery [33, 36].

The convolutional filters of CNNs are not guaranteed to learn full motif representa-
tions. Instead, CNNs are designed to learn motifs in a hierarchical manner, with the 
filters learning partial motifs that are assembled into full motifs in deeper layers, such 
as through higher-order interactions facilitated by the fully connected layers [19]. To 
explore the ability of ExplaiNN to learn full motif representations, we considered the 
case of nuclear receptors, which can bind to DNA sequences in the form of palindromes, 
direct repeats, or extended monomeric sites [42]. Focusing on 12 nuclear receptors from 
the previous analysis with at least 10,000 training sequences, ExplaiNN was able to learn 
motif representations faithful to the profiles of those TFs from the JASPAR database, 

Fig. 3 De novo motif discovery with ExplaiNN. A Average performances (AUPRC; y-axis) by rank (x-axis) 
of PWMs derived from training ExplaiNN models with 100 units on in vivo datasets of 163 TFs and then 
visualizing the filter of each unit (i.e., 100 PWMs per TF). The rank of each PWM is given by the importance 
of its unit. The gray dots indicate the rank of the best performing PWM for each TF. B Pairwise comparison 
of the individual performances (AUPRC) of the best PWMs derived for each TF from the previous dataset 
using ExplaiNN (y-axis) or STREME [34] (x-axis). C Performance difference (i.e., ΔAUPRC) of the previous PWMs 
(x-axis) is plotted with respect to the dataset size of the corresponding TF (x-axis). D Execution time (in 
seconds; y-axis) of the de novo motif discovery application of ExplaiNN (green dots) and STREME (gray dots) 
is plotted with respect to the dataset size of the corresponding TF (x-axis). E Logos derived using ExplaiNN 
or STREME for the nuclear receptors AR, NR2F2, and VDR from the previous dataset. For comparison, the 
JASPAR [18] logos for these TF profiles are shown: MA0007.3 (AR), MA1111.1 (NR2F2), and MA0693.1 (VDR). F 
Performances (AUPRC; y-axis) of PWMs derived from different experimental assay datasets related to the TF 
GATA3 by different methods (x-axis), including ExplaiNN (green bars) and four assay-specific methods [34, 
38–40] (gray bars). G GATA3 logos derived from the dataset of each experimental assay using ExplaiNN or 
the assay-specific method. The JASPAR logo for this TF profile (MA0037.4), derived by applying RSAT [35] on 
the mouse Gata3 ChIP-seq data from ReMap [41], is shown at the top. AUPRC, area under the precision-recall 
curve; HMM, hidden Markov model; PBM, protein binding microarray; PWM, position weight matrix; S&W, 
Seed-And-Wobble; TF, transcription factor

(See figure on next page.)
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while STREME often reported partial motifs consistent with monomeric sites (Fig. 3(E) 
and Additional file  2: Fig. S3). These results are consistent with two recent reports in 
which we applied ExplaiNN to uncover the underlying mechanism of action of two dif-
ferent mutations in the TF IRF4 associated with immunodeficiency in children [43] and 
lymphoma [44]. In both cases, ExplaiNN was able to discover DNA motifs that were 

Fig. 3 (See legend on previous page.)
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shown to impair the genome-wide binding landscape of the mutant IRF4s and the tran-
scriptomes of the mutant cells.

Motivated by the success of ExplaiNN in discovering motifs in in  vivo data, and to 
demonstrate its capacity on data from various assays, we benchmarked ExplaiNN against 
other de novo methods, but this time using in vitro data (see the “Methods” section). We 
downloaded publicly available HT-SELEX [45], PBM [46], and SMiLE-seq [38] data for 
the TF GATA3, as well as the PWMs discovered in these datasets by three assay-specific 
de novo motif discovery methods: Autoseed [39] (HT-SELEX), Seed-and-Wobble [40] 
(PBM), and a hidden Markov model (HMM) approach (SMiLE-seq). The performance 
of the best PWMs derived with ExplaiNN was consistent regardless of the type of assay 
(Fig.  3(F)), as were their logos (Fig.  3(G)). Focusing on specific assays, the capacity of 
ExplaiNN to discover de novo motifs in the in vivo and SMiLE-seq data, as measured by 
the performance of the best PWMs derived, was comparable to that of STREME and the 
HMM-based method, respectively, while outperforming Autoseed and Seed-and-Wob-
ble in their corresponding assays (Fig. 3(F)). All GATA3 logos were very similar to each 
other and were also similar to the logo from JASPAR for this TF profile (MA0037.4), 
derived originally by applying RSAT [35] on mouse Gata3 ChIP-seq data from ReMap 
[41] (Fig. 3(G)). Taken together, this supports the potential of ExplaiNN as a fast, univer-
sal method for de novo motif discovery.

