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Abstract 

Background: Single‑cell histone post translational modification (scHPTM) assays such 
as scCUT&Tag or scChIP‑seq allow single‑cell mapping of diverse epigenomic land‑
scapes within complex tissues and are likely to unlock our understanding of various 
mechanisms involved in development or diseases. Running scHTPM experiments and 
analyzing the data produced remains challenging since few consensus guidelines 
currently exist regarding good practices for experimental design and data analysis 
pipelines.

Results: We perform a computational benchmark to assess the impact of experimen‑
tal parameters and data analysis pipelines on the ability of the cell representation to 
recapitulate known biological similarities. We run more than ten thousand experiments 
to systematically study the impact of coverage and number of cells, of the count matrix 
construction method, of feature selection and normalization, and of the dimension 
reduction algorithm used. This allows us to identify key experimental parameters and 
computational choices to obtain a good representation of single‑cell HPTM data. We 
show in particular that the count matrix construction step has a strong influence on 
the quality of the representation and that using fixed‑size bin counts outperforms 
annotation‑based binning. Dimension reduction methods based on latent semantic 
indexing outperform others, and feature selection is detrimental, while keeping only 
high‑quality cells has little influence on the final representation as long as enough cells 
are analyzed.

Conclusions: This benchmark provides a comprehensive study on how experimental 
parameters and computational choices affect the representation of single‑cell HPTM 
data. We propose a series of recommendations regarding matrix construction, feature 
and cell selection, and dimensionality reduction algorithms.

Background
Posttranslational modifications (PTM) of histone proteins are key epigenetic events 
that modulate chromatin structure, nucleosome positioning and transcription. They are 
involved in numerous biological processes, including DNA repair [1], development [2, 
3], and cancer [4]. With the recent advent of high-throughput technologies to measure 
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histone PTM at the single-cell level (scHPTM), such as single-cell chromatin immuno-
precipitation followed by sequencing (scChIP-seq) [5] and single-cell cleavage under tar-
gets and tagmentation (scCUT &Tag) [6, 7], it is now feasible to explore the diversity of 
histone PTM in complex biological samples with an ever-increasing level of details [6, 
8–10]. ScHPTM has already allowed new biological insights such as the discovery of epi-
genetic factors involved in cancer response to chemotherapy [11] and is likely to unlock 
our understanding of various epigenetic mechanisms in the years to come.

While scHPTM has great potential, it is also a relatively recent approach which comes 
with numerous computational challenges that need to be addressed in order to fully 
deliver its promise of capturing biologically relevant information from raw experimental 
data. In this work, we leave aside the question of which technology to use to generate 
scHPTM data and focus instead on two important questions for practitioners, namely, 
(1) how to design experiments, in particular to choose a good trade-off between num-
ber of cells and coverage, and (2) how to computationally analyze the raw experimen-
tal data and transform them in biologically relevant representations, where subsequent 
analysis such as cell classification or lineage inference become feasible. While both ques-
tions have been investigated through systematic benchmarks and comparisons for more 
mature single-cell technologies such as single-cell RNA-seq (scRNA-seq) and single-cell 
sequencing assay for transposase-accessible chromatin (scATAC-seq) [12–16], we are 
not aware of any similar study conducted for the burgeoning field of scHPTM, leaving 
experimentalists without rational guidelines on how to design their scHPTM experi-
ments and analyze the data they produce.

Given the similar nature of raw experimental data between scHPTM and scATAC-
seq, namely, sequencing reads capturing an epigenomic signal distributed in specific 
regions over the whole genome, it would seem natural to use the same computational 
methods to analyze scHPTM and scATAC-seq data. However, both modalities differ in 
many aspects. First, the actual distribution of reads can be drastically different between 
scHPTM and ATAC-seq. Indeed, ATAC-seq reads are known to cluster in relatively 
small, ∼ 1k base pairs (kbp), regions [17], whereas the regulatory regions for scHPTM 
vary much more widely in size (e.g., between 5 kbp and 2000 kbp for H3K27me3 
[17]), and their locations can vary depending on the histone mark―from enhancers 
(H3K27ac) to gene body (H3K36me3) or intergenic regions (H3K27me3). Second, with 
current technologies, the number of sequenced reads in scHPTM is generally between a 
few hundred and a few thousand per cells, compared to several thousands for scATAC-
seq and tens of thousands for scRNA-seq. Such a low coverage leads to only about 1% of 
the expected enriched regions to contain at least one read per cell (compared to 1–10% 
for scATAC-seq and 10–45% for scRNA-seq [12]). Thus, one can not assume that com-
putational recommendations for scATAC-seq or RNA-seq hold for scHPTM.

To start filling this gap, we perform in this paper a large-scale computational study to 
evaluate the impact on embeddings and performances of different parameters: (i) the 
number of cells, (ii) coverage per cell, (iii) cell selection, (iv) matrix construction algo-
rithm, (v) feature selection, and (vi) dimension reduction algorithm. The analysis of 
more than 10,000 computational experiments allows us to clarify the impact of vari-
ous experimental choices and data processing factors for scHTPM data and to suggest 
practical guidelines. To quantify the impact of each of these factors, we use neighbor 
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scores―based on the comparison of epigenomic and transcriptomic embeddings 
when possible―as well as Adjusted Mutual Information (AMI) or Adjusted Rand 
Index (ARI) to compare to reference labels. For two single-cell multi-omics datasets, in 
addition to scHPTM, a second modality is measured for each cell (gene expression or 
cell surface proteins); in this case, we can assess neighbor score, i.e., how well the cell-
to-cell similarity observed with scHPTM data analysis agrees with the one inferred from 
the co-assay (RNA or protein) [18, 19].

