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Abstract 

Background:  DNA methylation (DNAm)-based predictors hold great promise to 
serve as clinical tools for health interventions and disease management. While these 
algorithms often have high prediction accuracy, the consistency of their performance 
remains to be determined. We therefore conduct a systematic evaluation across 101 
different DNAm data preprocessing and normalization strategies and assess how each 
analytical strategy affects the consistency of 41 DNAm-based predictors.

Results:  Our analyses are conducted in a large EPIC DNAm array dataset from the 
Jackson Heart Study (N = 2053) that included 146 pairs of technical replicate samples. 
By estimating the average absolute agreement between replicate pairs, we show that 
32 out of 41 predictors (78%) demonstrate excellent consistency when appropriate 
data processing and normalization steps are implemented. Across all pairs of predic-
tors, we find a moderate correlation in performance across analytical strategies (mean 
rho = 0.40, SD = 0.27), highlighting significant heterogeneity in performance across 
algorithms. Successful or unsuccessful removal of technical variation furthermore 
significantly impacts downstream phenotypic association analysis, such as all-cause 
mortality risk associations.

Conclusions:  We show that DNAm-based algorithms are sensitive to technical varia-
tion. The right choice of data processing strategy is important to achieve reproducible 
estimates and improve prediction accuracy in downstream phenotypic association 
analyses. For each of the 41 DNAm predictors, we report its degree of consistency and 
provide the best performing analytical strategy as a guideline for the research commu-
nity. As DNAm-based predictors become more and more widely used, our work helps 
improve their performance and standardize their implementation.
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Introduction
DNA methylation (DNAm) is a form of epigenetic regulation that is essential for human 
development and implicated in health and disease [1, 2]. Through advancements in bio-
logical technology, large-scale DNA methylation profiling has become more affordable and 
widely used. Microarray technologies now enable the simultaneous interrogation of DNAm 
states of more than 850,000 CpG dinucleotides across the genome, using the latest EPIC 
array [3]. An application of DNAm data has been in developing DNAm-based algorithms 
to predict health-related phenotypes, including blood cell type proportions [4, 5], aging 
[6–13], all-cause mortality risk [14–17], cancer risk [18, 19], body mass index (BMI), and 
smoking signatures [20], among others. These molecular predictors have great potential 
for clinical applications. A thorough and systematic investigation of their performance has 
however not been conducted so far.

Unlike the genome, the DNA methylome is of dynamic nature and largely explained by 
non-shared individual environments [21]. Like other high-throughput molecular data, 
DNAm can furthermore be impacted by variation in laboratory conditions, sample han-
dling, reagents, and/or equipment used [22]. Technical variation is often widespread and 
tackling such effects is of critical importance to study biological variation in any -omic 
analysis, including DNAm. Over the years, a plethora of methods has been developed to 
identify and remove unwanted technical variations from DNAm data [23–29]. Previous 
studies have investigated the impact of specific methods on outcomes of DNAm analysis 
and demonstrated the importance of correcting for probe design type, batch effects, and 
hidden confounders while the effect of different normalization strategies gave mixed results 
[30–33]. A systematic and unbiased evaluation of commonly used data preprocessing and 
normalization strategies of DNAm data for the application of DNAm-based predictors has 
however not yet been conducted. DNAm is an important tool to study health and disease 
and understanding how analytical strategies impact algorithm performance is critical for 
method standardization and implementation for both research and clinical purposes.

Here, we performed a comprehensive investigation of 41 DNAm predictors and evalu-
ated algorithm performance by measuring their consistency across 101 data preprocessing 
and normalization strategies in the Jackson Heart Study (JHS) [34]. The JHS has collected 
a large sample of 850 K EPIC DNAm arrays in blood that includes 146 pairs of technical 
replicates. These replicates represent identical DNA samples that were assayed twice at 
independent time points. The agreement in DNAm predictor estimate between technical 
replicates after data preprocessing and normalization allowed us to quantify the degree to 
which an analytical strategy can successfully remove unwanted technical variation. For each 
predictor, we report the analytic strategy that yields the most consistent estimates and dem-
onstrate how reducing technical variation is critical for optimal algorithm performance in 
downstream phenotypic analyses. Our work emphasizes the importance of data processing 
and normalization of DNAm data and provides best practices to optimize the performance 
and consistency of DNAm predictors.

Results
To evaluate how unwanted technical variation in DNAm data impacts the performance 
of DNAm-based predictors, we implemented 101 data processing and normalization 
strategies in the JHS dataset. For each analytical strategy, which we will refer to as a 



Page 3 of 21Ori et al. Genome Biology          (2022) 23:225 	

“pipeline”, we then extracted beta values and calculated estimates of 41 DNAm-based 
predictors in (1) JHS data 1: a sample of 146 technical replicate pairs and (2) JHS data 2: 
a general sample of 1761 non-replicate samples that do not overlap with the individuals 
in the replicate dataset. Figure 1 shows an overview of our analysis plan. In the sample 
of technical replicates, we quantified the average absolute agreement between replicate 
pair values (i.e., consistency) by means of the ICC for each DNAm predictor and each 
pipeline separately (41 predictors × 101 pipelines = 4141 ICC analysis). We also gener-
ated DNAm estimates in the general sample. This allowed us to correlate the ICC of a 
pipeline that was estimated in the sample of replicates with predictor estimates in the 
independent general JHS sample.

We calculated the ICC estimates derived from a two-way random effect model to 
assess the consistency of each predictor for each data processing pipeline. The ICC is 
a zero to one estimate that quantifies the average absolute agreement across technical 
replicate pairs that were processed at a different occasion. We also calculated five other 
types of ICCs and found high concordance between the different ICC measures (mean 
rho = 0.99, SD = 0.01, see Additional file 1: Fig. S1). All ICC statistics for each DNAm 
predictor and pipeline are reported in Additional file 2. In the remainder of the paper, we 
will refer to ICC(2,1) as ICC, unless stated otherwise. The distribution of the ICC across 
pipelines for each predictor is shown in Additional file 1: Fig. S2.

Most DNAm‑based predictors yield high consistency when the best analytical pipeline 

is implemented

Table 1 shows all 41 DNAm predictors alongside general information on each algorithm 
and corresponding ICC statistics, including the data processing and normalization 
pipeline that yielded the highest agreement between replicate pairs for each predictor. 
Across all predictors and pipelines (N = 4141), we observed a significant degree of simi-
larity between replicates (all ICC P-values < 0.05/4,141). The median across all ICC esti-
mates is 0.93 with a range of 0.22–0.99.