ExplaiNN recapitulates the cis‑regulatory lexicon of immune cell differentiation

To further explore the capabilities of ExplaiNN on distinct data types, we compared its 
performance against AI-TAC in predicting chromatin accessibility of sequences across 
81 immune cell types from 6 different lineages [9]. We started with an exploratory analy-
sis to determine the optimal number of units to train ExplaiNN. Saturation in model 
performance by means of average PCC between predicted and actual ATAC signals, as 
well as in the number of well-predicted sequences, occurred at ~ 250 units (Fig. 4 (A); 
see the “Methods” section); however, we decided to use 300 units, which is the same 
number of convolutional filters used in the first layer of AI-TAC. The performance of 
ExplaiNN by means of average PCC was comparable to that of AI-TAC (1–2% differ-
ence; Fig. 4 (A)), and the PCCs of individual sequences correlated well between the two 
models (Fig. 4 (B)); however, AI-TAC correctly predicted more sequences (Fig. 4 (A)). 
Next, we visualized both the filters and weights of each unit of the ExplaiNN model, 
identifying the same lineage-specific TF motifs reported in AI-TAC without having to 
undergo the computationally intensive process of filter nullification (Fig. 4 (C)): NFE2, 
NFI, and GATA (in stem cells); POU, EBF, and PAX (in B cells); TCF3, TCF7, Ets, and 
AP1 (in T cells); NR1 (nuclear receptor type 1), TBX, and REL (in innate lymphoid cells); 
and SPI, Krüppel zinc fingers, and CEBP (in myeloid cells). Moreover, we visualized the 
importances of each unit to understand their influence on the model’s predictions. For 
instance, CEBP- and PAX-like units were important for predicting accessibility in most 
cell types of the myeloid and B lineages, respectively (Fig. 4 (D and E)). Taken together, 
using ExplaiNN, we replicated the results of AI-TAC without the need to apply complex 
and time-consuming interpretation techniques by simply visualizing the weights and 
importances of each unit.
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ExplaiNN is suitable for the analysis of single‑cell chromatin accessibility data

Single-cell (sc) sequencing methods enable profiling of a wide range of genomic informa-
tion in individual cells (reviewed in [47]), including chromatin accessibility. To explore 
the utility of ExplaiNN for deciphering cis-regulatory properties from granular sc data, 
we reanalyzed a recent scATAC-seq dataset cataloging 228,873 OCRs across 15,298 
human pancreatic islet cells that were grouped into 12 clusters based on their accessi-
bility profiles [48]. We trained an ExplaiNN model with 400 units (i.e., the number of 
units at which model performance plateaued) on the sc data to predict the activity of 
each OCR across the 12 clusters and visualized both the filters and weights of each unit. 
We observed that the weights of some units exhibited cell type-specific patterns that 
had also been found using chromVAR [49] in the original study (Fig. 5(A)). For exam-
ple, PDX-like units had high positive weights for beta and delta cells, MAF-like units for 
alpha and beta cells, HNF1-like units for alpha and gamma but not for ductal cells, and 
FOX-like units for alpha, beta, and gamma cells. However, there were also differences: 

Fig. 4 Application of ExplaiNN in predicting chromatin accessibility in the mouse immune system. A 
Performances (average PCC; y-axis; green) and number of well-predicted sequences (secondary y-axis; gray) 
for ExplaiNN models (solid lines) with increasing numbers of units (x-axis) and AI-TAC (dashed lines) trained 
on OCRs in 81 immune cell types from 6 different lineages [9]. B Pairwise comparison of the individual 
performances (PCC) of the OCRs from the previous dataset between the ExplaiNN model trained using 300 
units (y-axis) and AI-TAC (x-axis). The Pearson correlation coefficient (R) of the individual OCR performances 
between the two methods is shown at the lower right corner. C Heatmap of the final linear layer weights 
of the ExplaiNN model trained using 300 units, with columns representing units with assigned biological 
annotations based on their Tomtom [27] similarity to known TF profiles from the JASPAR database [18] and 
rows representing the 81 immune cell types colored by lineage: stem cells (navy blue), B cells (turquoise), 
alpha/beta (forest green) and gamma/delta T cells (olive green), innate lymphoid cells (pink), and myeloid 
cells (purple). The logos derived from visualizing the filters of selected lineage-specific units are shown at 
the right. D, E Visualizations of importance scores colored by lineage for two units from the previous model 
annotated as CEBP and PAX, revealing their importance to the prediction of chromatin accessibilities in 
myeloid and B cell lineages, respectively. The logos of the filters of these units are shown at the top. OCR, 
open chromatin region; PCC, Pearson correlation coefficient; TF, transcription factor
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some units did not exhibit high positive weights in expected cell types (e.g., the high-
lighted Ets-like unit in endothelial cells), while others exhibited cell type-specific pat-
terns not reported in the original study (Fig. 5(A)). Next, we visualized the importances 
of each unit for their contributions to the physiological stratification of the cells, finding 
that RFX-like units were important for predicting OCRs in hormone-high (i.e., alpha, 
beta, and delta type 1 cells) but not in hormone-low cells (i.e., alpha, beta, and delta 
type 2 cells) (Fig. 5(B)). It was the opposite for AP1-like units: they were important for 
hormone-low but not hormone-high cells (Fig.  5(C)). Both results were in agreement 
with the original study. Taken together, ExplaiNN was able to reproduce and expand on 
the results from the original study while demonstrating its utility for the analysis and 
interpretation of scATAC-seq data.

