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Abstract 

Background: The rapid accumulation of single-cell RNA sequencing (scRNA-seq) data 
presents unique opportunities to decode the genetically mediated cell-type specific-
ity in complex diseases. Here, we develop a new method, scGWAS, which effectively 
leverages scRNA-seq data to achieve two goals: (1) to infer the cell types in which the 
disease-associated genes manifest and (2) to construct cellular modules which imply 
disease-specific activation of different processes.

Results: scGWAS only utilizes the average gene expression for each cell type followed 
by virtual search processes to construct the null distributions of module scores, making 
it scalable to large scRNA-seq datasets. We demonstrated scGWAS in 40 genome-
wide association studies (GWAS) datasets (average sample size N ≈ 154,000) using 18 
scRNA-seq datasets from nine major human/mouse tissues (totaling 1.08 million cells) 
and identified 2533 trait and cell-type associations, each with significant modules 
for further investigation. The module genes were validated using disease or clinically 
annotated references from ClinVar, OMIM, and pLI variants.

Conclusions: We showed that the trait-cell type associations identified by scGWAS, 
while generally constrained to trait-tissue associations, could recapitulate many 
well-studied relationships and also reveal novel relationships, providing insights into 
the unsolved trait-tissue associations. Moreover, in each specific cell type, the associa-
tions with different traits were often mediated by different sets of risk genes, implying 
disease-specific activation of driving processes. In summary, scGWAS is a powerful tool 
for exploring the genetic basis of complex diseases at the cell type level using single-
cell expression data.
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Background
Nearly 90% of the disease susceptibility loci reported in genome-wide association stud-
ies (GWAS) are located in non-coding regions and are predicted to play regulatory roles 
[1]. However, genetic regulation is highly tissue- and cell-type-specific [2–6]. Identifica-
tion of the genetically mediated associations between traits and cell types is critical to 
understand the functional impact of genetic variants and the underlying disease mecha-
nisms, which can be further extended for potential precision medicine strategies. Such 
tasks have been complicated because multiple cell types are often associated with most 
complex traits. These cell types may or may not involve the same tissues. Furthermore, 
the cells in which the disease-susceptibility variants play regulatory roles may not be the 
cells that are most relevant to the disease symptoms [7]. Trait and cell type associations 
also have implications for disease complications and dynamic progression. Thus, an 
unbiased approach, rather than an experience-based or a priori knowledge-guided way, 
is urgently needed to quantify how the GWAS-implied genes are concordantly activated 
in a particular cell type.

Several studies have explored trait and cell-type associations, especially for inferring 
cell-type-specific gene expression patterns. For example, genes implicated in neurologi-
cal diseases or psychiatric disorders were actively expressed in different types of neu-
rons [8, 9]. By integrating mouse single-cell RNA sequencing (scRNA-seq) data with 
body mass index (BMI) GWAS, Timshel and colleagues reported that brain cell types 
were involved in obesity [10]. The method RolyPoly identifies the enrichment of SNP-
trait association signals in functional annotations [11]. The online platform, Functional 
Mapping and Annotation of Genome-Wide Association Studies (FUMA), proposed a 
framework to map cell type specificity for complex traits [12, 13]. The method LD score 
regression applied to specifically expressed genes (LDSC-SEG) identified disease-rel-
evant tissues and cell types by integrating gene expression data together with GWAS 
summary statistics [8, 14]. In our recent work, we conducted a systematic enrichment 
analysis for a wide variety of human traits to determine the trait-associated cell types in 
different organs [15, 16]. However, most of these works are enrichment-based analyses 
following a framework that, given a list of query genes, these methods determine if the 
query genes are significantly specifically expressed in a particular cell type. It remains 
unclear how disease-risk variants and related genes are transcriptionally activated in 
each cell type and further disrupt specific biological processes to affect disease risks.

Single-cell RNA sequencing technique can quantitatively measure gene expression at 
the resolution of individual cells and examine cell type-specific transcriptome features. 
Such information can be integrated into GWAS analysis to discover cell-type specifici-
ties for human complex traits [15, 17]. Here, we propose scGWAS (scRNA-seq assisted 
GWAS analysis) to investigate the transcriptional changes of genetic variants in specific 
cell type contexts by leveraging a wide variety of gene–gene relationships in the human 
genome. scGWAS can not only identify the genetically mediated associations between 
cell types and traits but also construct the biological networks that are overrepresented 
with disease risk genes and transcriptionally active genes in a cell type. As shown below, 
scGWAS utilizes only the average gene expression for each cell type, which makes it scal-
able to large scRNA-seq datasets. The reported associations between traits and cell types 
represent credible concordances between the two data types, regardless of the contrasts 
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with other cell types. With such a design, we collected 18 scRNA-seq datasets from nine 
major human tissues (blood, brain, decidua, esophagus, heart, liver, lung, pancreas, and 
spleen) and applied scGWAS to 40 GWAS summary datasets of representative com-
plex traits and disorders. We conducted comprehensive validation by using clinically 
annotated references such as ClinVar [18], OMIM [19], and pLI variants [20]. With the 
comprehensive map of trait and cell type associations, we further explored the driving 
processes contributing to the association pairs in several major disease groups such as 
metabolic diseases and immune-related diseases.

Results
The trait‑tissue‑cell type relationship

We collected 40 GWAS summary statistics datasets for representative complex traits 
(average sample size N ≈ 154,000), including psychiatric disorders, neurodegenerative 
disorders, immune diseases, metabolism traits, and others (Table 1). We conducted an 
initial investigation of the tissue specificity of these traits using our method deTS and the 
GTEx bulk transcriptome data [21]. As shown in Fig. 1B, a number of trait-tissue associ-
ations were identified, most of which were consistent with biological expectations, such 
as neuropsychiatric and cognitive traits enriched in different brain regions, immune-
related traits enriched in spleen and whole blood, and lipid metabolic traits enriched 
in liver. A few traits [anxiety (ANX), internalizing problems (IP), obsessive–compulsive 
disorder (OCD), and pancreatic cancer (PanCan)] showed no association with any tis-
sue. Notably, four tissues (whole blood, lung, spleen, and small intestine terminal ileum) 
were consistently associated with several diseases common in immune regulation, such 
as type 1 diabetes (T1D), multiple sclerosis (MS), and rheumatoid arthritis (RA), though 
some associations lacked obvious biological links, e.g., RA with small intestine terminal 
ileum. Therefore, to better understand the active context of these traits, cell-type level 
analysis is critically needed to fine-map the associations at the cellular level.