The GrimAge predictor reports the highest consistency (ICC = 0.994, P = 6.6e − 144), 
followed by ZhangAge (ICC = 0.992, P = 8.4e − 132), and TIMP_1 (ICC = 0.992, 
P = 8.5e − 133). In fact, 32 out of 41 predictors (78%) reach an ICC > 0.9 with at least 

Fig. 1  Schematic overview of the analysis plan to evaluate DNAm algorithm performance. DNAm analyses 
are conducted using DNAm EPIC array samples in JHS. JHS includes a significant number of technical 
replicate pairs thereby allowing for a careful investigation of how the removal of unwanted technical 
variation impacts DNAm algorithm performance across 101 data processing pipelines. JHS has also collected 
information on disease-related phenotypes, including mortality status after follow-up. This allowed us to 
assess how the removal of technical variation in DNAm predictor estimates by a data processing pipeline 
impacts downstream phenotypic association analyses
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Table 1  Overview of predictor consistency and best performing data processing pipelines

Predictor information Reliability (ICC statistics)

Name Phenotype Array Probes Median Min Max Best analytical 
pipeline

GrimAge [15] Mortality EPIC/450 K 1030 0.990 0.921 0.994 ENmix: bg = oob, 
dye = mean, 
norm = q3, 
probe = rcp

ZhangAge [8] Chronological age EPIC/450 K 514 0.991 0.987 0.992 ENmix: bg = neg, 
dye = mean, 
norm = q2, 
probe = rcp

TIMP_1 [15] TIMP-1 serum 
protein

EPIC/450 K 42 0.988 0.973 0.992 ENmix: bg = oob, 
dye = relic, 
norm = q2, 
probe = rcp

Bcell [5] B-lymphocyte cell 
fraction

EPIC 50 0.980 0.881 0.988 Minfi: no bg correc-
tion with control 
normalization

Neu [5] Neutrophil cell 
fraction

EPIC 50 0.984 0.973 0.987 ENmix: bg = oob, 
dye = mean, 
norm = q2, 
probe = rcp

B2M [15] B2M serum 
protein

EPIC/450 K 91 0.973 0.759 0.985 ENmix: bg = oob, 
dye = relic, 
norm = q1, 
probe = rcp

SkinBloodAge [9] Chronological age EPIC/450 K 391 0.979 0.908 0.982 ENmix: bg = neg, 
dye = relic, 
norm = q1, 
probe = rcp

Smoking_Lu [15] Smoking pack 
years

EPIC/450 K 172 0.971 0.889 0.981 ENmix: bg = oob, 
dye = no, 
norm = no, 
probe = rcp

Smoking_McCart-
ney [20]

Smoking pack 
years

EPIC 233 0.975 0.942 0.979 Minfi: noob with 
dye correction

HannumAge [7] Chronological age 450 K 71 0.972 0.834 0.978 ENmix: bg = est, 
dye = relic, 
norm = no, 
probe = rcp

CD8T [5] CD8 + T-cell 
fraction

EPIC 50 0.969 0.881 0.978 ENmix: bg = neg, 
dye = mean, 
norm = q1, 
probe = rcp

NK [5] Natural killer cell 
fraction

EPIC 50 0.952 0.883 0.977 ENmix: bg = neg, 
dye = relic, 
norm = q3, 
probe = rcp

BioAge4HAStatic 
[17]

Chronological age 450 K - 0.966 0.826 0.975 ENmix: bg = oob, 
dye = relic, 
norm = no, 
probe = rcp

Cystatin_C [15] Cystatin-C serum 
protein

EPIC/450 K 87 0.954 0.829 0.973 ENmix: bg = oob, 
dye = no, 
norm = q2, 
probe = rcp

PhenoAge [14] Mortality EPIC/450 K/27 K 513 0.954 0.926 0.97 ENmix: bg = neg, 
dye = relic, 
norm = q1, 
probe = rcp
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Table 1  (continued)

Predictor information Reliability (ICC statistics)

Name Phenotype Array Probes Median Min Max Best analytical 
pipeline

Mono [5] Monocyte cell 
fraction

EPIC 50 0.953 0.865 0.968 Minfi: illumine bg 
correction with 
control normaliza-
tion

DNAmTL [12] Telomere length EPIC/450 K 140 0.952 0.912 0.965 ENmix: bg = oob, 
dye = relic, 
norm = q1, 
probe = rcp

HorvathAge [6] Chronological age 450 K/27 K 353 0.950 0.867 0.964 WateRmelon: naten

CD4T [5] CD4 + T-cell 
fraction

EPIC 50 0.959 0.951 0.964 ENmix: bg = neg, 
dye = no, 
norm = no, 
probe = rcp

epiTOC [18] Mitotic divisions 450 K 385 0.911 0.498 0.962 ENmix: bg = oob, 
dye = mean, 
norm = q2, 
probe = rcp

Leptin [15] Leptin serum 
protein

EPIC/450 K 187 0.896 0.447 0.953 ENmix: bg = oob, 
dye = relic, 
norm = q3, 
probe = rcp

VidalBraloAge [13] Chronological age 27 K 8 0.945 0.922 0.952 ENmix: bg = neg, 
dye = mean, 
norm = no, 
probe = rcp

MiAge [19] Mitotic divisions 450 K 268 0.884 0.348 0.947 WateRmelon: nanes

LinAge [10] Chronological age 450 K 99 0.930 0.878 0.939 ENmix: bg = est, 
dye = relic, 
norm = no, 
probe = no_rcp

ADM [15] ADM serum 
protein

EPIC/450 K 186 0.900 0.756 0.938 ENmix: bg = neg, 
dye = mean, 
norm = q3, 
probe = rcp

WHR [20] Waist-to-hip ratio EPIC 226 0.878 0.634 0.925 ENmix: bg = oob, 
dye = relic, 
norm = q2, 
probe = rcp

ZhangMortality 
[16]

Mortality 450 K 10 0.877 0.807 0.92 Minfi: no bg correc-
tion with control 
normalization

BodyFat [20] Body fat EPIC 968 0.893 0.843 0.918 ENmix: bg = est, 
dye = relic, 
norm = no, 
probe = rcp

Cholesterol [20] Total cholesterol EPIC 204 0.888 0.762 0.917 ENmix: bg = oob, 
dye = no, 
norm = q2, 
probe = rcp

BMI [20] BMI EPIC 1109 0.904 0.877 0.914 ENmix: bg = neg, 
dye = mean, 
norm = no, 
probe = rcp

GDF_15 [20] GDF-15 serum 
protein

EPIC/450 K 137 0.819 0.502 0.903 ENmix: bg = est, 
dye = mean, 
norm = q1, 
probe = rcp
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one data processing pipeline. The predictors with higher ICCs have more narrow ICC 
distributions than predictors with lower ICCs (Additional file  1: Fig. S2), suggesting 
that predictors with higher consistency are more robust to the choice of data process-
ing pipelines. The predictors with the lowest consistency are CD8pCD28nCD45RAn 
(ICC = 0.85, P = 1.63e − 41), PlasmaBlast (ICC = 0.84, P = 7.19e − 52), PAI-1 (ICC = 0.84, 
P = 2.80e − 40), and CD8_naive (ICC = 0.83, P = 1.17e − 39).