ExplaiNN as a plug‑and‑play platform for TF motifs and deep learning models

Given that ExplaiNN models can be conceptualized as a PWM scanning layer feeding 
into fully connected layers, we reasoned that initializing the weights of each unit filter 
with a JASPAR profile would facilitate the interpretation process because the biologi-
cal annotations of the units would be known beforehand. To confirm this, we trained 
ExplaiNN models with increasing numbers of units (from 300 to 1492) on the AI-TAC 
dataset in which the filter weights of each unit had been initialized with JASPAR profiles 
(Fig. 6(A); see the “Methods” section). During training, the filter weights were frozen to 
prevent them from being refined (i.e., the models were only allowed to learn the weights 
of the fully connected and final linear layers). These JASPAR-initialized, frozen models, 
even the largest one with 1492 units, performed much worse than both AI-TAC and an 
ExplaiNN model with 300 units trained from scratch (Fig. 6(B)). Still, the importances of 
some units were informative. For example, a unit whose filter weights had been initial-
ized with the profile of Lef1 (MA0768.2) was important for predicting accessibility in 
T cells (Additional file 2: Fig. S4), in agreement with the role of this TF in establishing 
T cell identity [50]. We attributed the overall poor performance of these frozen models 
to the fact that many JASPAR profiles used to initialize the filters might be from TFs 
irrelevant for immune cells and, therefore, a refinement process would be required to 
allow them to better resemble the motifs of relevant TFs. Indeed, unfreezing the filter 
weights during training (and thus allowing their refinement) improved the performance 
of the model, approaching that of AI-TAC (Fig.  6(B)). Moreover, as a consequence of 
this refinement, > 35% of the filters underwent substantial changes; their visualization 
as PWMs revealed that they had become different from the original JASPAR profiles 

Fig. 5 ExplaiNN analysis and interpretation of scATAC-seq data of human pancreatic islets. A Heatmap of 
the final linear layer weights of an ExplaiNN model with 400 units trained on OCRs from human pancreatic 
islet sc data [48], with rows representing units with assigned biological annotations based on their Tomtom 
[27] similarity to known TF profiles from the JASPAR database [18] and columns representing the 12 clusters 
of cells based on their accessibility profiles and colored by cell type: alpha type 1 cells (purple), beta type 1 
cells (navy blue), delta type 1 cells (turquoise), alpha type 2 cells (forest green), beta type 2 cells (light green), 
delta type 2 cells (yellow), acinar cells (olive green), ductal cell (orange), endothelial cells (red), gamma cells 
(brown), immune cells (dark brown), and stellate cells (gray). The logos derived from visualizing the filters 
of selected units are shown at the right. B, C Visualizations of importance scores colored by cell cluster for 
two units from the previous model that were annotated as RFX and AP1 (TRE site), revealing their respective 
importance to the prediction of chromatin accessibilities in hormone-high and hormone-low cells. OCR, 
open chromatin region; scATAC-seq, single-cell ATAC-seq; TF, transcription factor

(See figure on next page.)
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used for their initialization (Tomtom [27] q-value > 0.05). For instance, a unit whose 
filter weights had been initialized with the profile of TFAP2C (MA0815.1), and whose 
importance across the different immune lineages when freezing the filter weights during 

