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Abstract

We developed Bookend, a package for transcript assembly that incorporates data
from different RNA-seq techniques, with a focus on identifying and utilizing RNA 5′
and 3′ ends. We demonstrate that correct identification of transcript start and end
sites is essential for precise full-length transcript assembly. Utilization of end-labeled
reads present in full-length single-cell RNA-seq datasets dramatically improves the
precision of transcript assembly in single cells. Finally, we show that hybrid assembly
across short-read, long-read, and end-capture RNA-seq datasets from Arabidopsis
thaliana, as well as meta-assembly of RNA-seq from single mouse embryonic stem
cells, can produce reference-quality end-to-end transcript annotations.
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Summary statement
Bookend is a generalized framework that utilizes RNA 5′ and 3′ end information in

RNA-seq datasets to accurately reconstruct transcriptomes including those from single

cells.

Background
The functions of genes depend on the amount and types of RNA molecules that they

produce. Variation in transcript initiation, splicing, and polyadenylation can generate

an array of RNA isoforms, and cataloging how these RNA variants change across de-

velopment and disease provides insights into corresponding gene functions [1–3].

Large-scale projects dedicated to the manual curation of gene annotations are ex-

tremely valuable, but are labor-intensive and thus limited in scope to the most well-

studied organisms [4–7]. Moreover, multicellular organisms have difficult-to-access

cell types that will inevitably be overlooked by even the most comprehensive annota-

tion projects [8]. The completeness and accuracy of a reference annotation can consid-

erably impact all downstream data analyses, from gene expression to predictions of

gene function [9–11]. To understand how transcriptome architecture varies during de-

velopment and in response to disease, it is therefore valuable to have an automated

© The Author(s). 2022, corrected publication 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0
International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this article are included in the article's Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and
your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons
Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this
article, unless otherwise stated in a credit line to the data.

Schon et al. Genome Biology          (2022) 23:143 
https://doi.org/10.1186/s13059-022-02700-3

http://crossmark.crossref.org/dialog/?doi=10.1186/s13059-022-02700-3&domain=pdf
http://orcid.org/0000-0002-6204-8857
mailto:michael.schon@wur.nl
mailto:michael.schon@wur.nl
mailto:michael.nodine@wur.nl
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


method that accurately identifies transcript isoforms. Accordingly, many computational

tools have been developed for genome annotation including software that utilizes the

massive and growing diversity of RNA sequencing (RNA-seq) technologies [12].

A wide array of RNA-seq protocols have been developed to profile different aspects

of the transcriptome, from strand-specific coverage of gene bodies [13] to selective

amplification of RNA 5′ ends [14–17], 3′ ends [18, 19] or simultaneous capture of both

ends [20, 21]. Major recent advances have enabled the amplification of full-length tran-

scripts from single cells [22, 23] or 3′ end capture from millions of cells [24–26]. In

parallel, advances have been made for profiling RNA on “third-generation” long-read

sequencing platforms such as PacBio and Oxford Nanopore single-molecule sequencers

that can read continuous DNA and/or RNA molecules and yield end-to-end complete

transcript sequences [27, 28].

Transcript assembly is the effort to distill information from RNA-seq experiments

into a comprehensive annotation of the transcript isoforms present in the correspond-

ing samples. Depending on the method, RNA-seq reads contain a broad spectrum of

information content. At one extreme, single-end reads from non-stranded RNA-seq

protocols can be 50 nucleotides (nt) or shorter and sequenced from one end of a

double-stranded cDNA fragment such that the resulting sequence is a random sub-

string of an RNA molecule or its reverse complement. Paired-end reads contain two

ends of a cDNA molecule, and typically, there is a gap of unknown length between the

mate pairs. When aligned to a reference genome, paired reads may span more than one

splice junction, indicating that these splicing events occurred in the same molecule.

Some strand-specific RNA-seq protocols selectively sequence only first-strand or

second-strand cDNA to preserve knowledge of the original mRNA molecule’s orienta-

tion [13]. Other protocols selectively capture and sequence a fragment immediately

downstream of the RNA 5′ end or upstream of the 3′ end, demarcating precisely where

that molecule begins or ends, respectively [14, 16–18, 29, 30]. Finally, the most

information-rich reads come from long-read sequencing, in which the RNA or cDNA

is read in its entirety without fragmentation. Long-read methods are a promising tool

for transcript annotation, but current protocols are more error-prone per base se-

quenced, less sensitive, and more costly than comparable short-read experiments. Be-

cause the vast majority of existing RNA-seq data is in short-read format, nearly all

assemblers have aimed to reconstruct transcripts from paired-end short reads. A long-

recognized problem of assemblers is the inaccurate annotation of transcript start sites

(TSS) and polyadenylation sites (PAS) [31, 32]. Existing short-read assemblers infer

TSSs and PASs through heuristics such as changes in read coverage, but such changes

can also be due to alignment errors, biased RNA fragmentation, sample degradation, or

spurious intron retention. Long-read sequencing methods are designed to read RNA

from TSS to PAS, but they remain susceptible to a variety of experimental artifacts

[32]. The increasing adoption of long reads for transcript annotation has led to a separ-

ate suite of tools that summarize, collapse, or “polish” long reads to remove erroneous

structures and present a set of representative isoforms from these reads [33, 34]. For

example, the recently developed transcript assembler StringTie2 reports the use of long

reads in assembly by removing aligned segments with a high error rate and assembling

the resulting gapped reads [35]. Transcript annotation would ideally integrate informa-

tion from a variety of RNA-seq methods to determine the best evidence for transcript

Schon et al. Genome Biology          (2022) 23:143 Page 2 of 21



starts, ends, and splicing patterns in a tissue-of-interest. However, current transcrip-

tome assembly methods do not employ information about where RNA molecules begin

and end. Here, we describe a method utilizing RNA 5′ and 3′ end information pro-

duced by a variety of RNA-seq protocols to accurately reconstruct transcriptomes in-

cluding those from single cells.