Methodology design of scGWAS

The principle of scGWAS is illustrated in Fig.  1A and more details are in the “Meth-
ods” section. Briefly, scGWAS has two goals: to determine if GWAS-implied genes are 
concordantly activated in a particular cell type (through the proportional test) and to 
identify gene modules in which both genetic association signals and cell-type expression 
signals are significantly enriched (through module identification). In the design of scG-
WAS, there are several important steps to ensure the accuracy of the results. First, we 
propose a novel procedure to normalize the GWAS data and the scRNA-seq data such 
that they could be integrated. As illustrated in Fig.  2, both the original GWAS scores 
and cell type expression scores tended to be right-skewed. With the Box-Cox transfor-
mation, the original distribution of − log10 (p) from MAGMA and the distribution of 
log (CPM+1) from scRNA-seq could be transformed to follow the normal distribution 
(Fig. 2D, I). With the normalization step, both types of scores were calibrated to approxi-
mate the normal distribution (Fig. 2E, J). Second, we develop a sequential feedforward 
module expansion coupled with backward examination (MEBE) algorithm to construct 
gene modules overrepresented with the heterogeneous information weighted by GWAS 
and by cellular expression data. The introduction of the inclusion step (controlled by 
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Table 1 Summary of complex traits/diseases and implicated tissues

PGC Psychiatric Genomics Consortium

Trait/disease name Abbr Year # samples Implied tissue pBH(deTS)

Alcohol use disorder [22] AUD 2019 202,004 Brain—cerebellum 0.08

Alzheimer’s disease [23] AD 2018 455,258 Whole blood 9.94 ×  10−9

Amyotrophic lateral sclerosis [24] ALS 2016 36,052 Heart—atrial appendage 0.28

Anxiety, anxiety-continuous [25] ANX 2016 18,186 Brain—spinal cord (cervical c-1) 0.10

Anxiety tension-special-factor-of-
neuroticism[26]

ANEU 2019 270,059 Brain—anterior cingulate cortex 
(BA24)

6.49 ×  10−3

Asthma [27] Asthma 2017 127,669 Spleen 9.71 ×  10−3

Attention-deficit-hyperactivity 
disorder [28]

ADHD 2017 53,293 Brain—anterior cingulate cortex 
(BA24)

9.05 ×  10−4

PGC Autism, Autism-Europeans 
[29]

ASD 2017 13,574 Heart—atrial appendage 0.40

Bipolar disorder [30] BD 2018 51,710 Brain—anterior cingulate cortex 
(BA24)

6.85 ×  10−4

Blood lipids, high-density lipopro-
tein [31]

HDL 2010 99,900 Liver 6.62 ×  10−4

Blood lipids, low-density lipopro-
tein [31]

LDL 2010 95,454 Liver 2.11 ×  10−8

Blood lipids, total cholesterol [31] TC 2010 100,184 Liver 6.91 ×  10−10

Blood lipids, triglycerides [31] TG 2010 96,598 Liver 1.31 ×  10−8

Body mass index [32] BMI 2015 234,069 Colon—sigmoid 0.02

CAD resting heart rate [33] CAD_RHR 2016 265,046 Liver 4.80 ×  10−3

Coronary artery disease [34] CAD 2017 63,731 Artery—aorta 0.01

Depressive symptoms [35] DS 2019 181,045 Adrenal gland 0.18

Educational attainment, educa-
tion years all [36]

EDU 2016 293,723 Brain—frontal cortex (BA9) 3.31 ×  10−4

General factor of neuroticism [26] GNEU 2019 270,059 Brain—nucleus accumbens (basal 
ganglia)

3.10 ×  10−5

Heart failure [37] HF 2018 394,156 Artery—aorta 0.19

Height [38] Height 2014 253,288 Artery—tibial 0.02

Internalizing problems [39] IP 2014 4596 Adrenal gland 0.44

Lipoprotein concentrations, HDL 
[40]

LIP_HDL 2009 19,840 Adipose—visceral (omentum) 0.03

Lung function, FEV1/FVC [41] FEV1 2019 316,614 Artery—tibial 1.52 ×  10−5

Lung function, FVC [41] FVC 2019 317,222 Colon—sigmoid 1.04 ×  10−3

Major depressive disorder [42] MDD 2018 42,455 Brain—anterior cingulate cortex 
(BA24)

0.04

Multiple sclerosis [43] MS 2018 41,505 Spleen 9.03 ×  10−15

Neuroticism [35] NEU 2019 523,783 Brain—cerebellar hemisphere 9.18 ×  10−3

Obsessive–compulsive disorder 
[44]

OCD 2017 9,725 Brain—cerebellum 0.05

Pancreatic cancer [45] PanCan 2009 3,576 Adipose—subcutaneous 0.73

Parkinson’s disease [46] PD 2012 8,477 Brain—cerebellum 3.65 ×  10−4

Resting heart rate [47] RHR 2019 458,969 Heart—atrial appendage 9.27 ×  10−17

Rheumatoid arthritis [48] RA 2014 58,284 Spleen 2.80 ×  10−10

Schizophrenia [49] SCZ 2018 74,626 Brain—frontal cortex (BA9) 6.60 ×  10−3

SSGAC College [50] COL 2013 101,069 Brain—cerebellar hemisphere 2.76 ×  10−3

Subjective wellbeing [51] SWB 2016 298,420 Brain—amygdala 0.20

Type 2 diabetes [52] T2D 2017 159,208 Brain—spinal cord (cervical c-1) 0.10

Type 1 diabetes [53] T1D 2011 26,890 Spleen 8.64 ×  10−9

Type 1 diabetes, childhood adi-
posity age under17 [54]

T1D_C 2017 14,741 Spleen 7.61 ×  10−10

Waist format 2: Waist hip ratio [55] WHR 2015 143,480 Esophagus—Muscularis 0.04
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r1) and the exclusion step (controlled by r2) allows scGWAS to always retain informa-
tive nodes in the modules. We examined the random modules from the virtual search 
process and determined the values for r1 and r2 for the following analyses (Additional 
file 1: Fig. S1; see more discussion in Additional file 1 and in our previous works [17, 
56]). Third, when executing MEBE, we define a module score m with a penalty factor 
sd(mg ,ms) to control deviation of the two types of weights. Indeed, without the penalty 
factor, i.e., using m = mg +ms to calculate the module score, fewer modules were iden-
tified compared to the cases when we included the penalty factor (Fig. 2K, L and Addi-
tional file  1: Fig. S2). Including the factor also increased the chance to discover more 
disease and cell type associations that were reported in previous works, e.g., excita-
tory neurons with schizophrenia [8, 12]. Fourth, we introduce a process called virtual 
search to construct the null distribution of module scores as the theoretical parameters 
have proven difficult to estimate [57–59]. This virtual search process breaks down the 