Results
Benchmarking methods for scHPTM analysis

Irrespective of the technology used, most protocols for scHPTM analysis produce 
sequencing reads which, after being mapped to a reference genome, indicate where on 
the genome a given PTM mark is likely to be present in each individual cell under study. 
A number of computational steps are then applied to transform these raw data into a 
useful representation of each individual cell, where downstream applications such as cell 
classification or differential analysis are performed. Here, we focus on computational 
frameworks that produce a representation of each cell as a vector of moderate dimen-
sion (typically, 10 to 50 dimensions), which has been found to be a powerful approach 
for scRNA-seq data analysis [20] and is currently the de facto standard for scATAC-seq 
and scHPTM as well [20]. Going from the mapped read to a vector representation for 
each cell involves a number a steps that we investigate in this study (Fig. 1A), including 
(1) the binning of the mapped reads into genomic regions in order to create a cell×region 
count matrix to summarize the raw data, (2) various quality control (QC) preprocessing 
operations to filter out low-quality cells and regions, and (3) an embedding method to 
build the representation of each cell from the preprocessed count matrix. Each step can 
be performed in many different ways, and we propose a benchmark to assess the impact 
of each choice at each step on the final cell representation (Fig. 1).

In order to evaluate the impact of each decision on the quality of the final representa-
tion, we need reference datasets and a way to quantify the quality of that representa-
tion. A standard approach to measure this is to evaluate the performances of clustering 
algorithms on these representations (such as in [13]). This approach requires cell type 
annotations, which can either be computationally derived or experimental (e.g., through 
cell lines or FACS). scHPTM protocols being rather recent, datasets with experimental 
labels are rare; here, we use the dataset from [11], with treated or untreated breast can-
cer cells as experimental labels. In addition, due to this lack of sufficient ground truth 
reference datasets for scHPTM analysis, we also rely on two datasets produced with 
multiomics co-assays (Table  1), where two modalities are measured simultaneously in 
each cell. More precisely, we consider a mouse brain dataset from [9] where five his-
tone marks (H3K4m1, H3K4me3, H3K9me3, H3K27ac, and H3K27me3) are assessed 
by scHPTM jointly with scRNA-seq-based gene expression, and a human peripheral 
blood mononuclear cell (PBMC) dataset from [10] where the same five histone marks 
are assessed by scHPTM jointly with CITE-seq-based cell surface proteins. For both 
datasets, we use a unique representation of the second modality (respectively, scRNA-
seq and CITE-seq) using a well-established method as a reference (scanpy’s [21] imple-
mentation of PCA) and compare each representation obtained from the scHPTM data 
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to that reference. We compute a neighbor score that assesses to what extent neighbor 
cells in the scHPTM representation are also found neighbors in the reference represen-
tation of the second modality. The neighbor score varies between 0 when both represen-
tations disagree completely to 1 when both representations are identical (see Methods 
and Fig. 1B). This evaluation has been previously used in [18, 19] and is currently the 
standard for evaluating modality alignment tasks in recent community benchmarks such 

Fig. 1 Overview of the evaluation protocol. A We build the count matrix using different bin sizes as well as a 
GeneTSS annotation and peaks called on the pseudo bulk with both MACS2 and SICER (only for the human 
PBMC dataset), for the MDA‑MB468 dataset we also used author provided annotations. We then simulate 
in silico different experimental conditions for studying the role of the number of cells in a dataset, and the 
effect of the coverage per cell, as well as different feature selection strategies. Afterwards, we run 9 different 
dimension reduction methods to obtain the cell representations. B In order to compute the neighbor 
score, we start by selecting a cell, we then build the kNN graph for a value of k (5 in the figure), and we then 
compute the size of the intersection between the neighborhood of the cell in the two embeddings (3 cells in 
the figure) and divide it by k to obtain the score for one cell and one value of k (score of 0.6 in the figure). We 
then compute and average this score over all the cells, to have an neighbor score for a given value of k; that 
score is then further averaged over different values of k (0.1%, 0.3%, 0.5%, 1%, 3%, 5%, and 10% of the number 
of cells in the experience) to obtain the final neighbor score

Table 1 Description of the datasets used for this study

Tissue Source Co-assay Mark Number of cells

Mouse brain [9] RNA‑seq H3K4me1 12,962

H3K4me3 7465

H3K9me3 12,044

H3K27ac 11,749

H3K27me3 6534

Human PBMC [10] CITE‑seq H3K4me1 12,770

H3K4me3 10,386

H3K9me3 8304

H3K27ac 15,609

H3K27me3 8232

MDA‑MB468 [11] None H3K27me3 6031–9840
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as https:// openp roble ms. bio/. We furthermore use the initial labels from authors―
computationally derived―to evaluate representations with ARI and AMI.

For each dataset and each histone PTM mark, we systematically vary the choices that 
we can make in each step of the computational pipeline that goes from the mapped reads 
to the scHPTM representation of each cell and measure the quality of the final represen-
tation with the neighbor score to assess the impact of the choices.