Across pipelines and predictors (N = 4141), the ENmix package yielded higher con-
sistency (median ICC = 0.93, range = 0.61–0.99) than the minfi (median ICC = 0.91, 
range = 0.22–0.99) and wateRmelon (median ICC = 0.91, range = 0.49–0.99) packages. 

Table 1  (continued)

Predictor information Reliability (ICC statistics)

Name Phenotype Array Probes Median Min Max Best analytical 
pipeline

LDL [20] LDL EPIC 233 0.846 0.732 0.901 ENmix: bg = oob, 
dye = relic, 
norm = no, 
probe = rcp

HDLratio [20] Total to HDL cho-
lesterol ratio

EPIC 412 0.848 0.643 0.890 ENmix: bg = oob, 
dye = relic, 
norm = q1, 
probe = rcp

Alcohol [20] Alcohol EPIC 450 0.807 0.551 0.878 ENmix: bg = neg, 
dye = relic, 
norm = no, 
probe = rcp

WeidnerAge [11] Chronological age 27 K 3 0.826 0.583 0.865 ENmix: bg = neg, 
dye = relic, 
norm = no, 
probe = rcp

Education [20] Educational 
attainment

EPIC 373 0.774 0.506 0.865 Cross: noob 
with dye correc-
tion + BMIQ

HDL [20] HDL cholesterol EPIC 737 0.835 0.694 0.853 ENmix: bg = est, 
dye = relic, 
norm = q1, 
probe = rcp

CD8pCD-
28nCD45Ran [6]

Specific T-cell 
fraction

27 K - 0.814 0.756 0.845 ENmix: bg = oob, 
dye = relic, 
norm = no, 
probe = rcp

PlasmaBlast [6] Plasma B cell 
fraction

27 K - 0.718 0.638 0.840 Cross: noob 
with dye correc-
tion + BMIQ

PAI_1 [15] PAI-1 serum 
protein

EPIC/450 K 211 0.744 0.22 0.838 ENmix: bg = neg, 
dye = relic, 
norm = q3, 
probe = rcp

CD8naive [6] CD8 T-cell fraction 27 K - 0.777 0.659 0.830 WateRmelon: 
danen

Shown is general information on each DNAm-based predictor alongside their corresponding ICC statistics. The name of 
the predictor, the phenotype it is trained on, the array platform it can be applied on, and the number of predictor probes 
(if available) are listed on the left side of the table. ICC statistics are listed on the right side of the table. The ICC quantifies 
the degree of absolute agreement between estimator values of a pair of technical replicates. For each predictor, across 
101 pipelines, the median, minimum, and maximum ICC are listed. Predictors are ranked by the maximum ICC. The final 
column reports methodological details of the best performing data processing pipelines (i.e., the pipeline with the highest 
consistency). Bg background correction, dye dye-bias correction, norm normalization method, probe probe-type bias 
correction. Full details on analytical pipelines and how they were implemented are available in Additional file 4.
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Among the best performing pipeline for each of the 41 DNAm predictors, i.e., achieving 
the highest consistency, 32 (78%), 4 (10%), and 3 (7%) predictors were from the ENmix, 
minfi, and wateRmelon package, respectively. Among ENmix pipelines, out-of-band 
(OOB) background estimation (15 out of 32), REgression on Logarithm of Internal Con-
trol probes (RELIC) dye-bias correction (19 out of 32), no quantile normalization (12 
out of 32), and the Regression on Correlated Probes (RCP) probe-type bias correction 
(31 out of 32) yielded the highest consistency most often (Additional file 1: Fig. S3). Two 
ENmix pipelines achieved the highest consistency for three predictors. The analytical 
pipeline that included OOB background estimation, RELIC dye-bias correction, no nor-
malization, and RCP probe-type bias correction (i.e., “ENmix:oob_relic_nonorm_rcp”) 
performed best for the BioAge4HAStatic, LDL, and CD8pCD28nCD45RAn predictors. 
The pipeline that included OOB background estimation, RELIC dye-bias correction, 
quantile normalization, and RCP probe-type bias correction (i.e., “ENmix: oob_relic_
q1_rcp”) performed best for the B2M, DNAmTL, and HDLratio predictors.

Best performing analytical pipelines are less impacted by batch effects

Next, we assessed how corrections for batch effects impacted our measures of consist-
ency across predictors across analytical pipelines. We included four covariates with 
potential batch effects in our analysis, i.e., array ID, array position, sample plate, and 
sample well. Such data was available for 1888 samples in the full JacksonHeart dataset. 
Across pipelines and predictors (N = 4141), batch effects collectively explained a median 
of 4.45% (Q1–Q3 = 1.48–7.20%) of the variance in predictor estimates. Batch effects 
explained less variance in output estimates when the best performing pipelines were 
applied (median = 3.37%, Q1–Q3 = 1.35–7.23%) compared to the worst performing 
pipelines (median = 5.80%, Q1–Q3 = 3.08–9.43%). This indicates that analytical pipe-
lines that yield a higher agreement between technical replicates are more successful in 
removing technical variation introduced by batch effects. This is further emphasized by 
a negative correlation between the variance explained by batch effects and the calculated 
ICC across predictors and pipelines (N = 4141, rho =  − 0.05, P = 3.7e − 04). This rela-
tionship is stronger in the worst performing pipelines (N = 41, rho =  − 0.37, P = 0.02) 
and not present within the best performing pipelines (N = 41, rho = 0.09, P = 0.58). 
After regressing out batch effects from the predictor estimates, we found a strong cor-
relation with the consistency measured without correcting for batch effects (N = 4141, 
rho = 0.81, P < 2.2e − 16, see Additional file  1: Fig. S4). Correction for batch effects on 
average produced lower consistency (median ICC = 0.81, Q1–Q3 = 0.76–0.84) com-
pared to unadjusted predictor estimates (median ICC = 0.96, Q1–Q3 = 0.91–0.98).