0.00

0.25

0.50

0.75

0 5000 10000 15000
Rank by Magma z−value (GWAS)

En
ric

hm
en

t S
co

re

0.0

0.2

0.4

0.6

0.8

0 5000 10000 15000
Rank by avg.expr per cell type (scRNAseq)

En
ric

hm
en

t S
co

re

MAGI2

MACF1

HECW2

LRP1

GRIN2A

ANKS1B

ERBB4

AKT3

ZSWIM6

EGR1

THRB

DST

TCF4

CACNB2

SRPK2

CACNA1I

ANK3

CACNA1C

SATB2

CACNA1A

CLIP1ATP2A2

RORA

ATP2B2

RBFOX1

ABCB9

PITPNM2

ASAP1

PTK2B

PRKD1 PRKCBDGKZ

PLCL1

DGKI
PCDH7 NRXN1

CHD2

NFE2L1

FOXP1

DCC

MAPK1

-log10(pBH)

(A)

(B)

(C)

(E)

−2

0

2

4

−2 −1 0 1 2 3
GWAS

sc
R

N
A

se
q

−4

−2

0

2

−5.0 −2.5 0.0 2.5
GWAS

sc
R

N
A

se
q

a

A

b

B

p1=a/A p2=b/B

−2

0

2

4

−5.0 −2.5 0.0 2.5
GWAS

sc
R

N
A

−
se

q

−2

0

2

4

−2 0 2
GWAS

sc
R

N
A

−
se

q

(D)

A
dipose −

 S
ubcutaneous

A
dipose −

 V
isceral (O

m
entum

)
A

drenal G
land

A
rtery −

 A
orta

A
rtery −

 C
oronary

A
rtery −

 T
ibial

B
rain −

 A
m

ygdala
B

rain −
 A

nterior cingulate cortex (B
A

24)
B

rain −
 C

audate (basal ganglia)
B

rain −
 C

erebellar H
em

isphere
B

rain −
 C

erebellum
B

rain −
 C

ortex
B

rain −
 F

rontal C
ortex (B

A
9)

B
rain −

 H
ippocam

pus
B

rain −
 H

ypothalam
us

B
rain −

 N
ucleus accum

bens (basal ganglia)
B

rain −
 P

utam
en (basal ganglia)

B
rain −

 S
pinal cord (cervical c−

1)
B

rain −
 S

ubstantia nigra
B

reast −
 M

am
m

ary T
issue

C
olon −

 S
igm

oid
C

olon −
 Transverse

E
sophagus −

 G
astroesophageal Junction

E
sophagus −

 M
ucosa

E
sophagus −

 M
uscularis

H
eart −

 A
trial A

ppendage
H

eart −
 Left V

entricle
K

idney −
 C

ortex
Liver
Lung
M

inor S
alivary G

land
M

uscle −
 S

keletal
N

erve −
 T

ibial
O

vary
P

ancreas
P

ituitary
P

rostate
S

kin −
 N

ot S
un E

xposed (S
uprapubic)

S
kin −

 S
un E

xposed (Low
er leg)

S
m

all Intestine −
 Term

inal Ileum
S

pleen
S

tom
ach

Testis
T

hyroid
U

terus
V

agina
W

hole B
lood

RHR
MS
RA
T1D
T1D_C
ADHD
GNEU
LungFEV1
TG
LDL
TC
ALZ
EDU
BD
ANEU
SCZ
CAD_RHR
CAD
HDL
LIP_HDL
BMI
PD
COL
LungFVC
Height
Asthma
NEU
MDD
WHR
OCD
T2D
SWB
PanCan
IP
HF
DS
ASD
ANX
AUD
ALS

0

5

10

15

Fig. 1 Analysis framework to decode trait-associated tissues and cell types. A Illustration of GWAS and 
cell-type expression integration at the cellular level. B Tissue-specific enrichment analysis of the traits. The 
color reflects the significance level [−  log10(pBH)]. C Demonstration of the proportional test. D Demonstration 
of a case showing the association between GWAS and cell type transcriptome (left) and another case without 
such an association (right). In each figure, a dot indicates a module, with its GWAS-based score shown 
on the x-axis and its scRNA-seq score shown on the y-axis. The gray dots are random modules from the 
randomization process. The green and red dots are modules from the real data whereas the red ones indicate 
significance. Cyan and red circles indicate the 95% confidence interval (CI) of the random modules and the 
actual modules, respectively. The horizontal and vertical dash lines indicate nominal significance (z = 1.96). 
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relationship between GWAS signals and cell type expression while implementing the 
same module search procedure (i.e., the MEBE algorithm) repeatedly until a sufficient 
number of random modules have been generated to form the null distribution. These 
random modules are subsequently used to assess the significance of modules (pm) and 
to conduct the proportional test (i.e., to generate the z-score). As shown in Fig. 2M and 
Additional file 1: Fig. S3, this procedure reduced the effect of module sizes and made 
modules with different sizes comparable.
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Comparison of scGWAS with similar methods

There have been several similar methods for enrichment analyses of trait-associated 
SNPs in specific cells [11, 13–16]. Notably, most of these methods report the cell types 
that are relevant to the traits but they do not particularly report the genes that medi-
ate the enrichment. Here, we compared scGWAS with FUMA [13]. As shown in Addi-
tional file  1: Fig. S4, scGWAS was able to predict trait and cell-type associations that 
were comparable to FUMA but it further identified the subnetworks to infer how each 
component gene has mediated the association. More discussion on the technical details 
of the method comparison can be found in Additional file 1.

scGWAS identified trait‑cell type associations that recapitulated biological expectations