More precisely, for the first step that bins mapped reads to regions in order to build a 
first cell×region count matrix, we consider three different strategies that represent the 
various approaches used in practice for the analysis of single-cell epigenomic assays: 
(1) discretizing the whole genome into “bins” of fixed size and trying different sizes fol-
lowing a logarithmic progression between 5 kbp and 1000 kbp, (2) counting the reads 
into bins based on prior biological knowledge, i.e., on genes and transcription start sites 
annotations (GeneTSS), and (3) counting the reads into a set of peaks, characteristic of 
each cell population found in the sample (identified from the corresponding pseudo bulk 
using MACS2 [22], “MacsPseudoBulk,” or SICER [23], “SicerPSeudoBulk”). This last 
approach was only performed with the human PBMC dataset that is distributed in a for-
mat that allows us to build the pseudo bulk and use it for peak calling. With these matri-
ces, we attempt different feature selection approaches to select only a subset of genomic 
regions to keep for further analysis: (1) selection of highly variable regions using Seu-
rat’s [24] FindVariableFeatures function (variable features) and (2) selection of regions 
with the highest coverage (top features). The first feature selection method is the current 
standard in scRNA-seq, and the second approach is recommended in Signac [25] for 
analyzing scATAC-seq. We further study the role of cell filtering based on their cover-
age, which is part of the standard analysis steps. For region filtering, we study the effect 
of coverage and variance filtering. We also simulate different experimental conditions 
in silico in order to evaluate how cell numbers affect cell representation, as well as the 
importance of their coverage. Finally, we consider nine popular methods for analyzing 
the count matrices: cisTopic [26], Signac [25] SnapATAC [27], PeakVI [18], SCALE [28], 
ChromSCape [29] with TF-IDF (ChromSCape_LSI) and count per million (CPM) nor-
malization (ChromSCape_PCA), and NMF with no normalization (NMF) or TF-IDF 
transformation (TFIDF-NMF).

This leads us to test 11,970 combinations of mark, dimension reduction method, 
matrix construction, cell selection, feature selection, number of cells, and coverage con-
ditions, out of which 11,080 ran successfully (Additional file  1: Tables S1-S2). Failures 
to run were generally due to memory issues on small bin sizes and GeneTSS annota-
tion. We then analyze the impact of each decision choice and experimental condition 
by assessing statistically how the neighbor score of the representation varies with the 
decision.

TF-IDF-based methods outperform other methods

We first focus on the influence of the embedding methods on the quality of the final rep-
resentation. The nine methods we selected implement a broad range of algorithms that 
are currently used for the analysis of scATAC-seq and scHPTM data. More precisely, 
ChromSCape_PCA is a simple use of PCA after count per million (CPM) normaliza-
tion, which serves as baseline. ChromSCape_LSI and Signac implement two variants of 

https://openproblems.bio/
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the latent semantic indexing (LSI) algorithm, which consists in transforming the count 
matrix with TF-IDF and applying PCA on that matrix. They have been used to analyze 
scHPTM data [10, 29], and differ in the fact that ChromSCape_LSI weights the princi-
pal components by their eigenvalues, as is standard to do with PCA, while Signac does 
not and instead whitens the data representation. They implement variants of the algo-
rithm used in Cusanovich2018 [30–32], which was found with SnapATAC and cisTopic 
to be among the best methods for scATAC-seq data analysis in [12]. NMF has also been 
used in combination to TF-IDF to analyze single-cell datasets, in scOpen [33]. SnapA-
TAC computes the Jaccard similarity between all the cells, and runs kernel PCA on this 
similarity matrix. cisTopic binarizes the count matrix and then applied latent Dirichlet 
allocation (LDA) on this modified matrix. Finally, SCALE and PeakVI both implement 
a variational autoencoder (VAE) with a product of Bernoulli likelihood function. They 
differ in the fact that SCALE uses a mixture of gaussian prior where PeakVI uses a uni-
modal gaussian prior. Furthermore, PeakVI computes corrections for the size factor of 
each cell as well as for the accessibility of each DNA region. We run all methods with 
their default parameters (see Methods). In particular, we keep the default number of 
dimensions for all methods; indeed, some methods offer their own heuristics for decid-
ing the number of dimensions, and we did not want to disadvantage them by using a 
dimension they do not consider optimal. More precisely, PeakVI sets by default the 
dimension to the square root of the square root of the number of regions, while cisTopic 
trains model for multiple dimensions and chooses one based on an elbow rule of its evi-
dence lower bound (ELBO). Signac uses a dimension of 50 by default, while SnapATAC, 
SCALE, NMF, TFIDF-NMF, and ChromSCape have a default dimension of 10.

Figures 2A and Additional file 1: Fig. S4 summarize the performance of each embed-
ding method on the different histone PTM marks in the mouse brain and human PBMC 
datasets, respectively. In those plots, we summarize the performance of each embedding 
method by reporting the best performance achieved by each embedding method across 
all possible matrix construction choices, without performing any additional QC process-
ing such as cell or feature selection. This allows us to quantify the best possible result 
that each embedding method can reach without setting an arbitrary feature engineer-
ing pipeline that could advantage some methods over others. We see that the neighbor 
scores vary roughly in the range 0.05∼0.35 across methods, datasets, and marks. As can 
be seen in Fig.  2B, where we visualize the embeddings obtained by ChromSCape_LSI 
on different marks on the mouse brain dataset, this corresponds to a fairly good agree-
ment with scRNA-seq embedding in terms of recovering major cell types, particulary for 
H3K27ac (score = 0.302) and H3K4me1 (score = 0.321). Interestingly, we observe differ-
ences in the neighbor scores of different marks across methods in the mouse brain data-
set, with H3K4me1 and H3K27ac (score = 0.291± 0.028 and 0.273± 0.026 , respectively) 
generally higher than H3K9me3 and H3K27me3 and H3K4me3 (score = 0.148± 0.040 , 
0.169± 0.033 , and 0.112± 0.035 , respectively). Note that this does not necessarily mean 
that some marks are more informative than others but rather than they are less directly 
linked to expression than others. A similar trend is visible but weaker on the human 
PBMC dataset (Additional file  1: Fig.  S4), where in particular the scores on H3K27ac 
and H3K4me1 are lower than on the mouse brain dataset (scores=0.113± 0.031 and 
0.150± 0.021 , respectively). This difference between the mouse brain and human PBMC 
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datasets could be caused by the differences in co-assay, by the relative complexity of the 
cell types, or by the quality of the experiments.