Fig. 5 (See legend on previous page.)
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Fig. 6 Initializing ExplaiNN with JASPAR profiles and DanQ models. A Schematic representation of the 
proposed ExplaiNN model in which the convolutional filters of each unit are initialized with JASPAR [18] 
profiles. B Performance (average PCC; y-axis) and number of well-predicted sequences (secondary y-axis; 
black dots) for different models trained on OCRs from the AI-TAC dataset [9]: one ExplaiNN model with 300 
units that was trained normally (green), as well as different ExplaiNN models with increasing numbers of 
units (300, 500, 750, 1000, and 1492) that were initialized with JASPAR profiles (light green), with (pinstripes) 
and without (no pinstripes) freezing the weights of the filters during training. The performance of AI-TAC 
is provided as baseline (gray). C Refinement example for a filter whose weights had been initialized with 
the JASPAR profile of TFAP2C (MA0815.1). Freezing the filter weights during training was detrimental (top): 
the importance scores of that filter’s unit across all immune lineages were null. However, if filter weight 
refinement was allowed during training (i.e., no freezing; bottom), that filter was modified until it resembled 
the motif of EBF1, an important TF for maintaining B cell identity [51], and that same unit became important 
for predicting accessibility in B cells. D Schematic representation of the proposed transfer learning strategy in 
which ExplaiNN units are replaced with pretrained DanQ [7] models that can be followed (right) or not (left) 
by fully connected layers. E, F We used the transfer learning strategy on the left to train one ExplaiNN model 
with 350 units on the AI-TAC dataset in which the units had been replaced with 350 different pretrained 
DanQ models, each predicting the binding of a single TF to the mouse genome. During the training process 
of the ExplaiNN model, the DanQ models were frozen (i.e., their weights were not modified). Unit importance 
scores of DanQ models belonging to different members of the IRF and PAX TF families are shown. G We 
repeated the same process but using the transfer learning strategy on the right: each unit was replaced 
with a pretrained DanQ model but adding two fully connected layers after each model. Then, we applied 
UMAP [52] to cluster the OCRs based on their unit outputs. (top) UMAP clusters display cell-type specificity 
(e.g., alpha/beta T and myeloid cells). (bottom) The outputs of the Bcl11b and Cebpa DanQ model units 
strongly agree with their biologically relevant clusters. OCR, open chromatin region; PCC, Pearson correlation 
coefficient; TF, transcription factor; UMAP, uniform manifold approximation and projection
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training was null, became important for predicting accessibility in B cells; its filter was 
refined to such an extent that when visualized as a PWM it resembled the motif of EBF1, 
an important TF for maintaining B cell identity [51] (Fig. 6(C)).

Another limitation that arises during model interpretation is the inability to distin-
guish between TFs from the same structural family (i.e., TFs sharing the same class of 
DNA-binding domain), as they often have highly similar DNA-binding specificities 
[53]. In order to generate individual units with the resolution to highlight the impor-
tance of different paralogs, we implemented a transfer learning strategy (Fig. 6(D); see 
the “Methods” section): We pretrained 350 single-task DanQ models, each predicting 
the binding of a single TF to the mouse genome. The AUPRCs of the pretrained DanQ 
models ranged from 0.51 (E4f1) to 0.96 (Snai2), with a median of 0.78 across all mod-
els (Additional file 3). Then, we initialized an ExplaiNN model with 350 units in which 
we replaced the layers of each unit with one of the pretrained DanQ models. Similar 
to NAMs, we initialized a second ExplaiNN model in which we added two fully con-
nected layers after each DanQ model. Next, we fine-tuned both ExplaiNN models on 
the AI-TAC dataset, freezing the pretrained DanQ models (i.e., their weights were not 
modified). The performance of the fine-tuned models nearly reached that of AI-TAC 
(PCC = 0.335 and 0.343 vs. 0.360 for AI-TAC). Next, we visualized the importances of 
each DanQ model unit in the ExplaiNN model without fully connected layers, allowing 
us to disambiguate the contribution of individual TF family members (see the “Meth-
ods” section). For instance, the Irf4 and Irf8 units were important for predicting acces-
sibility in different immune lineages (Fig. 6(E)), in agreement with the distinct roles of 
these TFs: Irf4 regulates B, T, myeloid, and dendritic cell differentiation [54], while Irf8 
regulates B and myeloid cell lineages [55]. Similarly, the Pax5 unit was important for pre-
dicting accessibility in B cells, consistent with the role of this TF in establishing B line-
age identity and function [56]; in contrast, the importances of the Pax3 and Pax7 units 
across immune lineages were negligible, in agreement with their role in regulating myo-
genesis [57] (Fig. 6(F)). Finally, we applied UMAP [52] to cluster the sequences based on 
their unit outputs in the second ExplaiNN model, resulting in three main clusters that 
were associated with ATAC signals in alpha/beta T, myeloid, and B cells (Fig. 6(G) and 
Additional file 2: Fig. S5). The outputs of some units were in strong agreement with a 
biologically relevant cluster. For example, the Bcl11b unit outputs were confined within 
the boundaries of the alpha/beta T cell cluster, consistent with its role in the differentia-
tion and survival of these lymphocytes [58], the Cebpa unit outputs within the myeloid 
cluster, in agreement with its role in myeloid differentiation [59], and the Ebf1 unit out-
puts within the B cluster (Fig. 6(G) and Additional file 2: Fig. S5). Taken together, replac-
ing the units of ExplaiNN with pretrained high-resolution TF binding models achieved 
performance levels comparable to state-of-the-art deep learning models while providing 
the additional value of gaining insights into the roles of individual TFs. This flexibility 
of incorporating different components into ExplaiNN offers the potential for increased 
performance while retaining interpretability.
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Discussion
ExplaiNN is an explainable deep learning approach designed for straightforward discov-
ery of genomic features contributing to model performance for a broad range of pre-
dictive tasks related to DNA sequence data. Inspired by the recently introduced NAMs, 
the architecture of ExplaiNN is based on multiple, simple, independent CNN units that 
recognize sequence patterns. The outputs of these units are subsequently combined in a 
similar manner to classical regression analysis techniques. We benchmarked ExplaiNN 
on diverse tasks, including sequence-based prediction of TF binding, chromatin acces-
sibility, both from bulk and single-cell data, enhancer activity, and de novo motif dis-
covery. Through this array of diverse applications, ExplaiNN performed comparably to 
leading methods specialized for the independent tasks.