We applied scGWAS to the 40 GWAS summary statistics using all 18 single-cell panels. 
These panels reported a total of 437 tissue-cell types, including shared cell types (such 
as immune, epithelial, and stroma cells) among tissues and unique cell types that were 
tissue-specific (such as acinar, delta, ductal, and gamma cells in pancreas and neurons 
primarily in the nervous system) (Additional file 1: Table S1). Throughout this work, we 
refer to a cell type pertaining to a specific panel rather than merging cells of the same 
type across different panels to avoid the potential introduction of batch effect. For exam-
ple, the B cells were reported in the lung, blood, heart, or spleen panels and we specified 
this cell type when necessary. For each pair of a trait and a cell type, we tested whether 
the proportion of concordant modules was significantly higher than randomly expected 
through the proportional test. As a result, we conducted 40 × 437 times of runs and 
identified a total of 2533 trait-cell type associations for which a significant association 
was identified (proportional test, z > 5) (Fig. 3). Significant modules were also reported 
(pm < 0.05). The cutoff of z > 5 was determined according to the Bonferroni correction 
for 437 cells and 40 traits (Φ−1(0.05/437 × 40) ≈ 5). Among the 18 panels, the four brain 
panels revealed the greatest number of associations (Saunders: n = 806; Zeisel: n = 290; 
DER22: n = 327; DER20: n = 236). This is likely due to a large number of cell types per 
panel and also the large proportion of brain disorders investigated (20 out of 40 traits). 
Accordingly, several cell types that had the largest number of associated traits were from 
the four brain panels: microglia, two excitatory neurons (Ex2 and Ex8), and astrocyte. 
Among all traits, resting heart rate in coronary artery disease (CAD_RHR) had the larg-
est number of associations (n = 166 tissue-cell types), followed by depressive symp-
toms (DS, n = 133), Alzheimer’s disease (ALZ, n = 125), coronary artery disease (CAD, 
n = 115), type 1 diabetes (T1D, n = 109), and resting heart rate (RHR, n = 108). Four 
traits had a much smaller number of associations: height (n = 9), heart failure (HF, n = 8), 
lung function FEV1-FVC (n = 4), and internalizing problems (IP, n = 3), which were con-
sistent with the observations at the tissue level. All the remaining traits had 10–100 trait 
and cell type associations.

Of note, the associations we found confirmed many previous discoveries. Among the 
40 tested GWAS summary datasets, the traits with significant associations with brain 
cell types were almost exclusively brain-related traits and disorders and they formed 
two sub-clusters (Fig. 3), one with NEU, SCZ, BD, EDU, DS, and GNEU, and the other 
with BMI, ADHD, ASD, SWB, AUD, MDD, and COL (see Table  1 for abbreviations). 
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Our results confirmed the association between BMI and several neuronal cell types, 
including both excitatory neurons and inhibitory neurons in both panels. This is con-
sistent with previous studies that obesity was related to brain tissues and cell types [10]. 
Plasma lipid traits [i.e., high-density lipoprotein (HDL), low-density lipoprotein (LDL), 
total cholesterol (TC), and triglycerides (TG)] were found in liver cells. Diabetes [type 
2 diabetes (T2D), type 1 diabetes (T1D), and type 1 diabetes with childhood adiposity 
(T1D_C)] were associated with the pancreatic tissue and consistently with the beta cell 
type in multiple panels. Finally, immune-related traits, including those with immune-
related dysfunctions [e.g., rheumatoid arthritis (RA) and multiple sclerosis (MS)], were 
found with immune cells from various panels. Apart from these expected associations, 
novel associations were identified, which implied potential comorbidity mechanisms. 
For example, we found CAD and CAD_RHR with many cell types in the lungs, consist-
ent with previous reports that lung impairment is associated with coronary artery dis-
ease [60] and RHR with beta cells from the pancreas [61].
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Fig. 3 Illustration of the scGWAS results. A A heatmap of all scGWAS results using 18 scRNA-seq panels and 
40 traits. B, C Demonstration of module score distribution in schizophrenia (B) and major depressive disorder 
(C) in cell types from the DER20 panel. The last plot shows the scale of the axes: normalized module score 
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runs, are not plotted for simplicity
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scGWAS reports more clinically relevant genes

We performed a series of enrichment analyses to evaluate the module genes identified 
by scGWAS. To this end, we downloaded (1) genes with pLI annotations based on the 
ExAC dataset, (2) ClinVar dataset in which genes were annotated with pathogenic or 
likely pathogenic variants, and (3) OMIM genes. For each trait-cell type association, 
we defined two gene sets as control: one contained the most highly expressed genes in 
the corresponding cell type expression data and had the same number of genes as the 
module genes; the other contained those that were ranked as the most significant in 
the corresponding GWAS data with the same size. For each gene set, we calculated the 
proportion of clinically relevant genes, defined by pLI (those with pLI > 0.9), ClinVar, or 
OMIM, in both the investigated gene set (module genes or control genes) and the refer-
ence gene set (containing the remaining genes). As shown in Fig. 4, our module genes 
outperformed most of the GWAS-promoted genes and the expression-promoted genes 
in the majority of tissues and in all three functionally important gene sets: pLI [in 17/18 
panels, the scGWAS sets had an average odds ratio (OR) greater than the GWAS-pro-
moted sets and in 11/18 panels greater than the expression-promoted sets], ClinVar (in 
16/18 panels scGWAS sets greater than the GWAS-promoted sets and in 13/18 panels 
greater than the expression-promoted sets), and OMIM (in 17/18 panels scGWAS sets 
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Fig. 4 Independent validation of scGWAS results. A Validation of module genes using pLI, ClinVar, and OMIM 
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Lung10x_T, Lung10x_M, and Lung10x_DC refer to the B cells (including subtypes), T cells, macrophages, and 
dendritic cells in the Lung10x panel



Page 10 of 24Jia et al. Genome Biology          (2022) 23:220 

greater than the GWAS-promoted sets and in 11/18 panels greater than the expression-
promoted sets). In addition, we implemented the same module search and virtual search 
process by using only GWAS data to construct subnetworks for each trait (referred to as 
GWAS_only). As shown in Fig. 4A, we found that overall, the module genes identified by 
scGWAS tended to be more functionally important than the module genes identified by 
using GWAS only (the average OR for pLI: 2.38 by scGWAS compared to 1.84 by GWAS 
only; 1.79 versus 1.64 for ClinVar; and 1.96 versus 1.78 for OMIM). Collectively, scG-
WAS was demonstrated to enrich more functional genes than the raw GWAS-promoted 
genes simply selected using the smallest p-values. These results provided convincing evi-
dence that the module genes are more likely to be functionally important.

scGWAS uncovers replicable trait‑cell associations

The multiple traits and panels allowed us to perform a cross-panel evaluation of the 
results. We selected several cell types that were reported by multiple panels for cross-
panel replication of the trait-cell associations, mainly cells from the brain, pancreas, and 
the immune system. For the brain panels, we focused on three general groups, i.e., neu-
ron and major non-neuron cells (astrocyte and microglia), each of which had individual 
cell types reported in different panels. For the 20 brain-related disorders plus BMI, 19/19 
traits in neuron, 8/15 traits in astrocyte, and 8/17 traits in microglia had replicated asso-
ciations (≥ 2 panels). For neurons, three panels also distinguished inhibitory neurons 
from excitatory neurons and for these panels, 16 out of 19 traits were found in excitatory 
neurons by two or more panels and 16/19 were repeatedly found in the inhibitory neu-
rons. For the pancreas, we examined beta and delta cells that were found associated with 
several traits. As shown in Fig. 4B, 5/5 and 4/5 were repeatedly found in all five panels. 
In addition, we examined the general groups of B cells, T cells, macrophage, and den-
dritic cells (DC). Different subtypes of these cells were found in the lung, spleen, liver, 
and decidua. Four traits that were previously reported with an immune component were 
repeatedly found associated with some or all of these immune-related cell types. Taken 
together, these cross-panel comparisons indicated that the associations found by scG-
WAS were reliable and replicable.