The performance of each method on each histone PTM mark of the mouse brain 
datasets is shown in Fig.  2 and Additional file  1: Table  S3. We see that the three best 
performing methods on the mouse brain datasets are consistently ChromSCape_LSI 
, TFIDF-NMF, and Signac, which are consistently better than all other methods. They 
are followed by SnapATAC and PeakVI (except on H3K4me3), then cisTopic, NMF, 
SCALE, and ChromSCape_PCA. SnapATAC is better than cisTopic and SCALE, while 
ChromSCape_PCA is worse than all other methods. The top three performing methods 
(ChromSCape_LSI , TFIDF-NMF, and Signac) implement TF-IDF, suggesting that TF-
IDF-based method have an advantage over other approaches. Surprisingly, though, while 
ChromSCape_LSI and TFIDF-NMF also performs well on the human PBMC dataset, 
Signac does not (Additional file  1: Fig.  S4). This may be due to the lower coverage of 
the human PBMC dataset than of the mouse brain data, and to the detrimental effect of 
the whitening operation specific to Signac, as studied in more details in the supplemen-
tary text. On the PBMC dataset, ChromSCape_PCA again performs poorly compared 
to other methods, while the differences between other methods and between marks are 
overall less pronounced than on the mouse brain dataset.

Since the four methods ChromSCape_PCA, ChromSCape_LSI, Signac, and SnapA-
TAC all implement a form of PCA after applying to the count data matrix a specific data 
transformation, the difference in their performance highlights the importance of this 

Fig. 2 A Best performances of the different representation methods on the mouse brain dataset. B UMAP 
representation of the different samples in the mouse brain dataset; the first row is the RNA co‑assay 
processed with PCA using the scanpy best practices; the second row is the scHPTM assay processed with 
ChromSCape_LSI using the matrix construction algorithm with the best neighbor score, both colored by the 
labels of [9] obtained from the scRNA‑seq co‑assays
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data transformation choice. Simply normalizing the counts by CPM, as ChromSCape_
PCA does, leads to poor performances, while normalizing the count data by Jaccard 
similarity (SnapATAC) or TF-IDF (ChromSCape_LSI and Signac) is consistently better. 
This effect of TF-IDF transformation can also be observed in the difference of perfor-
mances between NMF and TFIDF-NMF. This seems to be specific to scHTPM, since 
methods using CPM normalization are competitive with the ones using TF-IDF or ker-
nel PCA on the Jaccard similarity on scATAC-seq data [12].

We also find that cisTopic is not among the best performing methods for the anal-
ysis of scHPTM, while it was identified by [12] as one of the best tools for analyzing 
scATAC-seq. On the other hand, LSI is extremely competitive for both modalities. This 
shows that while scHPTM and scATAC-seq have some similarities, one should be care-
ful before extrapolating good practices from one modality to the other. Finally, the more 
recent VAE-based methods, PeakVI and SCALE, are overall not competitive with the 
more classical LSI-based ones. As we show below, this may be due to the relatively small 
size of the datasets used.

Using the labels provided by the authors in their papers, obtained computationally on 
the co-assay, we can also compute supervised evaluations of these representations. By 
using a clustering algorithm, either k-means or hierarchical clustering (HC) (Additional 
file 1: Fig. S7), we obtain clusters that we can compare to the cell annotations provided 
by the authors using either the Adjusted Mutual Information (AMI) or Adjusted Rand 
Index (ARI). AMI and ARI are extremely similar as can be seen in Additional file  1: 
Fig.  S6.. The ARI for the mouse brain, human PBMC, and human cell lines datasets 
are presented in Additional file  1: Fig.  S8-S10 respectively. According to this metrics, 
we observe that the best performing methods for Tn5-based methods are still the three 
TF-IDF-based methods, with PeakVI also becoming competitive. For the MNase-based 
method, TFIDF-NMF is still the best performing method, but all methods perform 
well, except for Signac. This might be due to the low complexity of this dataset, and the 
default use of 50 whitened dimensions, that can introduce noise in the representation.

The count matrix construction strongly influences the quality of the representation

We now investigate the influence of the count matrix construction method (i.e., how the 
raw reads are mapped to regions) to obtain relevant embeddings of scHTPM datasets. 
For that purpose, we explore the performance of the different embedding methods as a 
function of the matrix construction parameter, again without further preprocessing such 
as cell or feature selection. We show the results in Fig. 3 and Additional file 1: Fig, S5 for 
the mouse brain and human PBMC datasets, respectively.

We see that matrix construction has overall a strong influence on the quality of the 
representations. For most methods and marks, the performance first increases when 
the bin size increases, then decrease after a peak. This effect is more pronounced on 
the mouse brain data and in particular for repressive marks (H3K27me3 and H3K9me3, 
3). We also observe for repressive marks studied by scChIP-seq the same increase with 
bin size as can be seen in Additional file 1: Fig, S10B. In order to quantify this effect, 
we report the ratios between the best and worst performing matrix construction for 
each method and mark in Additional file  1: Table S6 for the mouse brain dataset and 
in Table S7 for the human PBMC dataset. In the human PBMC dataset, we can see that 
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the ratio between the best and worst feature engineering can reach up to 10.76 (TFIDF-
NMF on H3K4me1); this is mostly due to the very poor performances of using a Gen-
eTSS annotation on this dataset as can be seen in Additional file 1: Fig. S5.