While deep learning models have been successful at revealing novel biological 
insights from high-throughput sequencing data, outperforming traditional PWM-based 
approaches such as motif enrichment analysis, their adoption in the genomics field 
remains largely in the hands of deep learning experts. This is in part a consequence of 
their perceived opaque nature and lack of consensus on best practices for their interpre-
tation, making it difficult for the non-specialist to apply these methods routinely. There is 
a growing need for deep learning models that are more interpretable and easy to use [14, 
15]. ExplaiNN is one such approach. Architecturally, ExplaiNN models are constrained 
to only capturing homotypic cooperativity, excluding heterotypic interactions between 
pairs of motifs. It may therefore be surprising to some that in practice ExplaiNN per-
forms so well across a wide range of predictive tasks. One reason behind this could be 
that excluding higher-order interactions acts as a regularizer leading to more accurate 
predictions than multi-layer CNN models on simple tasks such as TF binding prediction. 
Another reason could be that the presence of higher-order interactions in the genomics 
datasets explored could be marginal, in agreement with recent studies suggesting that 
cis-regulatory logic may be less complex than some believe [60, 61]. Alternatively, these 
kinds of complex interactions may be highly specific to individual enhancers, and thus 
not detectable by models generalized for analysis across the genome. As exemplified by 
the DeepSTARR analysis in this report, comparisons between ExplaiNN and non-linear 
models can enable researchers to assess the benefit from allowing non-linear interac-
tions. In such cases where there is not substantial benefit, the use of the simpler, readily 
interpretable method may be preferred.

The emergence of new methods for regulatory sequence analysis is a recurrent pro-
cess. An important early approach to identifying recurring subsequences associated with 
TFBSs used the expectation–maximization algorithm to learn a PWM from a set of una-
ligned regulatory sequences [62]. These individually learned PWMs could then be used 
in a linear model to make predictions regarding various properties of a given sequence 
[63]. ExplaiNN could be perceived as a direct extension of this approach, wherein its 
convolutional filters learn a large amount of PWMs simultaneously; however, unless the 
fully connected layers of each unit were replaced with a global maximum pooling layer, 
their activation values would not be equivalent to those of independent PWM scans. The 
fully connected layers might transform the activation values into more expressive and 
informative scores leading to better performance. As we have shown, this expressiveness 
is likely achieved by learning relevant motif positional information.
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As shown throughout this work, ExplaiNN has the potential to be applied to multiple 
problems. This flexibility may motivate users to become proficient with the system as 
they will be able to work across or within topics using the same tool. As presented here 
for de novo motif discovery, the flexibility to apply ExplaiNN to both ChIP-seq data and 
multiple special classes of in vitro TF binding data has the promise to reduce the num-
ber of methods that must be mastered.

There remains an ample variety of potential directions for further development of 
ExplaiNN, split between enhanced technical capabilities and user empowerment. It 
should be possible to integrate a more complex model architecture within the system 
to account for the “missing complexity” (e.g., non-linearity). As implemented, ExplaiNN 
cannot address analyses requiring large receptive fields (e.g., Akita [5], Xpresso [11], 
Basenji [64], or Enformer [12]), but it should be possible to implement such capacity 
within the system. Incorporating more advanced visualization techniques and data pro-
cessing tools would ease the adoption of ExplaiNN by scientists working on applied 
problems who currently rely on heritage methods for regulatory sequence analysis.