It is worth noting the presence of batch effect among these datasets, as discussed 
before and in benchmarking analysis [62]. In our work, we did not conduct any preproc-
essing to control the batch effect except the built-in functions of scGWAS for normali-
zation between GWAS and scRNA-seq. However, the results from our applications of 
scGWAS were consistent in detecting the associated cell types, implying the robustness 
of scGWAS to overcome batch effects and accurately detect trait-associated cell types.

Cell‑type‑based trait similarity

Considering that multiple traits or disorders could be associated with the same cell 
types, we next investigated the shared genes among the investigated traits. We first 
collected the associated traits for each cell type and calculated the Jaccard Index (JI) 
based on the module genes. The similarity of any pair of traits was calculated as the 
mean JI across cell types. As shown in Fig. 5A, three major trait groups were identi-
fied: immune (asthma, T1D, T1D_C, MS, and RA), lipid (TG, HDL, LIP_HDL, and 
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TC), and brain disorders (GNEU, DS, NEU, ALS, etc.). Through examining the pairs 
of traits that showed high overlapping genes (Fig. 5B), we found that the traits in the 
same group generally had more shared genes with each other than that with the traits 
from unrelated groups. Among the 575 pairs with a high JI value (> 0.2, accounting 
for 5.5% of all pairs), 94 between DS and NEU/GNEU, 89 occurred between CAD and 
CAD_RHR, 77 pairs belonged to the plasma lipid traits, 45 between NEU and GNEU, 
202 belonged to the five immune-related traits (asthma, MS, RA, T1D, T1D_C), and 
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the remaining among others. These results indicated that the traits sharing genetic 
components tended to have more module genes in the same cell type.

Trait and cell type associations in the pancreas, liver, and the immune system

Diabetes and obesity‑related traits in the pancreas

The pancreas is the organ for maintaining metabolic balance in the human body. It is 
associated with several diseases, especially diabetes. scGWAS consistently reported 
that T2D was associated with the beta cells in all five scRNA-seq panels and also in 
the alpha and delta cells. Both T1D and T1D_C were found enriched in multiple cells 
including beta cells and delta cells (Fig. 6). Interestingly, resting heart rate and waist-hip 
ratio were also found enriched in beta cells in multiple datasets. The module genes that 
mediate the association between T1D and T2D in the beta cells had distinct functions, 
implying mechanistic insights underlying these diseases. T1D was mainly enriched in 
leukocyte-related functions, consistent with the immune hypothesis of this disease. In 
contrast, T2D was enriched in hormone secretion, highlighting the genes with previ-
ously reported evidence, such as HSD17B12 [63], INS, SLC30A8 [64], ABCC8 [65], and 
FTO [66]. In all panels, the insulin encoding gene INS served as the hub to the result-
ant subnetworks (Fig. 6). We demonstrated the results using the subnetwork in the nor-
mal pancreas (GSE85241, Fig. 6D) and the one in the disease samples (E-MTAB-5061, 
Fig. 6C). The module genes found in the disease samples were significantly enriched in 
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Fig. 6 Trait-cell type association using the pancreas panels. A Association results using the five pancreas 
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response to insulin [Benjamini and Hochberg corrected p-value  (pBH) = 1.90 ×  10−4], 
type B pancreatic cell differentiation  (pBH = 2.12 ×  10−4), and pancreas development 
 (pBH = 2.56 ×  10−4) whereas the module genes in the normal samples tended to be 
enriched in various endoplasmic reticulum-related processes.

Different traits associated with the liver

The liver is the major human tissue for metabolism, including ethanol metabolism [67]. 
Both AUD and lipid-related traits are well known to be associated with the liver. Using 
scGWAS, we found three groups of traits enriched in the liver hepatocyte (Hep) cells: 
brain related disorders (ALZ, ALS, AUD, BD, and NEU), lipid-related traits (LDL, HDL, 
TC, TG, and LIP_HDL), and cardiovascular traits (CAD and CAD_RHR) (Fig. 7). The 
AUD subnetwork included genes from the alcohol dehydrogenase family (e.g., ADH1B, 
ADH4, ADH5) and aldehyde dehydrogenase activity-related genes ALDH1A1 and 
ALDH2 (Fig. 7D), and those genes were enriched in many alcohol metabolic related pro-
cesses such as alcohol dehydrogenase [NAD(P) +] activity  (pBH = 1.79 ×  10−5) and alco-
hol catabolic process  (pBH = 6.40 ×  10−11). In contrast, lipid-related traits were mainly 
enriched in lipoprotein-related functions. Interestingly, CAD and CAD_RHR were also 
enriched in the six hepatocyte cells in the liver, although the module genes in these traits 
highlighted cholesterol transfer activity  (pBH = 1.23 ×  10−46), cholesterol metabolic pro-
cess  (pBH = 1.65 ×  10−7), and lipoprotein-related functions (Fig. 7). These results further 
demonstrated that different genes and processes are involved in different traits in the 
same cell type.