In the mouse brain dataset, we can see that this ratio is on average 1.98 for H3K27me3 
in Additional file 1: Table S5 and reaches 2.8 in the case of PeakVI. The lowest ratio is 
1.09 (TFIDF-NMF on H3K4me1), which is still an increase in performance of 9%. While 
that ratio is on average higher for the best performing methods (ChromSCape_LSI and 
Signac), it is mostly due to the fact that their best performances are higher than the other 
methods, more than it is due to an extreme sensitivity to matrix construction. Indeed, 
we can see that for all marks, ChromSCape_LSI has a very large range of matrix con-
struction parameters that are extremely competitive. We can also note that by choosing 
an average performing method (e.g., SnapATAC or PeakVI) and an appropriate matrix 
construction parameter, we can often beat the best performing methods (TFIDF-NMF, 
ChromSCape_LSI, or Signac) if they are run with a suboptimal parameter for matrix 
construction.

We see on the mouse brain dataset that performances reach a level close to their maxi-
mum for smaller bin sizes for enhancing marks (H3K27ac, H3K4me1 and H3K4me3) 
than for repressive marks (H3K27me3 and H3K9me3) and that, except for Signac, the 
range of appropriate bin size is relatively large (e.g., 50 kbp–1000 kbp for H3K27me3 or 
10 kbp–200 kbp for H3K4me1). Furthermore, except for Signac, that range is relatively 
stable across methods for each bin size. We investigate in more details the reason why 
Signac behaves so distinctively in the supplementary text (Additional file 1: Fig. S1) and 

Fig. 3 A Neighbor score performances of the 9 dimension reduction algorithms on the 5 marks in the 
mouse brain dataset, as a function of the matrix construction. B UMAP projection of H3K4me1 and 
H3K27me3 using ChromsSCape_LSI using bins of 20 kbp and 300 kbp, colored by the labels of [9] obtained 
from the scRNA‑seq co‑assays
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show in particular that the fact that it uses a whitening step and a relatively high embed-
ding dimension by default makes it might capture more noise for larger bin sizes.

We observe that using the GeneTSS annotation is usually not competitive compared 
to using an appropriate bin size. The fact that H3K4me3 is an exception to that rule is 
consistent with the fact that this mark is known to be particularly enriched around genes 
and TSSs. We can also see in Additional file 1: Fig. S5 that the various pseudobulk anno-
tations, with either MACS2 or SICER, are also generally not competitive, with a less pro-
nounced effect for H3K4me1 and H3K4me3. This is consistent with the fact that these 
marks tend to have small peaks, which are easier to identify with peak calling algorithms 
than larger ones.

It is interesting to note that the range of appropriate bin sizes for optimal represen-
tations usually includes 100kbp and can even go up to 500 kbp, which would a priori 
be considered too large to keep biological relevant information. In particular in [8], the 
authors made the choice of 5 kbp for H3K4me3 and 50 kbp for H3K27me3, while in [9], 
the authors chose 5 kbp for all marks, except for H3k4me3 for which it was 1 kbp. Here 
we find that, to reach a maximal concordance between epigenomic and transcriptomic 
embeddings, bin sizes one or two orders of magnitude larger than the ones used in pre-
vious studies are still competitive. This is likely due in part to the fact that the coverage 
per cell is so low that taking smaller bins introduces too much noise in the matrix, and to 
the fact that genes are not randomly distributed in the genome, and tend to cluster into 
groups of co-expressed genes [34, 35],. We can also observe from Fig. 3 that LSI based 
methods such as Signac can achieve good performances in the lower bin sizes regime (as 
well as ChromSCape_LSI as shown in the supplementary text).

Selecting high coverage cells has a modest positive impact on the representation

In a standard QC pipeline, poorly covered cells can be filtered out before performing 
dimensionality reduction and subsequent analysis on the highest quality cells. Such 
selection step often leads to a trade-off between keeping a high number of cells to 
maximize the discovery rate of rare cell states and keeping only highly-covered cells to 
maximize the quality of the embedding. We now assess how selection of cells based on 
coverage affects the quality of the embedding, by applying different thresholds for cover-
age selection and measuring neighbor scores across methods.

As shown on Fig. 4, there is overall a modest gain in performance when applying more 
stringent QC criteria on cell coverage. Across histone marks, we observe a maximum 
gain of 15% and 13% in performance for H3K4me1 when using the best performing 
methods ChromSCape_LSI or Signac respectively (Additional file 1: Table S8). Across 
methods, we observe that the highest gains in performances are observed for the low 
performing methods identified above; see Additional file 1: Table S9. ChromSCape_PCA 
and SCALE benefit from a 41 and 21% gain respectively whereas ChromSCape_LSI only 
benefits from an average 8% gain. In summary, filtering out cells with low coverage has 
little impact on the quality of the representation, while reducing the probability to cap-
ture rare cells.

A related question important to prepare the experiments is, independently of the 
number of cells filtered out, to clarify the impact of average cell coverage. As studied in 
supplementary text, we observe that for a given number of cells, the average coverage 
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per cell is strongly positively correlated with the quality of the representation for most 
marks and methods. This confirms that low cell coverage is currently one of the main 
reasons behind the difficulty to analyze scHTPM data and to capture a robust biological 
representation of each cell.

Feature selection decreases the quality of the embedding

Another QC criteria used in single-cell analysis is the selection of features―genomic 
regions for single-cell epigenomics datasets―prior to dimensionality reduction. Two 
standard approaches are (i) the selection of regions with the highest coverage or (ii) 
the selection of regions that have a highly variable enrichment score across cells. Such 
a selection step is relatively common, but there is currently no consensus for scHPTM 
analysis on whether such selection is beneficial and which of the two methods is optimal.