The software for using ExplaiNN is provided open-source in a well-documented 
repository, and it is our hope that it will lead to or inspire widespread use of interpret-
able deep learning methods.

Conclusions
Sequence-based deep learning models perform well on genomics-related tasks but can 
be challenging to interpret. ExplaiNN bridges this gap by using an interpretable neural 
network design, providing both global (cell state level) and local (individual sequence 
level) biological insights into the data without compromising on performance, thus 
allowing researchers to accelerate their genomic analyses.

Methods
Model architectures

Unless otherwise specified, each ExplaiNN unit consisted of:

• 1st convolutional layer with 1 filter (19 × 4), batch normalization, exponential activa-
tion, and max pooling (kernel size = 7, stride = 7)

• 1st fully connected layer with 100 nodes, batch normalization, ReLU activation, and 
30% dropout

• 2nd fully connected layer with 1 node, batch normalization, and ReLU activation

In the 1st convolutional layer, exponential activation was used (as opposed to ReLU), 
as it has been shown to significantly improve the recovery of biologically meaningful 
motifs from the filters [26]. The final layer of ExplaiNN is linear: one fully connected 
output layer with n outputs (e.g., 50 in the initial TF binding prediction task or 81 when 
predicting chromatin accessibility states across immune cells).

For the  CNN1 and  CNN1Exp architectures, we used the following specifications:
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• 1st convolutional layer with 100 filters (19 × 4), batch normalization, ReLU (for 
 CNN1) or exponential (for  CNN1Exp) activation, and max pooling (kernel size = 7, 
stride = 7)

• 1st fully connected layer with 1000 nodes, batch normalization, ReLU activation, and 
30% dropout

• 2nd fully connected layer with 1000 nodes, batch normalization, ReLU activa-
tion, and 30% dropout

• Fully connected output layer with 50 outputs

For the DeepCNN (adapted from Basset [8]):

• 1st convolutional layer with 100 filters (19 × 4), batch normalization, ReLU acti-
vation, and max pooling (kernel size = 3, stride = 3)

• 2nd convolutional layer with 200 filters (7 × 1), batch normalization, ReLU acti-
vation, and max pooling (kernel size = 3, stride = 3)

• 3rd convolutional layer with 200 filters (4 × 1), batch normalization, ReLU acti-
vation, and max pooling (kernel size = 3, stride = 3)

• 1st fully connected layer with 1000 nodes, batch normalization, ReLU activation 
and 30% dropout

• 2nd fully connected layer with 1000 nodes, batch normalization, ReLU activa-
tion, and 30% dropout

• Fully connected output layer with 50 outputs

For DanQ [7]:

• 1st convolutional layer with 320 filters (26 × 4), ReLU activation, 20% dropout, 
and max pooling (kernel size = 13, stride = 13)

• 2 bi-directional LSTM layers with a hidden state size of 320 and 50% dropout
• 1st fully connected layer with 925 nodes and ReLU activation
• Fully connected output layer with 1 or 50 outputs (depending on the task)

For DeepSTARR [30]:

• 1st convolutional layer with 256 filters (7 × 4), padding of size 3, batch normali-
zation, ReLU activation function, and max pooling (kernel size = 2, stride = 2)

• 2nd convolutional layer with 60 filters (3 × 1), padding of size 1, batch normaliza-
tion, ReLU activation function, and max pooling (kernel size = 2, stride = 2)

• 3rd convolutional layer with 60 filters (5 × 1), padding of size 2, batch normaliza-
tion, ReLU activation function, and max pooling (kernel size = 2, stride = 2)

• 4th convolutional layer with 120 filters (3 × 1), padding of size 1, batch normali-
zation, ReLU activation function, and max pooling (kernel size = 2, stride = 2)

• 1st fully connected layer with 256 nodes, batch normalization, ReLU activation 
function, and 40% dropout

• 2nd fully connected layer with 256 nodes, batch normalization, ReLU activation 
function, and 40% dropout

• Fully connected output layer with 2 outputs
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The AI-TAC architecture was provided by Maslova and colleagues [9]. All archi-
tectures were implemented using the PyTorch framework [65] (version 1.9.0).

Interpretability with ExplaiNN

First, we converted the filter of each unit into a PWM by following the specifications 
from the AI-TAC manuscript: For each filter, we built a position frequency matrix (PFM) 
by aligning all 19-mers (i.e., 19  bp-long DNA sequences) activating that filter’s unit 
by ≥ 50% of its maximum activation value in correctly predicted sequences. The result-
ing PFM was then transformed into a PWM by setting the background uniform nucle-
otide frequency to 0.25. Next, the PWM derived from each filter was mapped to one 
or more profiles from the vertebrate collection of the JASPAR 2020 database [18] using 
Tomtom [27] (version 5.3.0; q-value ≤ 0.05), which, in turn, were used to annotate that 
filter’s unit. For instance, a unit whose filter’s PWM were similar to the profiles of mem-
bers from the SOX TF family would be annotated as “SOX-like.”