Immune‑related traits with the lung

The immune cells, and their various subtypes, existed in nearly all the panels we col-
lected, especially the lung (Lung10x, LungSS2, Madissoon_Lung, Fig.  8, Additional 
file 1: Fig. S5), PBMC (Additional file 1: Fig. S5), spleen (Additional file 1: Fig. S5), and 
decidua (Additional file 1: Fig. S6). These included the major groups of B cells, T cells, 
macrophages, monocyte, and dendritic cells (DC). In our results, the traits/disorders 
with a strong immune component, such as asthma, MS, RA, T1D, and T1D_C, were 
frequently enriched in immune cells regardless of the tissue origin (Figs. 4B and 8A, and 
Additional file 1: Fig. S5). By examining the shared module genes, we found a number of 
HLA genes (e.g., HLA-DMA, HLA-DQA2, HLA-DQB2, HLA-DRB5, and HLA-F) as well 
as other genes (such as TNF) mediated the trait and immune cell associations (Fig. 8C). 
Interestingly, we also observed that heart diseases, i.e., CAD, CAD_RHR, and RHR, were 
frequently associated with many immune cell types from the lung, PBMC, and decidua. 
While these diseases were expected to be enriched in the heart, which were confirmed 
in our results (Additional file 1: Fig. S7), they were also associated with adventitial fibro-
blast, alveolar epithelial, and bronchial vessels in the lung. The cell types associated with 
these diseases in the decidua (Additional file 1: Fig. S6) and heart (Additional file 1: Fig. 
S7) were mainly stromal, endothelial, and fibroblast related. This observation supported 
the underlying disease etiology.
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Discussion
In this work, we proposed a novel method, scGWAS, to map genetic susceptibility genes 
from GWAS summary statistics to cell-type transcriptomes from healthy tissues. We 
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Fig. 7 Trait-cell type association using the liver panel. A Heatmap of the identified trait-cell type associations 
in the liver panel. B Distribution of module scores using selected trait and cell type pairs as examples. In each 
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the red circle indicates the 95% CI estimated using the real modules. Significant modules are highlighted 
in red while all other modules, including non-significant modules from real data and all random modules 
from the virtual runs, are plotted as gray dots. C Trait-trait correlation based on shared module genes in 
the Hep_1 cell. The red dots are proportional to the Jaccard Index between any pair of traits using their 
module genes identified in Hep_1. D Demonstration of subnetworks for AUD, CAD, CAD-RHR, and HDL. Note 
that the AUD network was constructed using all genes identified in Hep cells and the networks for CAD, 
CAD-RHR, and HDL were constructed using genes identified in a specific Hep cell type. In all networks, node 
color is proportional to the corresponding GWAS signals and node size is proportional to the average gene 
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applied scGWAS to 40 GWAS datasets covering a diverse set of complex human traits. 
Our results recapitulated previously known trait-tissue and trait-cell type associations 
and further revealed novel associations that have not been reported before. We observed 
that different sets of genes were activated in different cell types for the same diseases, 
implying complex disease-specific mechanisms. Overall, we presented a comprehen-
sive landscape of trait and cell type associations as well as subnetworks for each asso-
ciation to further explore how the disease or trait susceptibility genes were specifically 
expressed in the corresponding cell type(s).

One of the advantages of scGWAS was that the trait and cell type associations were 
determined by using the average gene expression across all cells classified in a cell type. 
We did not conduct any cross-cell type comparison or define any measurement to assess 
the cell type specificity. Rather, we proposed a virtual search strategy to break down the 
pair-wise relationship between each node and its weights and construct the null distri-
bution. As a result, the associations were not dependent on the comparison with other 
cell types from the scRNA-seq panel. Importantly, the association results represented 
the authentic concordance between cell type expression and the GWAS data. This 
design makes scGWAS widely applicable to various scRNA-seq data, either those with 
over one hundred cell types or as few as four (e.g., in the case of panel GSE81608). In 
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Fig. 8 Trait-cell type association using the lung panels. A Heatmap of the identified trait-cell type 
associations in the Lung10x and Madissoon_Lung panels. B The cluster of cell types from different panels 
for MS. C Heatmap of genes that were frequently identified in different traits in the macrophage cells or the 
dendritic cells
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addition, other forms of measurement can be chosen, e.g., gene expression variance (as 
highly variably expressed genes are often used to conduct classification analysis), cell-
type specificity (as implemented in our previous work CSEA-DB [13] and deCS [16]), 
among others. Users can prepare different forms of cell type expression data as the input 
to scGWAS, with the hypothesis being updated to test the concordance between GWAS 
data with highly variably expressed genes (if the variance is used), or the concordance 
between GWAS data with highly specifically expressed genes (if the specificity scores are 
used).

There were several trait and cell type associations that we did not discuss in detail, 
but they were also supported by literature [15, 68]. These included T2D with the liver 
hepatocyte cells (Fig. 7A), ALS and ALZ with the liver hepatocyte cells (Fig. 7A), and 
several traits with the macrophage in the lung panels (Fig.  8A). Overall, the reported 
trait-cell type associations provided novel insights, facilitating further genetic studies, 
such as investigation of cell-type-specific regulation, annotation of epigenomics profiles 
for trait-associated candidate variants, and understanding the mechanisms of causal 
variants.

Throughout this work, we mainly used scRNA-seq data from normal tissues except for 
two disease panels from T2D patients (E-MTAB-5061 and GSE81608). This is because 
using scRNA-seq data from disease tissues would make it difficult to distinguish the 
impact of the original genetic background of the tissue itself and the impact of the inves-
tigated GWAS signals. It is also hard to determine whether the observed high gene activ-
ity in disease tissues is the reason or the result of the disease status. Using data from 
normal tissue, we could measure the gene expression activity without any disease con-
founders, and thus, they serve as an unbiased reference panel for GWAS data analyses.

There are some limitations of the current work. First, although scGWAS could identify 
a list of traits and cell type associations, it might have missed some true associations. For 
example, we failed to detect any associated cell type for pancreatic cancer, even though 
the appropriate tissue data for the pancreas were included. There were also panels in 
which the identified associations remained to be explained, such as the fetal heart panel, 
where we found ASD, AUD, asthma, and T1D were associated (Additional file 1: Fig. S6). 
Future work with expanded panels is necessary to complete the tissue annotations for 
cell types. Second, we ignored the co-expression relationships among gene–gene or pro-
tein–protein pairs when searching for modules. Incorporation of more specified gene–
gene regulations, such as transcription factors and their target genes, may empower 
novel discoveries of regulatory module genes. Third, we used a generalized SNP to gene 
mapping strategy based on the physical location of each SNP. This strategy is limited 
to proximal regions and might miss important SNP-gene relationships. Comprehensive 
mapping of SNPs to genes using cis- and trans-annotations [e.g., eQTL, mQTL (meth-
ylation), histone-QTL, and pQTL (protein)] is expected to better explore the potential 
roles of SNPs with targeted genes. In practice, users can map SNPs to genes using cus-
tomized strategies and then provide the resultant gene-based scores to scGWAS for fol-
low-up analyses.