There is significant heterogeneity in pipeline performance across predictors

Among the 41 best performing pipelines (i.e., the pipeline with the largest ICC value for 
each of the 41 predictors), there are 27 different data processing and normalization strat-
egies, which highlights significant heterogeneity in the choice of best pipeline between 
predictors. As ICC differences between pipelines of a predictor can be small and pipe-
lines beyond the highest ICC may also be informative, we calculated the median rank 
across the 41 predictors for each of the 101 pipelines (Additional file  3). The pipeline 
with the best median rank (at 15) across predictors is the “ENmix: oob_relic_q1_rcp.” 
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While this observation suggests this pipeline yields the best average performance across 
predictors, it still scored average to low for multiple predictors. For example, for the 
BMI predictor, the “ENmix: oob_relic_q1_rcp” pipeline had one of the lowest ranks 
(ICC = 0.89, rank = 91). It is also important to note that a data processing pipeline can 
also introduce more spurious variation instead of removing technical variation. That 
is, the raw data pipeline that does not apply any data processing and normalization 
yielded a median rank of 85 (range: 7 to 100). For the CD4T and CD8 naive predictors, 
the raw data pipeline ranked as the seventh best performing pipeline highlighting that 
most pipelines perform worse than no data processing at all for these two predictors. 
The “Minfi: raw_quantile_strat” and “Minfi: illumina_bg_quantile_strat” had the lowest 
median rank of 100 and yielded the lowest consistency for 17 and 9 predictors, respec-
tively (Additional file 3).

To assess the concordance in pipeline performance across predictors more formally, 
we calculated the rank correlation in pipeline consistency between all pairs of predic-
tors. In Fig. 2, we visualize the result of this analysis via a clustered correlation heatmap.

For some predictors, the ranking in pipeline performance is very similar. For exam-
ple, the GrimAge, Smoking_Lu, Cystatin_C, and GDF_15 predictors show strong con-
cordance (mean rho = 0.92). As noted, these four predictors were developed in the 
same dataset and the Cystatin_C, GDF_15, and Smoking_Lu estimates are included in 
the GrimAge algorithm. Across all pairs of predictors, we find a moderate correlation 
in pipeline performance (mean rho = 0.40, SD = 0.27). Some predictors however show 
little to no concordance with other predictors. The ranking of pipelines of the BMI 
and NK predictor, for example, have a mean rank correlation of 0.14 (SD = 0.20) and 
0.21 (SD = 0.24), respectively, with that of other predictors. For a handful of predictor 
pairs, we even observe a negative correlation, suggesting that pipelines that yield high 
consistency for one predictor yield low consistency for another. Pipeline performance 
of the BioAge4HAStatic and Mono predictors for example has a correlation of − 0.45 
(P = 2.1e − 06). Our findings thus far show that specific pipelines are more effective in 
removing unwanted technical variation for a predictor and that significant heterogeneity 
exists in pipeline performance across predictors.

The choice of data processing pipeline impacts the downstream analysis of predictors

Next, we evaluated if the performance of a pipeline can also affect downstream pheno-
typic analyses of a predictor. For these analyses, we used the general JHS data 2 sample. 
For each pipeline, we calculated the mean and standard deviation (SD) of the predic-
tor estimate distribution in the general JHS sample. For each predictor, we then corre-
lated these two statistics (i.e., the mean and SD) with the ICC estimates of the pipelines 
obtained in the technical replicate sample. We find that the choice of the pipeline has a 
significant impact on the distribution of the predictor estimate. Of the 41 predictors, 33 
(80%) are significantly impacted on the distribution of their estimates after Bonferroni 
correction (P < 0.0012). For 22 predictors (54%), we find a significant correlation for both 
the mean and standard deviation. For DNAmTL, we, for example, observe a negative 
correlation between the performance of a pipeline and the mean of the estimate distri-
bution (rho =  − 0.71, P < 2.2e − 16) and a positive correlation with the standard devia-
tion of the estimate distribution (rho = 0.79, P < 2.2e − 16). The best performing pipeline 
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yields a mean estimate of 6.83 kilobases (SD = 0.34). The least performing pipeline yields 
a mean estimate of 7.20 kilobases (SD = 0.29). This shows that the more effective a pipe-
line is in removing technical variation, the lower the DNAm-based predicted estimate of 
telomere length and the larger the variation between individuals. The direction of effect 
of the relationship between pipeline performance and the mean and standard devia-
tion of the DNAm variables varies between predictors as well. HorvathAge, for exam-
ple, is impacted on its standard deviation (rho = 0.39, P = 5.6e − 05) but not on the mean 
(rho =  − 0.10, P = 0.27). HDLratio is impacted on its mean but unlike DNAmTL shows 
a positive correlation with pipeline performance (rho = 0.38, P = 9.8e − 05). HDLratio is 
not impacted on the standard deviation of its distribution (rho = 0.00, P = 0.96). Correla-
tion plots and correlation statistics of all predictors are shown in Additional file 5. A full 
overview of test statistics can be found in Additional file 6.

Several DNAm age predictors are known to predict all-cause mortality risk. We there-
fore examined if pipeline performance also impacts their association with mortality risk. 
We focus on four predictors: HorvathAge, PhenoAge, GrimAge, and ZhangAge. Each 
predictor has different training characteristics and captures a different aspect of biolog-
ical age and/or mortality risk [35]. ZhangAge is a blood-based DNAm clock and was 
developed on the largest training dataset and shown not to be associated with mortality 

Fig. 2  DNAm predictors have a moderate degree of concordance in performance between pipelines. Shown 
is a clustered correlation heatmap of consistency across pipelines that visualizes the heterogeneity in pipeline 
performance between predictors. The color coding depicts Spearman’s rho and clustering is performed using 
hierarchical clustering. Only correlations with a P-value < 0.01 are colored
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risk despite its improved precision [8]. We find that pipeline performance significantly 
impacts downstream analysis for all four predictors (Fig. 3).