For global interpretability, we visualized the weights of each unit in the final linear 
layer of the model (e.g., using a heatmap). Usually, these weights were associated with 
the importance of the unit for each task. In some cases, however, they were highly posi-
tive or negative for a task in which the unit was not activated by the input sequences. To 
overcome this limitation and obtain more fine-grained unit importances, for each unit 
and for each task, we computed the product of the unit’s activation for each sequence 
with the final layer weight for that task and visualized them (e.g., using a boxplot). For 
visualization, for each unit, we only included the products from correctly predicted 
sequences activating that unit’s filter by ≥ 50% of its maximum activation value. In addi-
tion, for each unit and for each task, the median of these products was used to assess the 
importance of that unit for that task.

Interpretability with DeepLIFT and TF‑MoDISco

For each correctly predicted sequence in the test set, we generated DeepLIFT [22] 
importance scores with 10 reference sequences using the Captum library [66] (ver-
sion 0.4.0). We used TF-MoDISco [23] (version 0.5.14.0) with default settings to obtain 
motifs from DeepLIFT importance scores.

Training, validation, and test datasets

To obtain human in vivo TF binding data, we repurposed a previously described data 
matrix aggregating the binding of 163 TFs to 1,817,918 200-bp-long DNase I hypersensi-
tive sites (DHSs) in 52 cell and tissue types [28]. For each TF-DHS pair, a “1” was used to 
indicate that the DHS was accessible and bound by the TF (i.e., the DHS and at least one 
ChIP-seq peak summit of that TF from ReMap 2018 [41] overlapped), a “0” that the DHS 
was accessible but not bound by the TF, and a null sign (“∅”) that it was not accessible to 
the TF for binding (i.e., unresolved). For the  CNN1,  CNN1Exp, DeepCNN, DanQ, and 
ExplaiNN models predicting the binding of 50 TFs, we extracted a slice of the matrix 
including the row vectors of the 50 TFs, removing any column vectors with unresolved 
elements. The resulting resolved regions for all 50 TFs were randomly split into train-
ing (80%), validation (10%), and test (10%) sets using the “train_test_split” function from 
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scikit-learn [67] (version 0.24.2; datasets were always randomly split in this way). For 
de novo motif discovery, since the number of bound versus unbound regions of all TFs 
was imbalanced, we subsampled the set of unbound regions to a 50:50 ratio for each TF 
while accounting for their %GC content distributions. The resulting datasets were ran-
domly split into training (80%), validation (10%), and test (10%) sets while maintaining 
an equal proportion of bound and unbound regions.

Mouse in  vivo TF binding data was obtained as follows: First, we downloaded non-
redundant mouse ChIP-seq peaks for 350 DNA-binding TFs [68] from ReMap. We 
resized each ChIP-seq peak to 201 bp by extending its summit 100 bp in both directions. 
Furthermore, we retrieved an atlas of 1,802,604 DHS regions in the mouse genome 
[69], which we also resized to 201 bp around the center of each DHS. In both cases, we 
applied BEDTools slop [70] (version 2.30.0). We then created a set of negative sequences 
for each TF by subsampling non-overlapping regions from the DHS atlas while matching 
the %GC content distribution of its ChIP-seq peaks. The resulting sequences for each TF 
were randomly split into training (80%), validation (10%), and test (10%) sets while keep-
ing the same ratio between positive and negative sequences.

PBM data was downloaded from UniPROBE [46] (Gata3; UP00032; clone ID 
pTH1024). Probe signal intensities were quantile normalized (QN) using the “quan-
tile_transform” function from scikit-learn. Probes were 60 bp long, including both the de 
Bruijn and linker sequences. The arrays AMADID #015681 and #016060 were used for 
training and validation, respectively.

HT-SELEX [45] and SMiLE-seq [38] data were retrieved from the Sequence Reposi-
tory Archive (run ids: ERR1003435, ERR1003437, ERR1003439, ERR1003441, and 
SRR3405148) using parallel-fastq-dump (version 0.6.7). For HT-SELEX data, we treated 
each cycle as an independent class as in Asif and Orenstein [71], thereby removing the 
need for negative sequences. Reads were randomly split into training (80%) and valida-
tion (20%) sets while preserving the proportions between reads from each cycle. For 
SMiLE-seq data, reads were left- and right-clipped 7 and 64 bp, respectively, for a final 
length of 30  bp corresponding to the randomized DNA. A set of negative sequences 
were obtained by dinucleotide shuffling using BiasAway [72] (version 3.3.0). Sequences 
were randomly split into training (80%) and validation (20%) while maintaining an equal 
proportion between positives and negatives.