Lastly, there are several components in the method that are worthy of clarification. 
First, the module search process controls the concordance between GWAS weights and 
scRNA-seq weights through the penalty factor while the proportional test also assessed 
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the concordance between the two data types. However, the proportional test is built on 
the true modules from the original data and the random modules from the virtual search 
process, with the latter being constructed through the same MEBE algorithm. As illus-
trated in the module score distribution (Figs. 2K and 3B, C), in random cases, even with 
the penalty factor, the two data types showed no association (i.e., the gray circle show-
ing random modules is roughly in parallel with the x-axis and the y-axis). This indicates 
that the module search process does not introduce biases towards higher concordance 
itself and has no or very limited impact on the latter assessment by the proportional test. 
Thus, the GWAS data and scRNA-seq data were only used for module discovery but not 
for module evaluation; otherwise, it would raise an issue of overestimation of perfor-
mance based on reusing the same data for two different tasks. Second, scGWAS makes 
no assumption about the reference network. Any type of gene–gene relationship can be 
used to serve as the reference network, e.g., co-expression, protein–protein interaction, 
genetic regulation, and so on. Accordingly, the interpretation of the scGWAS results will 
be adjusted by such reference networks. Third, scGWAS is not an end-to-end pipeline. 
For example, it does not include any module to preprocess, normalize, and batch correct 
single-cell RNA-seq data, nor to conduct cell type classification/clustering. Therefore, 
users need to use available single-cell pipelines, such as Seurat [69] and Scanpy [70], to 
define cell types and then to provide the annotations to scGWAS. Fourth, despite that 
our method takes single-cell level expression data as the input, scGWAS is not able to 
provide information on individual cells. Rather we leverage aggregation procedures (e.g., 
pseudo-bulk expression levels based on clusters or external annotations) as proposed by 
previously developed methods [11].

Conclusions
In summary, to the best of our knowledge, the scGWAS method and the results in its 
application represent the first and most comprehensive investigation of trait GWAS data 
and cell type associations at the network modularity level, presenting a trait and cell type 
map for future studies.

Methods
GWAS data

The full names and references of the traits are available in Table 1. All GWAS data were 
obtained using samples of European ancestry. For each trait, we calculated gene-based 
p-value using Multi-marker Analysis of GenoMic Annotation (MAGMA, v1.07) [71]. 
SNPs that were located in the gene body or the flanking regions (50 kb upstream and 
35 kb downstream) were included for each gene to calculate the gene-level p-values. Of 
note, mapping SNPs only in proximal regions to genes may miss important regulatory 
regions which can be located up to 1 Mb away from the gene. The 1000 Genomes Project 
Phase 3 European population was used as the reference panel to assess the linkage dis-
equilibrium (LD) structure.

scRNA‑seq data

To identify the cell type specificity of diverse complex traits and phenotypes, we col-
lected 18 scRNA-seq datasets (hereafter referred to as 18 panels) from 12 studies for 9 
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representative tissues that are typically involved in complex traits. They are peripheral 
blood mononuclear cells (panel name: PBMC10k) [72], human brain (DER20 [73–75], 
DER22 [73, 76]), mouse brain (Zeisel [77], Saunders [78]), decidua [79], esophagus [80], 
fetal heart [81], liver [82], lung (Lung10x [83], LungSS2 83], Madissoon_Lung [80]), pan-
creas (healthy pancreas: GSE81547 [84], GSE84133[85], GSE85241 [86]; healthy and 
T2D pancreas: E-MTAB-5061 [87] and GSE81608 [88]), and spleen [80]. In general, we 
excluded genes with low expression (i.e., those with expression value zero in more than 
95% cells) and less represented cell types (i.e., expressed in < 30 cells), unless otherwise 
specified. We used the originally downloaded count data or UMI values to calculate 
counts per million (CPM), followed by log-transformation. For each cell type, the aver-
age log (CPM+1) value per gene was calculated to represent the cell-type transcriptome 
profile (Additional file 1: Table S1). The details of each dataset are presented in the Addi-
tional file 1.

Construction of a working network with heterogeneous node weights
We collected the gene–gene relationship data from PathwayCommons [89] (v12, data 
access date: 12/12/2019) to construct the background network. The data downloaded 
originally had 1,851,006 interaction pairs that were curated and integrated from the 
public pathway and interaction databases. The relationships for these interactions 
included catalysis, chemical effect, regulation of expression or phosphorylation, react, 
and interacts-with, among others. We excluded those interactions that were annotated 
as in-complex-with, because those genes tended to be co-expressed and might inflate 
the results. We further excluded 2291 ribosomal genes and housekeeping genes defined 
by the HSIAO_HOUSEKEEPING_GENES set from MSigDB (expressed across 19 tis-
sues [90]). In addition, for each gene–gene pair, we examined their genomic locations 
and excluded those pairs that were located within 50 kb of each other. Here 50 kb was 
the gene boundary region we used in the MAGMA analyses. This is to avoid duplicated 
information counting in the module search process when two interacting genes are 
physically close. Furthermore, we excluded all pairs whose interacting genes are located 
in the MHC region (chr6:26000000_34000000, hg19) due to the complex LD in this 
region. The resultant network served as the background network and was subsequently 
assigned with types of node weights: one from GWAS and the other from scRNA-seq. 
Each node had a weight defined by the GWAS signals (denoted by vg ), which was a nor-
malized score based on − log10 transformed gene-based p-values, and a weight defined 
by the cell-type average expression (defined by vs ). Transformation and normalization 
were applied to make the two sets of weights compatible for integration (see below).

Transformation of the raw data

The gene-based scores from GWAS theoretically should follow the standard normal dis-
tribution. Instead, the scores were found highly skewed and were likely driven by the 
local LD structure (e.g., the MHC region) or extremely significant loci (e.g., the APOE 
loci in Alzheimer’s disease). We thus apply the Box-Cox transformation using − log10 of 
gene-based p-values. The Box-Cox transformation provides a way to transform non-nor-
mal distribution to an approximately normal distribution. Specifically, given a query vec-
tor y =  − log10(p), where p is the gene-based p-value from MAGMA, the Box-Cox 
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transformation is conducted as below: y(�) =
y�−1
�

, if � �= 0

log y , if� = 0
 . We search for the best 

lambda in the range of − 2 to 2 with a step of 0.05 that result in the best approximation 
of a normal distribution. When the best lambda is found 0, the second-best lambda will 
be selected. After this transformation, the gene-based scores from GWAS are approxi-
mately normal. We further shift the transformed values by the median value of the origi-
nal data so that the new distribution has the same center. For scRNA-seq data, the log 
(CPM+1) values are transformed to approximate the normal distribution by using the 
same Box-Cox transformation strategy.