To address this question, we compare the maximal neighborhood scores for all meth-
ods with various feature selection thresholds, when we select features based on variabil-
ity (HVG) or coverage. The results are shown on Fig. 5. A and Additional file 1: Fig. S11 
respectively, for the mouse brain dataset. We observe consistently that feature selection 
is generally detrimental to the performances, in the sense that for both methods, the 
more regions we keep the better the performances are. As shown on Fig. 5B for Signac 
and ChromSCape_LSI, this trend is in fact not only true when we look at the best per-
formance reached over different bin sizes in the matrix construction step but also when 
we look at each bin size individually.

Feature selection has been shown to increase performances for scRNA-seq in [13] and 
is part of the guidelines for scATAC-seq [25]. Our results show that, contrary to scRNA-
seq and scATAC-seq, feature selection is detrimental to the analysis of scHPTM data, 
and we therefore recommend not to use it.

Fig. 4 A Each point corresponds to the best performance across matrix construction of a given method 
and a given coverage threshold, for the 7 methods, 5 marks, and 7 coverage conditions. B Performances of 
Signac and ChromSCape_LSI as a function of matrix construction on H3K4me1 and H3K27me3 for different 
coverage thresholds



Page 12 of 20Raimundo et al. Genome Biology          (2023) 24:143 

Performances can reach a plateau with sufficient cell numbers

While computational parameters can have an important role in the quality of the repre-
sentation [13], experimental ones also have a strong influence. In this section, we look 
at the role of the number of cells on such representations, in order to help practitioners 
design their experiments. For that purpose, we systematically downsample each dataset 
by randomly selecting a subset of cells of various size, and assess the quality of the repre-
sentation obtained from the downsampled datasets. We show on Fig. 6A the best perfor-
mance reached across matrix construction for each method on each mark, as a function 
of the size of the downsampled dataset, for the mouse brain dataset. We further add a 
finer grained sweep over dataset size for ChromSCape_LSI, by increasing the size of the 
datset by 500 cells per step as can be seen in Fig. 6B.

We see that all methods, on all datasets, benefit from an increase in the number of 
cells. However, it is interesting to note that the benefits resulting from a larger number 
of cells diminish as the number of cells increases. Indeed, we can observe that the per-
formances increase quickly up to ∼6000 cells and then only keep increasing at a much 
smaller rate. PeakVI is an exception to that observation, and we can see that its perfor-
mances have not yet reached this plateau; see Additional file 1: Table S11. This is consist-
ent with the intuition that deep learning based models require a large amount of data to 
achieve their full performances, and in the datasets used in this paper, this full perfor-
mance does not seem to have been achieved. The gains in performances are also quite 
important, with an average increase of 34% by increasing the number of cells by 150% 
and 18% by increasing the number of cells by 66%.

On the other hand, the more standard methods, such as LSI or kernel PCA, reach 
their peak performances around 6000 cells, and only gain an average of 5% in perfor-
mances by going from 6000 to 10,000 cells. Since these methods are the best performing 

Fig. 5 Role of feature selection, using the Highly Variable Gene (HVG) method used for scRNA‑seq on the 
mouse brain dataset. A Each point corresponds to the best performance across matrix construction of a 
given method and a given percentage of features kept, for the 7 methods, 5 marks, and 7 feature selection 
conditions. B Performances of Signac and ChromSCape_LSI as a function of matrix construction on H3K4me1 
and H3K27me3 for different feature selection thresholds
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ones in regime tested in this paper (less than 12,000 cells), it means that practitioners 
can sequence less cells while keeping relatively good performances. The case of Chrom-
SCape_LSI is shown in more details in Fig. 6B, where the diminishing return effect of 
adding more cells is very pronounced. It also allows us to confirm that the difference in 
performances between the enhancing and repressive marks is not due to the number 
of cells present in the datasets, as we see a clear separation of 3 groups: H3K27ac and 
H3K4me1 having the best performances, H3K9me3 and H3K27me3 following them, and 
finally H3K4me3 having the worst performances. The plateauing effect can also be seen 
for all of these marks, leading us to believe that it is not specific to just some marks.

It is however very possible that given more cells (> 12,000), PeakVI and SCALE could 
outperform these methods and lead to better representations. This would be consistent 
with the behavior of deep learning-based methods on other modalities such as text of 
images, even though we can only conjecture that this would happen.

While the increase in the number of cells leads to observable and consistent gains in 
the quality of the representation, it is noteworthy that these gains have a lower influence 
than the use of an optimal matrix construction algorithm. It is also important to note 
that the performances of the current best methods do not strongly benefit from such an 
increase in the number of cells as can be seen in Additional file 1: Table S10, meaning 
that practitioners may work on relatively small samples while maintaining state-of-the-
art performances.

Discussion
In this paper, we studied the role of experimental parameters, cell and feature selection, 
matrix construction, and dimension reduction on the quality of the representation from 
scHPTM datasets. We decided to focus on the quality of the dimension reduction as it is 

Fig. 6 Effect of downsampling uniformly at random the number of cells in the experiment. Each point 
corresponds to the best performance across matrix construction. A Performances the 7 methods, on 
the 5 marks of the mouse brain dataset and on 5 sizes of dataset (by increase of 20% of the dataset size). 
B Performances of ChromSCape_LSI on the 5 marks, using an increase of 500 cells per step
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generally the input of most downstream tasks such as clustering, cell type identification, 
differential enrichment, or trajectory inference. A good representation is thus beneficial 
to all these tasks.