For HorvathAge, pipelines that achieve greater consistency also achieve a greater cor-
relation between HorvathAge and chronological age (rho = 0.47, P = 1.8e06). Better 
performing pipelines furthermore achieve greater power to predict all-cause mortality 
(rho = 0.52, P = 3.3e − 08). For PhenoAge, we did not find an effect on the correlation 
with chronological age but did find the survival analysis to be significantly impacted. Bet-
ter performing pipelines achieve greater power for PhenoAge (rho = 0.68, P < 2.2e − 16) 
but also a smaller hazard ratio (rho =  − 0.39, P = 5.3e − 05), suggesting that unsuccess-
ful removal of technical variation in DNAm data can inflate the magnitude of mortality 

Fig. 3  Pipeline performance impacts downstream analyses of DNAm age predictors. Shown are the 
association between pipeline ICC and the correlation with chronological age (left panels), the hazard ratio 
of mortality risk prediction (middle panel), and the z-score of the mortality risk prediction (right panels) for 
HorvathAge (top row), PhenoAge (2nd row), GrimAge (3rd row), and ZhangAge (bottom row). Pipelines are 
color-coded by package/method. Spearman rank correlation statistics are shown in the top left corners
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risk. In contrast to our findings for HorvathAge, we found that better performing pipe-
lines produced a lower correlation with chronological age for GrimAge (rho =  − 0.67, 
P < 2.2e − 16). Similar to PhenoAge, we found that pipelines that achieve greater con-
sistency yield more significant associations with mortality for GrimAge (rho = 0.75, 
P < 2.2 − 16) but also a smaller hazard ratio (rho =  − 0.62, P < 2.2e − 16). The most reli-
able pipeline reports a significant hazard ratio of 1.12 (SE = 0.01, P = 1.60e − 30), which 
verifies GrimAge as a strong predictor of all-cause mortality, especially when spurious 
technical variation is appropriately accounted for. For ZhangAge, we found no impact 
on the correlation with chronological age. Better performing pipelines produced smaller 
and less significant effects in associations with all-cause mortality. The most reliable 
pipeline produced a non-significant hazard ratio of 1.10 (SE = 0.05, P = 0.06), confirm-
ing that ZhangAge does not predict mortality risk. Taken together, using the general 
JHS sample, we demonstrate how pipeline performance has a significant impact on the 
downstream phenotypic analysis of DNAm predictors.

Predictor consistency is inversely associated with the sample size of the training dataset

To assess if specific features of the predictors are associated with higher consistency, 
we investigated the number of CpG probes and the sample size of the training dataset 
in relation to the ICC of the best performing pipeline (Additional file 1: Fig. S5). Using 
predictors for which such information was available, we find that the sample size of the 
dataset in which a predictor was developed is inversely associated with the observed 
degree of predictor consistency (N = 37, rho =  − 0.39, P = 0.02). We did not find a sig-
nificant association between the number of predictor CpG probes and the consistency of 
a predictor (N = 37, rho =  − 0.21, P = 0.20).

A smaller number of replicate pairs can be used to measure consistency

In our analyses, we made use of a large number of replicate pairs. We therefore assessed 
how sample size affected our measure of consistency and if a smaller number of rep-
licate pairs yield similar findings. Across reliabilities from all pipelines and predictors, 
we observe good concordance (rho > 0.94) with as low as ten replicate pairs compared 
with measures obtained from larger sample sizes (Additional file 1: Fig. S6). Differences 
however exist between predictors with some predictors still requiring a larger number of 
replicate pairs (Additional file 7).

Discussion
DNAm-based predictors are emerging as powerful new methods to study health and 
disease, but little is known about the consistency and replicability of the estimates they 
produce. To investigate their performance, we carried out a systematic evaluation of 41 
predictors across 101 data processing and normalization strategies and assessed to what 
degree algorithm performance is impacted by (un)successful removal of technical vari-
ation. Leveraging a large technical replicate sample in the JHS, we demonstrate that the 
choice of the analytical pipeline has a significant impact on the consistency of predictors 
as well as on the outcomes of downstream phenotypic analyses. We highlight that spe-
cific pipelines are more effective in removing unwanted technical variation for a predic-
tor but that significant heterogeneity exists in pipeline performance across predictors. 



Page 12 of 21Ori et al. Genome Biology          (2022) 23:225 

Pipelines of the ENmix package achieved the highest consistency and were most fre-
quently represented among the best performing pipelines. As research on DNAm-based 
predictors will continue to grow, our work provides best practices for the research com-
munity to help standardize their implementation and improve their performance.

To quantify method performance, we used a type of intraclass correlation that meas-
ures consistency by assessing the degree of absolute similarity between technical repli-
cate pairs. Guidelines from reliability research suggest that ICC values less than 0.5 are 
indicative of poor consistency, values between 0.5 and 0.75 indicate moderate consist-
ency, values between 0.75 and 0.9 indicate good consistency, and values greater than 0.90 
indicate excellent consistency [36]. The ICC range of best performing pipelines across 
predictors was 0.83–0.99, indicating good to excellent consistency for these predictors. 
For 32 out of 41 predictors (78%), we found excellent consistency (ICC > 0.9) for at least 
one data processing pipeline. Several predictors show a degree of consistency close to 
1, which demonstrates that repeated collections of DNAm data yield almost the same 
predictor estimate and highlights their potential as a biomarker for health-related out-
comes. Among predictors with high consistency are predictors of mortality risk, smok-
ing behavior, blood cell types, and cancer risk. Demonstrating internal validity for these 
DNAm tools is important for research purposes but even more so for their potential uti-
lization for health management and disease prediction in the clinic. GrimAge, a strong 
predictor of all-cause mortality, for example, showed the greatest agreement between 
replicates with an ICC of 0.994. This finding demonstrates excellent consistency based 
on technical replicates from the same biological sample. It remains an open question 
if the measured consistency translates to repeated measures of DNA samples extracted 
from different blood draws at the same time point or across time points. The analytical 
framework we applied can however be easily extended to study design of other types of 
(biological) replicates. Establishing method consistency and replicability in other con-
texts of technical and biological variation is an important next step for future research.

We found that the choice of the analytical pipeline is essential as multiple data pro-
cessing strategies produced poor consistency (ICC < 0.5) for several predictors. For some 
predictors, like for CD4T and CD8 naive T cells, using the raw data achieves higher con-
sistency than most data processing pipelines. This highlights that analytical decisions 
on how to best prepare DNAm data require careful consideration as certain data pro-
cessing and normalization steps can even reduce algorithm performance. Among the 
best performing pipelines of each predictor, we found significant heterogeneity across 
predictors. That is, there are 27 unique pipelines across the 41 predictors. On aver-
age, pipelines of the Enmix package achieved the highest consistency most frequently. 
While there is no one optimal pipeline to use for all predictors, several data process-
ing steps stand out as producing high consistency for multiple predictors. For example, 
almost half of the best performing pipelines make use of the RELIC dye-bias correction 
method. RELIC uses the information between pairs of internal normalization control 
probes to correct for differences between color channels that measure intensity levels 
of the array [28]. The EPIC array contains 85 pairs of controls that target the same DNA 
region in housekeeping genes and contain no underlying CpG sites. RELIC uses the rela-
tionship between the pairs of controls to correct for dye bias on intensity values for the 
whole array. Another data processing step that produced high consistency is the RCP 
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probe-type bias correction method. Thirty-one out of 41 of the best performing pipe-
lines make use of this data processing step. RCP uses the existing correlation between 
pairs of nearby type I and II probes to adjust the beta values of all type II probes [27]. 
Both RELIC and RCP have been shown to reduce technical variation in DNAm data and 
are implemented in the ENmix package.