Normalization of heterogeneous weights

To integrate the two heterogeneous sets of node weights, we next propose a normali-
zation method to further calibrate the two distributions. Specifically, we first generate 
values using the rank-based inverse normal transformation (INT) for the same number 
of genes with weights. The INT values, which serve as the reference distribution, are 
then combined with the gene-based GWAS score and gene-based scRNA-seq score to 
form an N × 3 data matrix. We then apply the quantile normalization. In this way, both 
input scores are finely scaled and tend to approximate the normal distribution better. 
This process of calibration does not change the order of genes in either weight system, 
yet it aligns both weights to the normal distribution. Thus, it makes it fairly equivalent 
to combine the two weights. We also test by using scaling only, i.e., the regular z-score 
normalization. However, the extreme values present in either dataset would inflate the 
resultant modules, especially when the GWAS scores have strong p-values.

Module score

We refer to the normalized node scores as vg (i) and vs(i) for the ith node, respectively. The 
collection of vg (i) (or vs(i), i = 1, . . . ,N  , N is the total number of nodes) for all nodes in 
each GWAS and cell type pairs follow the standard normal distribution. We define the 
module score by integrating both the GWAS signals and the scRNA-seq expression: 
m = mg +ms − sd(mg ,ms) , where mg =

∑v

i
vg

(i)

√
�v�

 and ms =

∑v

i
vs

(i)

√
�v�

 , and |v| is the number of 

nodes in the module. The part sd
(
mg ,ms

)
=

√
(mg −

mg+ms

2
)
2

+ (ms −
mg+ms

2
)
2 functions as a penalty 

to control deviation of the GWAS signals and expression from each other such that the 
resultant modules are not overwhelmed by GWAS or expression individually. Thus, in 
the module search process, we aim to identify modules in which both GWAS and cell-
type expression are highly scored.

Module construction
We propose a sequential feedforward module expansion coupled with backward exam-
ination (MEBE) algorithm to identify modules. Briefly, we consider every node in the 
weighted network as a seed node and conduct module search, resulting in a module for 
each seed node. Starting with a seed gene, the module expands by recruiting the best 
neighbor node and also shrinks by trimming non-essential component genes. At each 
expansion step, the neighbor node that most improves the module score is added, if 
its addition also increases the module score by passing the predefined threshold, i.e., 
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mt+1 > mt × (1+ r1) , where r1 is the inclusion threshold. Upon expansion, a backward 
examination will be triggered to trim any leaf nodes that contribute minimally to the 
overall module score. That is, should the node be excluded, the decrease of the module 
score passes a predefined threshold, i.e., mt−1 > mt × (1− r2) , where r2 is the exclu-
sion threshold. This expansion-trim combination continues until no more nodes in the 
neighborhood can improve the module score to the extent of r1 and no more nodes in 
the module make a marginal contribution as defined by r2 . The trim step ensures that 
the final modules are concise, with those leaf nodes trimmed if their weights are mar-
ginal. Because of this expansion-trim design, different seed nodes may end up with the 
same module (i.e., with the same module genes) and the seed node may not necessarily 
be included in the final module.

Virtual module search to construct the null distribution

In network analyses, the parameters of the null distribution have proven difficult to esti-
mate [57–59]. To this end, we propose the virtual search strategy. In each round, we 
break down the relationship between nodes and their weights from GWAS as well as the 

relationship between nodes and their weights from scRNA-seq: v(i) րց
vg

(i)

vs
(i) , where both 

relationships (denoted by the arrows) are broken down. However, we keep the structure 
of the reference network intact, where the edges remain the same. That is, the weights 
are permuted among the nodes in the graph, respectively for GWAS and for scRNA-seq 
data. We then run the MEBE algorithm on the randomly weighted network to generate 
modules that would subsequently be used to form the null distribution. In particular, 
module scores are normalized using the statistics from the null distribution formed by 
size-matched random modules to control the impact of module size. To this end, we 
keep repeating the virtual search process until all size-specific null distributions have 
sufficient numbers of random modules (i.e., ≥ 1000 for each module size). Both the real 
modules and random modules are first stratified based on the number of component 
genes. Module scores are normalized following the z-score transformation: zm = m−u

sd
 , 

where u and sd are the mean and standard deviation calculated using the random mod-
ules with the same module size. This process results in normalized module scores: zm for 
module score m , zg for mg , and zs for ms . Significant modules are defined as those with 
pm = #(π>zm)

#π < 0.05 , pg =
#(π>zg )

#π < 0.05 , and ps = #(π>zs)
#π < 0.05 , where π is the col-

lection of all random modules.

Assessment of combined modules

We merge significant modules to form one final subnetwork for each investigated trait in 
each investigated cell type. Because different modules may share component genes, an 
overall assessment score is needed to measure the overall significance of the combined 
subnetwork. We employ the Gene Set Enrichment Analysis (GSEA) to calculate a nor-
malized enrichment score (NES) using the GWAS data and the scRNA-seq data, respec-
tively. The subnetwork NES is defined as the average value of the NES from GWAS and 
the NES from scRNA-seq.
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Assessment of concordance between GWAS and a cell‑type transcriptome

We use the proportional test to assess whether the proportion of the concordant mod-
ules identified with the real data ( p1 ) is significantly higher than that with the random 
data ( p2 ). Here the concordant modules are defined by using both mg and ms to meas-
ure the concordance between GWAS and cell-type transcriptomes. We use the random 
modules from the virtual search to define two cutoff values to distinguish modules 
ranked within the top 5% of total modules according to either GWAS or scRNA-seq: 
Q95

(
mg

)
 for mg and Q95(ms) for ms (the vertical and horizontal lines in red in Fig. 1). 

The former proportion is defined as p1 = a
A = #modules[mg>Q95(mg)&ms>Q95(ms)]

A  and the 
latter proportion is defined as p2 = b

B = #randommodules[mg>Q95(mg)&ms>Q95(ms)]
B  , where A 

and B are the total numbers of modules identified using the real data and random data, 
respectively. The pooled proportion is defined as p̂ = a+b

A+B . A z-score is calculated as 
z = p1−p2√

p̂×(1−p̂)×( 1A+
1
B )

 . A higher z-score indicates that the proportion in the real data is 

higher than that in the random data. More methodology details can be found in Addi-
tional file 1.

Implementation

scGWAS is implemented in JAVA and is available to users as a JAR package. All other 
analyses were conducted using R. 
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