Unlike other benchmarks [12–14], we decided not to measure the quality of the rep-
resentation based only on the ability of clustering algorithms to retrieve known cell 
types, because there are limited number of scHPTM datasets with high-quality labels. 
We explored the possibility of using the labels derived from co-assays, such as RNA or 
protein measurements. This approach allows us to be independent of labels, as well as 
working with potentially continuous cell states. Yet, when using this score, we make the 
assumption that cells that have similar epigenomic landscapes, measured by scHPTM, 
should at least locally display similar RNA or protein expression patterns. While we 
know that this assumption holds well for enhancer marks (e.g., H3K4me1 or H3K27ac), 
it might suffer some exceptions for repressive marks (H3K27me3, H3K9me3). We can 
note that this approach has already been successfully used in evaluating scATAC-seq 
pipelines in [18, 19]. In addition to this neighbor score, we have also included in our 
study measurements of ARI and AMI based solely on labels from authors, obtained 
computationally from the epigenomic datasets. In this case, the main limitation is that 
the method evaluation will tend to favor the method initially used by authors.

While we expected the choice of matrix construction algorithm to have an impact, 
that impact is larger than what we expected a priori. Indeed, as is shown in Additional 
file 1: Table S4, the performances using the best bin size can be up to 80% better than 
using the worst one. Surprisingly, the ranges of bin size are larger than what could be 
expected, and we were also surprised to find that enhancer marks such as H3K4me1 
benefited from large bin sizes (up to 200 kbp) despite being known to accumulate 
into small peaks (in the order of a few kbps [17]). Yet, at a bin size of several 100 kbp, 
embeddings will not rely on local epigenomic enrichments, such as the ones observed 
for enhancers. The coverage of current scHPTM datasets might not be sufficient to pro-
duce reliable embeddings from small bins and may thereby be unable to distinguish cell 
states that differ by only few local enrichments. Identifying differences in enrichment for 
smaller regions than the bin size used for the embeddings can however be done when 
running differential enrichment analysis with a more appropriate bin size, while using 
the clusters obtained from the embedding for annotation. As our evaluation relies on the 
similarities between gene expression and gene regulation, it may be biased by the exist-
ence of large co-expressed gene clusters throughout the genome [34, 35]. With bin sizes 
over 100 kbp, we might be robustly detecting such co-regulated gene clusters. The fact 
that GeneTSS and pseudobulk-derived annotations were in general not competitive is 
also not something that was not previously rigorously established in the literature to the 
best of our knowledge.

It was also interesting to note that, except for PeakVI, the performances of the differ-
ent methods tend to stagnate when increasing the number of cells. This is likely due to 
the relatively low complexity of the models used. More complex models such as PeakVI 
or SCALE did not manage to outperform these low complexity ones in our experiments. 
One could imagine that these models could show better performances with larger data-
sets, such as cell atlases, but they do not seem appropriate for experiments as they are 
currently designed.
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On the other hand, we found that the performances of all methods largely benefited 
from being run on high coverage cells and that these performances did not stagnate on 
the available data, suggesting that future improvements of protocols―increasing cov-
erage, such as in [36]―will surely provide additional information and granularity to 
refine embeddings.

We were also surprised to observe that feature selection, using either a variance or a 
coverage criteria, almost always had a negative impact on the performances. This may 
be due to the excessively low coverage per cells compared to other protocols where this 
procedure can be beneficial (see [13] for scRNA-seq).

To the best of our knowledge, this manuscript provides a comprehensive study on how 
to both design the experiment, build the matrix, and analyze scHPTM data. We hope 
that the large effect of matrix construction that we were able to identify will lead the 
community to pay more attention to this crucial, if overlooked step. Furthermore, by 
testing the algorithms and pipelines most likely to work on scHPTM data, we hope to 
save the community some time by avoiding having to discover which already existing 
algorithms work best.

Conclusions
In conclusion, we propose the following best practices to start analyzing scHPTM data:

• Start by generating a count matrix with fixed bin sized for initial embedding (starting 
with 200 kbps for H3K9me3 and H3K27me3 and 100 kbp for H3K4me1, H3K4me3, 
and H3K27Ac, which best match cell identity). Finer resolution analysis, with smaller 
bins, can be performed, with the limitation that coverage per bin per cell will be 
lower.

• Avoid feature selection.
• Filter only barcodes not associated with a cell, and avoid filtering afterwards.
• Transform the matrix using TF-IDF.
• Use a matrix factorization algorithm on this transformed matrix (either SVD or 

NMF).

Methods
Matrix construction

We downloaded the mouse brain dataset from GSE15 2020. The data come in count 
matrix format, with 5 kbp bins for all marks except for H3K4me3 which is in 1 kbp bins. 
The larger bin sizes were obtained by merging the original bins together to form new 
bins using a custom script, available at https:// github. com/ vallo tlab/ bench mark_ scepi 
genom ics. The GeneTSS annotation comes from the ChromSCape package, and the 
matrix was done by merging the bins containing the regions in that annotation using the 
same custom script. We keep all the cells present in that matrix, as the original authors 
already applied QC steps on the cells.

The human PBMC dataset data was downloaded from https:// zenodo. org/ record/ 
55040 61; the data was processed from the fragment files. We used ChromSCape for gen-
erating 5 kbp matrices and then used our custom script to generate the other matrices 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE152020
https://github.com/vallotlab/benchmark_scepigenomics
https://github.com/vallotlab/benchmark_scepigenomics
https://zenodo.org/record/5504061
https://zenodo.org/record/5504061
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similarly to the mouse brain dataset. The MacsPseudoBulk annotation was obtained by 
turning the fragment files into bams, calling the peaks using MACS2, and then merging 
them using bedtools. The various SICER2 annotations were also generated by turning 
the fragment filed into beds, calling the peaks with SICER2 with island width of 200, 
500, 2000, 5000, 20000, and a gap size thrice the size of the island size. We then select 
only the cells used in the original paper analysis, by keeping only the barcodes present in 
the rds objects on Zenodo.