When only one processing strategy is desired, we recommend using the following 
stepwise sequence of ENmix methods: OOB background correction, RELIC dye-bias 
correction, quantile normalization applied separately for methylated and unmethylated 
intensities of Infinium I and II probes, and RCP to correct for probe design type bias. 
This analytical pipeline achieved the best median rank across predictors. We further rec-
ommend careful quality control whether predictor estimates in downstream analyses are 
not dependent on (un)successful removal of technical variation, ideally with the use of 
replicates. In case no replicates are available, users can use the ICC values of each ana-
lytical pipeline reported in this study and assess if these ICC values correlate at all with 
their outcome of interest across the different processing strategies. While this strategy is 
suboptimal compared to including study-specific replicates, it can help assess if techni-
cal variation impacts the analyses if one finds a significant correlation between the ICC 
value calculated in our study and the estimated outcome measure in their study across 
analytical pipelines (like we show in Fig. 3). Finally, as there is significant heterogeneity 
in the best performing analytical pipeline between predictors, we recommend evaluating 
multiple data preprocessing and normalization strategies when comparing the perfor-
mance of DNAm predictors, ideally using the pipelines that yield their best performance, 
as reported in Table 1.

We found that the best performing analytical pipelines are less impacted by batch 
effects, confirming that technical variation is more successfully removed, compared to 
pipelines that yielded lower consistency. We furthermore recommend careful considera-
tion when adjusting for batch effects as it can result in biologically meaningful informa-
tion being lost. In our analyses, we found that measures of consistency were on average 
lower when batch effects were corrected for by regressing out the effect of array chip, 
array position, and laboratory plate compared to the unadjusted predictor estimates. 
Batch correction methods that can consider a trade-off between batch noise and signal 
preservation may help users if such crude statistical adjustments are needed [37]. Devel-
opment of new data preprocessing and normalization methods that improve our ability 
to remove technical variation from DNAm estimates is an important avenue to pursue 
as well.

The choice of the analytical pipeline does not only impact the consistency of a pre-
dictor but also significantly affects downstream phenotypic analyses. We show that 80% 
of predictors are impacted on the mean and/or standard deviation of their distribution 
in the general JHS cohort. We furthermore analyzed DNAm clocks and showed that 
the strength of the correlation between DNAm age and chronological age is affected in 
opposite directions for HorvathAge and GrimAge. While the correlation with chrono-
logical age becomes stronger with better performing pipelines for HorvathAge, the 
correlation becomes weaker for GrimAge. For DNAm clocks that are shown to be asso-
ciated with mortality risk, successful removal of technical variation produced smaller 
hazard ratios but more significant associations. This highlights that not appropriately 
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accounting for technical variation can decrease statistical power and inflate risk esti-
mates for these predictors. It also shows that despite the narrow distribution of the ICC 
for these predictors, for example GrimAge has an ICC range of 0.921–0.994 indicating 
excellent consistency across all pipelines, the choice of the pipeline still impacts down-
stream association analyses. We note that in our association analysis with mortality risk, 
we adjusted for chronological age, and still found that the choice of pipeline influences 
the outcome of the analysis. This is different from the findings of a previous study that 
reported that the choice of analytical pipeline influences the mean of DNAm age but 
not the DNAm age acceleration residual [38]. This study however only compared three 
data processing and normalization strategies and could have missed this effect as it did 
not perform a systematic evaluation across many pipelines. Finally, we confirm that 
ZhangAge, a DNAm clock developed in the largest blood-based DNAm dataset, does 
not associate with mortality risk.

We also investigated if specific characteristics of a predictor impacted their consist-
ency. We found that the sample size of the training dataset has a moderate inverse rela-
tionship with the consistency of a predictor. This suggests that predictors developed in 
larger training datasets are more sensitive to technical variation than predictors devel-
oped in a smaller dataset. This relationship could for example arise if larger training 
datasets on average have more technical factors that are not properly accounted for. The 
ZhangAge predictor, however, was developed in the largest training dataset and shows 
the second to highest consistency of all predictors we investigated. This indicates that 
other factors in addition to the sample size of the training dataset are likely to play a role 
as well. ZhangAge was developed using 65 training sets across 14 cohorts, where each 
training set had a certain number (ranging between 1 and 13) of cohorts randomly sam-
pled from the 14 cohorts [8]. This strategy is, as far as we know, unique to this predictor 
and may have helped select for CpG probes that are less impacted by technical variation 
due to its many training sets of different randomly assigned cohort compositions. As 
training datasets with large sample sizes are essential to developing more accurate DNA-
based predictors, a strategy to randomize the potential effect of technical factors, like 
was implemented for the development of ZhangAge, could be worthwhile to consider 
for new predictors as well. We did not find a significant relationship between the num-
ber of CpG probes and the observed consistency of a predictor.

Our study comes with limitations. First, we measured consistency using techni-
cal replicates in one study. A different cohort or different types of repeated measures, 
for example biological replicates, may yield different outcomes. Ideally, one would use 
study-specific replicate samples and assess if similar best practices are achieved or if 
alternative strategies are more appropriate to remove technical variation most optimally 
for that specific study. If future studies have the means to include replicate samples, they 
should aim to include at least ten replicate pairs. We determined that for most predic-
tors a sample size of ten replicate pairs can already provide meaningful insights into 
their consistency and replicability. Second, several predictors were not fully compat-
ible with the EPIC array platform. Predictors that were developed on older DNAm array 
platforms showed lower consistency. Missing probes could have affected the outcome of 
our analysis. Having said that, as the older 27 K and 450 K DNAm array platforms are 
discontinued, any future application of predictors that are not fully compatible with the 
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EPIC array will face a similar challenge. Third, we included all DNAm probes of predic-
tors in our analyses and did not assess how accounting for data quality of probes impacts 
measures of consistency. Overall predictor probes were of good quality in the Jackson 
Heart Study sample. Future work should however investigate this further, for example 
by using imputation-based methods to impute probes that need to be excluded because 
of lower data quality or bad mapping, as not all datasets will have good-quality data. 
Fourth, the ICC is limited in that it focuses on the reduction of inter-pair variance and 
does not track the loss of possibly informative variance. Future studies may evaluate the 
normalization pipelines with respect to predictive accuracy for morbidity risk as well. 
Finally, we assessed the impact of (un)successful removal of unwanted technical vari-
ation on downstream phenotypic analyses of DNAm clocks and mortality risk, which 
may yield different results for other phenotypes that were not measured in JHS.