Binarised human pancreatic islet scATAC-seq data was obtained from [48]. Data was 
denoised by training a PeakVI [73] model with 21 latent dimensions using scvi-tools [74] 
(version 0.14.6). The denoised profiles were used to compute the mean accessibility of 
each peak in the 12 clusters identified in the original study. Peaks were resized to 600 bp 
around the center of each peak using BEDTools slop. Peaks from chromosome 1 were 
used for validation, peaks from chromosomes 10, 11, and 12 for testing, and peaks from 
the remaining chromosomes for training.

The AI-TAC and DeepSTARR datasets were obtained from the original publications, 
and we used the same data splits.

Model training

Unless otherwise specified, we trained all models using the Adam optimizer [75] and 
binary cross entropy as loss function, except for models trained on PBM data, wherein 
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we used the mean squared error. We applied one-hot encoding to convert nucleotides 
into 4-element vectors (i.e., A, C, G, and T), set the learning rate to 0.003 and batch size 
to 100, and used an early stopping criteria to prevent overfitting when the model perfor-
mance on the validation set did not improve. The training and validation sets included 
the reverse-complement of each sequence. Sequences with Ns were discarded.

De novoPWMs

For each of the 163 TFs from the data matrix, we trained one ExplaiNN model with 100 
units using its training and validation sets and then visualized the filters and importance 
scores of each unit, resulting in 100 PWMs per TF. As baseline, we applied STREME [34] 
(version 5.3.0) on the set of training sequences of each TF to also generate 100 PWMs: 
We set the fraction of sequences held-out for p-value computation to 0 (option –hof-
ract), the maximum length of the PWMs to 19 bp (i.e., the filter size in ExplaiNN; option 
–maxw), and the number of output PWMs to 100 (option –nmotifs). Next, for each TF 
and for each of its PWMs, we evaluated the PWM performance by keeping the score of 
the best hit from scanning that PWM along both strands of each sequence in the test set 
and computing the AUPRC.

Like above, for each GATA3 in vitro assay (i.e., HT-SELEX, PBM, and SMiLE-seq), we 
trained one ExplaiNN model with 100 units using the training and validation sets and 
visualized the filter of each unit, resulting in 100 PWMs for each assay. However, the 
task of the ExplaiNN model trained on HT-SELEX data was multiclass classification: the 
model tried to predict the cycle of origin of each input read, with the expectation that 
the last cycles would be enriched for bound sequences of the TF. In addition, for PBM 
data, the task of the ExplaiNN model was to infer QN intensity signals of each probe.

For each TF and for each assay, the best PWM was selected based on its performance 
on the corresponding validation set.

Plug‑and‑play

First, we resized all 746 profiles from the JASPAR 2020 vertebrate collection to 19 bp. 
Then, we applied a farthest point sampling procedure to remove profile redundancy 
based on Tomtom similarities starting from the most dissimilar profile. This resulted in 
four different sets of non-redundant profiles of sizes 150, 250, 375, and 500. Next, we 
computed the reverse complement of each profile, doubling the number of profiles in 
each non-redundant set to 300, 500, 750, and 1000, and raising the number of profiles 
in the JASPAR 2020 vertebrate collection to 1492. We trained ExplaiNN models with 
increasing numbers of units (300, 500, 750, 1000, and 1492) on the AI-TAC dataset in 
which the filter weights of each unit were initialized with those JASPAR profiles. To 
initialize filter weights with profiles from JASPAR, we followed the specifications from 
DanQ: We reformatted JASPAR profiles as PWMs using Biopython [76] (version 1.79) 
and then converted them to filter weights by subtracting 0.25 from the probability of 
each nucleotide at each PWM position. During training, nullification of gradients could 
be applied to freeze the filter weights.

For each of the 350 TFs from the mouse in vivo TF binding data, we trained a DanQ 
model using the training and validation sets of that TF and assessed its performance 
by computing the AUPRC on the test set. We then scored the sequences from the 
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AI-TAC dataset keeping the outputs from each model (pre- or post-sigmoid). Next, 
we combined the outputs of each sequence in one fully connected layer with 81 
output nodes. Alternatively, each DanQ output could be embedded in its own fully 
connected neural network with one layer and 200 nodes, resulting in 350 processed 
outputs ultimately combined in one fully connected layer with 81 outputs.

UMAP clusters were obtained and plotted using the UMAP Python library [52] 
(version 0.5.2).
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