The scChIP data was downloaded from GEO under the SuperSeries GSE16 4716, the 
matrices were constructed using ChromScape.

In silico modifications

Using the matrices generated in the previous section, we modified them in order to both 
simulate experimental conditions, as well as apply standard bioinformatics steps. Fea-
ture selection was done using Seurat’s FindVariableFeatures for the HVG selec-
tion and ChromSCape’s find_top_features for the top regions selection, ran using 
our filter_sce.R script. For selecting only the high coverage cells, we sorted cells by 
coverage and kept only the most covered ones; the relevant script is filter_cells_
quality.R. For studying the role of the number of cells, we sampled cells at ramdom 
without replacement from the matrice; the relevant script is sample_cells.R.

scRNA-seq and CITE-seq processing

The scRNA-seq matrix for the mouse brain dataset was processed using the scanpy 
[21] package and following their best practice notebook (https:// scanpy- tutor ials. readt 
hedocs. io/ en/ latest/ pbmc3k. html). We have previously shown in [13] that the algorithms 
used in that package are robust and perform well. The CITE-seq matrix for the human 
PBMC dataset was extracted from the rds objects and processed with standard PCA.

Representations for scHPTM

For computing the representations using the different methods, we used the implemen-
tation from the original packages, except for SnapATAC for which we used the reim-
plementation of [12] as it allowed a nicer API for running a large number of jobs; their 
implementation can be found on their github https:// github. com/ pinel lolab/ scATAC- 
bench marki ng. For cisTopic, we ran the runWarpLDAModels method from the cis-
Topic Bioconductor package (version 0.3.0) and followed the steps from [12]. For Signac, 
we followed the scATAC-seq best practices vignette (https:// satij alab. org/ signac/ artic 
les/ pbmc_ vigne tte. html) and used the Signac CRAN package (version 1.7.0). For Chrom-
SCape_LSI and ChromSCape_PCA, we processed the matrix with the tpm_norm and 
TFIDF methods respectively, then called the pca method, and removed the first princi-
pal component; all the methods were callled from the ChromSCape Bioconductor pack-
age (version 1.6.0). For PeakVI, we followed the tutorial on the package website https:// 
docs. scvi- tools. org/ en/0. 15.1/ tutor ials/ noteb ooks/ PeakVI. html using the scvi-tools (ver-
sion 0.15.1) [37] pip package. Since SCALE did not have an API for calling their model, 
we modified the main.py script from the scale python package (version 1.1.0), so 
that it does not remove cells.

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE164716
https://scanpy-tutorials.readthedocs.io/en/latest/pbmc3k.html
https://scanpy-tutorials.readthedocs.io/en/latest/pbmc3k.html
https://github.com/pinellolab/scATAC-benchmarking
https://github.com/pinellolab/scATAC-benchmarking
https://satijalab.org/signac/articles/pbmc_vignette.html
https://satijalab.org/signac/articles/pbmc_vignette.html
https://docs.scvi-tools.org/en/0.15.1/tutorials/notebooks/PeakVI.html
https://docs.scvi-tools.org/en/0.15.1/tutorials/notebooks/PeakVI.html
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The scripts for processing used for all R methods are in the R_analysis.R script, 
PeakVI, and SCALE are respectively peakVI_process.py and scale_process.
py scripts.

The R methods were run on CPUs with 16 cores and 32 GB of RAM, the deep learning 
ones (PeakVI and SCALE) on V100 GPUs with an additional 2 cores CPU.

Neighbor score computation

To compute the neighbor score of an scHPTM representation, we first compute the k 
nearest neighbor graphs (kNNG) for values of k ranging from 0.1% up to 10% of the cells 
present in the dataset. We then compute the representation for the second modality 
using scanpy [21], whose algorithm (PCA) has been identified in [13] as being the most 
reliable for achieving good representations for scRNA-seq. We then compute kNNG on 
this second representation, count the number of common neighbors in the kNNG for 
each cell, divide by k, and average over the cells. This gives a score between 0 and 1, 
where 1 means that the two representations perfectly agree on which cells are similar, 
and a score of 0 means complete disagreement. We further average that score across the 
various values of k, which were selected to be 0.1%, 0.3%, 0.5%, 1%, 3%, 5%, and 10% of 
the cells contained in the assay, in order to take into account the multiple possible levels 
of similarity. Two completely random representations would have a score of 0.05 given 
the values of k that we selected.

Compute time

The runtime for each method has been measured on the H3K4me1 Mouse brain data, 
with a matrix built with 100 kbps. We measure the runtime as a function of the number 
of cells in Fig. 7 and as a function of the number of features in Fig. 8.

All measures were run on a computer with CPU with 32 GB of DDR4 RAM and an 
NVidia 2080Ti GPU. SCALE and PeakVI were trained using GPU acceleration. The time 
measured only accounts for training the models and generating the cells representation, 
reading the data and transforming it into the appropriate format was left out in order to 
avoid unfairly advantaging some methods over others.

Fig. 7 Runtime of the 9 dimension reduction methods as a function of the number of cells. The data used 
here is the Mouse Brain H3K4me1 with binsizes of 100 kbps and 26,360 features
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The fact that SCALE appears faster as the number of cells increases is due to the 
fact that it is trained by default by seeing a fixed number of cells (30000) instead of 
seeing all the cells multiple times. This should result in performances that are inde-
pendent of the number of cells in the dataset, as reported in their paper [28]; how-
ever, it has to redo some computations each time it sees all the dataset; thus, having 
larger datasets reduces the number of times this computations have to be done. This 
training procedure is rather uncommon in the literature, but we chose to use the soft-
ware as its authors recommended.
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