Conclusions
In summary, this study demonstrates that considerable variation exists in the perfor-
mance of DNAm-based predictors depending on the data processing and normaliza-
tion strategy implemented. Analytical pipelines that best remove unwanted technical 
variation in DNAm data achieve excellent consistency for most predictors thereby dem-
onstrating their potential as biomarkers for health-related outcomes. DNAm is an 
important tool to study health and disease. As the number of DNAm predictors contin-
ues to rise, understanding how best to improve and implement these algorithms will be 
essential for downstream clinical applications.

Methods
Cohort descriptions

The Jackson Heart Study is a large observational study of African American individu-
als from the Jackson, Mississippi (USA), metropolitan area [34]. JHS seeks to study 
the causes and disparities in cardiovascular health and related phenotypes in African 
Americans. Data and biological materials have been collected from 5306 participants. 
For a subset of the cohort, peripheral blood samples were collected at baseline and sub-
sequently used to quantify DNA methylation using the Illumina Infinium Methylatio-
nEPIC BeadChip that covers over 850,000 CpG sites. These samples have been included 
in previous DNAm studies [15, 39]. See Additional file 8 for cohort characteristics. In 
our analysis, we included individuals for which DNAm data, phenotypic variables, and 
mortality data were available (N = 1909, 62.2% women, mean (SD) of age = 56.1 (12.4) 
years). For 146 individuals, technical replicates were collected. We therefore divided this 
dataset into two samples: (1) a general cohort sample that does not include technical 
replicate pairs (N = 1761, 62.6% women, mean (SD) of age = 56.0 (12.3)) and (2) a techni-
cal replicate sample (N = 146, 57.5% women, mean (SD) of age = 57.4 (14.0)). Replicate 
pairs represent DNAm samples that were assayed twice using the EPIC array at separate 
occasions but originate from the same DNA extraction sample.

Data preprocessing and normalization strategies

To perform a systematic evaluation of available data preprocessing and normalization 
strategies, we incorporated all methods that are available through the commonly used 
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R packages minfi [40], wateRmelon [23], and ENmix [25]. These methods facilitate ana-
lytical strategies that help remove unwanted technical variation while allowing for probe 
retention, which is important as the removal or masking of probes (i.e., missing data) 
will impact predictor estimates. Within the same package, we implemented all possible 
combinations of background correction, dye-bias correction, probe correction, and data 
normalizations as was feasible within the structure of the package. To be inclusive and 
unbiased in our approach, we did not make a selection on methods a priori. In total, this 
yielded 101 strategies to prepare DNAm data (Additional file 4). For each sample, raw 
intensity values were read from IDAT files into an RGChannelSetExtended object in the 
R programming environment using the read.metharray() function in minfi. Sample qual-
ity control was performed by excluding samples with more than 5% of CpG sites with 
a detection P-value greater than 0.05 (using the pfilter() function in the wateRmelon 
package) and by removing outlying samples based on a low median of chipwide (un)
methylation across CpG sites (using the getQC() function in minfi). In total, 44 samples 
were removed. No probes were filtered out to minimize missing probes in downstream 
DNAm prediction analysis. We did check the quality of probes used by predictors to 
calculate estimates and found these overall to be of good quality (Additional file 9). Data 
processing and normalization were then executed in batches of 96 samples for computa-
tional efficiency. The output of each analytical pipeline was a matrix with beta values for 
each sample. Additional file 10 shows an overview of our sample quality control analysis.

DNAm‑based predictors

DNAm predictor estimates were calculated using regression coefficients as reported by 
the corresponding study unless stated otherwise. Custom R scripts were implemented 
that take as input a matrix of EPIC array beta values and output predicted estimates as 
a linear combination of weighted CpG methylation levels. For DNAm clocks, inverse 
transformation was applied to calibrate the DNAm age estimates in units of years, as 
required by the algorithm. For instance, Horvath’s epigenetic clock regressed log-linear 
age (that leveraged age at 20) on DNA methylation levels and required this calibration 
step.

Next, we briefly describe the different predictors included in our study. Additional 
file 11 presents an overview of predictor characteristics. For full details on each predic-
tor, we refer to their corresponding studies.

DNAm clocks

The following predictors all output a form of DNAm age and capture a different aspect 
of biological age depending on the characteristics of their training dataset. The Han-
num clock uses 71 CpG probes and was developed in a whole blood 450 K DNAm data-
set of 656 individuals [7]. The Horvath clock was developed using 3931 multi-tissue 
and multi-cell type samples using both 27 K and 450 K array samples [6]. The Horvath 
clock uses 353 CpG probes that are present on both arrays. The BioAge4HAStatic clock 
is an extended measure of the Hannum clock and defined by forming a weighted aver-
age of Hannum’s estimate with 3 cell types that are known to change with age: naïve 
(CD45RA + CCR7 +) cytotoxic T cells, exhausted (CD28 − CD45RA −) cytotoxic T 
cells, and plasmablasts [17]. The Weidner clock uses 3 CpG and was developed in a 27 K 
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DNAm dataset of whole blood samples from 575 individuals [11]. The Lin clock uses 99 
CpG and was developed in a dataset of 450 K array whole blood samples of 656 individu-
als [10]. The VidalBralo clock uses 8 CpG probes and was developed in a dataset of 450 K 
array whole blood tissue of 390 individuals [13]. The Skin & Blood clock uses 391 CpG 
probes and was developed in a dataset of 450 K and EPIC arrays of a mixture of human 
fibroblasts, skin tissue, buccal cells, endothelial cells, whole blood, and cord blood sam-
ples (N = 896) [9]. The Zhang clock uses 514 CpG probes and was developed in a dataset 
of EPIC and 450 K arrays of 13,566 samples. The majority of the samples were derived 
from whole blood with a small subsample from saliva tissue [8].

Mitotic clocks

The MiAge calculator uses 268 CpG probes and was developed on 4020 samples of 8 
cancer types using 450 K DNAm arrays [19]. MiAge outputs an estimate of mitotic age 
(total number of lifetime cell divisions) for a given human tissue. The epiTOC calcula-
tor was developed in a 450 K DNAm dataset of 650 whole blood samples. EpiTOC uses 
a subset of 385 Polycomb group targets promoter CpGs to predict an estimate of age 
acceleration in cancer. EpiTOC yields a score, denoted “pcgtAge,” as the average DNAm 
over CpG sites, representing the age-cumulative increase in DNAm at these sites due to 
putative cell-replication errors [18].

Mortality risk estimators

The Zhang mortality score is defined by a weighted average of 10 CpGs that are associ-
ated with mortality status [16]. The Zhang mortality score predictor was trained on a 
discovery cohort of whole blood 450 K DNAm samples from 954 individuals (N = 402 
deceased at follow-up) and validated in a cohort of 1000 individuals (N = 231 deceased 
at follow-up). The second mortality estimator, Levine clock, is a predictor of “pheno-
typic age,” which is a DNAm surrogate of the composite score based on ten mortality 
markers (9 clinical markers + chronological age) [14]. A training cohort of 456 whole 
blood samples was then used to identify 513 CpGs predictive of phenotypic age. Only 
probes available on the 27  K, 450  K, and the EPIC array platform were used in their 
analysis. The linear combination of the weighted 513 CpGs is called “DNAm PhenoAge.” 
The third mortality risk estimator is GrimAge from Lu et al., which is defined by a com-
posite score based on seven DNAm-based plasma protein markers, DNAm-based pack 
years of smoking, chronological age, and gender [15]. GrimAge used a training dataset 
of whole blood samples of 1731 individuals. The DNA methylation profiling was based 
on the 450 K beadchip but the biomarker was trained on the CpGs present on both the 
450 K and the EPIC array in order to ensure compatibility for both platforms. GrimAge 
was calculated using a python executable that was developed by the authors of the origi-
nal study, which also outputs several DNAm-based plasma protein markers, three blood 
cell types, and pack years of smoking (see below).

Plasma protein markers

DNAm-based estimators were developed for the following seven plasma proteins: adre-
nomedullin (ADM), beta-2-microglobulin (B2M), cystatin-C, growth differentiation 
factor 15 (GDF-15), leptin, plasmin activator inhibitor 1 (PAI-1), and tissue inhibitor 
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metalloproteinases 1 (TIMP-1). These plasma proteins were measured using an immu-
noassay and the predictor trained using a whole blood 450  k DNAm dataset of 1731 
individuals in the Framingham Heart Study (FHS) cohort [15]. ADM, B2M, cystatin-C, 
GDF-15, leptin, PAI-1, and TIMP-1 are defined by 186, 91, 87, 137, 187, 211, and 42 
CpGs, respectively. Each of these individual estimates was calculated using the GrimAge 
python executable.

Smoking predictors

Two DNAm-based smoking predictors were included in our analysis. The Lu estimator 
was trained using a whole blood 450 K DNAm dataset of 1731 individuals in FHS and 
uses 172 CpGs for prediction, which is a component of GrimAge [15]. We estimated Lu 
pack years of smoking using the GrimAge python executable. The McCartney estimator 
was developed using EPIC DNAm data (only probes that are also present on the 450 K 
platform) of 3444 individuals [20]. The McCartney estimator uses 233 CpGs and out-
puts, similar to the Lu predictor, the number of pack years of smoking.

Blood cell type estimator

We included DNAm-based blood cell type estimators for nine cell types in our analy-
sis. For neutrophils (Neu), B cells, monocytes (Mono), natural killer cells (NK), CD4 + T 
cells (CD4T), and CD8 + T cells (CD8T), estimators were developed using 850 K EPIC 
DNAm data from magnetic sorted cells [5]. These six cell types were estimated jointly 
using the estimateCellProp(refdata = "FlowSorted.Blood.EPIC", nprobes = 50) func-
tion of the ENmix R package. Plasma B cells (PlasmaBlasts), naive CD8 + T cells, and 
CD8 + , CD28 − , CD45RA − T cells (CD8pCD28nCD45RAn), were estimated based on 
the Horvath method [41] and computed using the same python executable as was used 
for the GrimAge estimator. These estimates are the same estimates that can be obtained 
through the online DNAm Age Calculator: https://​dnama​ge.​genet​ics.​ucla.​edu/.

Other estimators

We also included DNAm-based estimators that are developed for body mass index 
(BMI, in kg/m2), alcohol (units: per week), educational attainment (Edu, in years), total 
cholesterol (in mmol/L), HDL cholesterol (in mmol/L), LDL with remnant cholesterol 
(in mmol/L), total to HDL cholesterol ratio (HDL_ratio), waist-to-hip ratio (WHR), and 
body fat (in %). These estimators were developed in a whole blood EPIC DNAm data-
set (only probes that are also present on the 450 K platform) of between 2819 and 5036 
individuals and used between 205 and 1109 CpG sites to predict DNAm-based esti-
mates [20]. Finally, we also included an estimator of leukocyte telomere length (TL). This 
DNAm-based TL predictor was developed in a whole blood 450 K/EPIC DNAm dataset 
of 2256 individuals and uses 140 CpGs [12].

Statistical analyses

In the sample of technical replicates, the intraclass correlation (ICC) was calculated 
using the ICC() function of the R psych package (v2.1.3). More specifically, we use 
ICC(2,1), which is a type of ICC that calculates the degree of consistency from a sin-
gle measurement using a two-way random effects model [36, 42]. ICC(2,1) assumes 

https://dnamage.genetics.ucla.edu/
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absolute agreement, which means the estimates of the replicates are expected to have 
exactly the same value. We also calculated ICC(1,1), ICC(3,1), ICC(1,k), ICC(2,k), 
ICC(3,k) for comparison with other ICC types.

In the general JHS sample (i.e., without technical replicates), we calculated multiple 
statistical measures on the distribution of the output estimates of each predictor. The 
coefficient of variation was calculated by dividing the standard deviation by the mean 
of the distribution of the estimates. DNAm age acceleration residual (ΔAge) was cal-
culated by regressing DNAm age on chronological age using the lm() function in R. 
To relate DNAm predictor estimates with mortality risk (15% of individuals in JHS are 
deceased), a Cox proportional hazards regression model was fitted using the coxph() 
function of the survival package (v3.2). Finally, to assess if the above statistical prop-
erties change depending on the type of data processing pipeline used, we calculated 
Spearman correlations between the ICC calculated in the replicate JHS sample and 
the various statistics generated in the general JHS sample across the 101 pipelines For 
this, we use the cor.test(method = “spearman”) function of the stats package. The sta-
tistical analyses were performed in R (v4.0.3).
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