Results
A framework for end-guided transcript assembly

To determine whether RNA 5′ and 3′ end information can improve transcript assem-

bly algorithms, we developed a generalized framework for identifying RNA ends in

sequencing data and using this information to assemble transcript isoforms as paths

through a network accounting for splice sites, transcription start sites (TSS), and polya-

denylation sites (PAS). Because this software uses end information to guide transcript

assembly, we named it Bookend. Importantly, Bookend takes RNA-seq reads from any

method as input and after alignment to a reference genome, reads are stored in a light-

weight end-labeled read (ELR) file format that records all RNA boundary features

(5′ labels, splice donors, splice acceptors, gaps, 3′ labels), as well as the sample of origin

for that read (see Additional file 1: Supporting notes). Assembly is then resolved at each

locus with aligned reads through a four-step procedure (Fig. 1; see Methods and

Additional file 1: Supporting notes). First, boundary labels from all aligned RNA-seq

reads are clustered and filtered to demarcate a unique set of locus TSSs, PASs, and

splice junctions. Each locus is partitioned into a set of nonoverlapping “frags” defined
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Fig. 1 End-guided assembly with Bookend. A Individual RNA-seq reads are mapped to a genome,
recording which reads mark a transcript 5′ or 3′ end, and which reads span one or more splice junctions.
Ranges between adjacent features are recorded as frags. B Each unique read structure is recorded in a
condensed representation as one element in a Membership Matrix; blue—included, pink—excluded. The
weight of each element is the coverage depth of matching reads (sequenced bases/length) across the
element. C A directed graph is constructed between overlapping elements of the Membership matrix.
Weights of contained elements (gray) are distributed proportionally to their containers. D A set of optimal
paths through the graph is iteratively constructed from the heaviest unassigned elements. Complete Paths
are output as full-length transcript annotations
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as the spans between adjacent boundary labels. Four additional frags (S+, E+, S−, E−)

denote the presence of a Start or End Tag on the forward or reverse strand. Second, a

Membership Matrix is generated to redefine all aligned reads with respect to the locus

frags. A read’s Membership includes each frag it overlaps and excludes each incompat-

ible frag (e.g., a spanned intron, a region upstream of a TSS or downstream of a PAS).

Reads with identical patterns of Membership are condensed to a single element (row)

of the Membership Matrix, whose weight is the total coverage depth across the element

by all reads of that pattern. Third, an Overlap Graph is constructed from the Member-

ship Matrix elements and this directed graph is simplified by collapsing shorter ele-

ments into the elements that contain them. Finally, the Overlap Graph is iteratively

traversed to resolve an optimal set of Greedy Paths from TSSs to PASs. These Paths

describe a set of full-length transcript models best supported by the input reads. The

Membership Matrix definition is flexible enough to utilize reads regardless of their

length, alignment gaps, strand, or end information (Additional file 1: Fig. S1B).

End-labeled reads improve the quality of transcript assembly

Arabidopsis thaliana (Arabidopsis) is an ideal model to benchmark transcript assembly

in higher eukaryotes. The Arabidopsis genome is compact (~ 119 megabases), contains

few repetitive elements, and the TAIR10 reference annotation was extensively curated

from expressed sequence tag (EST) data [7]. To determine whether end-labeled reads

improve assembly, we examined libraries generated with the low-input sequencing

method Smart-seq2 from Arabidopsis floral buds [16]. Two crucial steps in the Smart-

seq2 protocol, template switching and preamplification, enrich for full-length cDNA

with an oligo label at both the 5′ (template switching oligo, TSO) and 3′ (oligo-dT)

ends [22]. These oligos were trimmed from all reads and a record was kept of which

end label was found (5′, 3′, or no label) before mapping to the genome. As anticipated,

a small percentage of reads were found with either label (Fig. 2A; Additional file 1:

Table S1). All reads were aligned to the Arabidopsis genome, and the terminal posi-

tions of 5′- and 3′-labeled reads were retained as “Start Tags” and “End Tags,” respect-

ively. Of End Tags mapping to annotated genes, 88% mapped near PASs, defined as the

last decile of the gene or up to 100 nt downstream (Fig. 2B). Start Tags had lower speci-

ficity for TSSs, with only 48% of Start Tags in the first decile of genes or up to 100 nt

upstream. Template switching is known to readily occur at RNA 5′ ends derived from

in vivo or in vitro RNA decay. However, a subset of reads contain an intervening G be-

tween the TSO and the genome-aligned sequence, indicating a 7-methylguanosine cap

on the template RNA [16, 29, 37]. The upstream untemplated G (uuG)-containing Start

Tags were classified as Cap Tags. Cap Tags were rare relative to all Start Tags (9%), but

were much more specific to TSSs with an average of 88% of Cap Tags within each gene

mapping near the 5′ end (Fig. 2B). To optimize detection of true transcript 5′ and 3′

ends, the Tag Clustering algorithm designed for Bookend defines Tag weight as a func-

tion of total read depth and applies a bonus to Cap Tags over non-uuG Start Tags (See

Additional file 1: Supporting notes: “Tag Clustering”).

Despite end-labeled reads being relatively rare, the preamplification process should

ensure that a TSO or oligo-dT sequence is at each end of every cDNA molecule prior

to tagmentation. Therefore, we expected end-labeled reads to be distributed widely
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across the genome wherever reads exist. As predicted, the majority of genes with > 0

read coverage contained ≥1 Start Tag and ≥ 1 End Tag, and the likelihood of finding a

Start or End Tag increased as a function of total read coverage (Fig. 2C). Of all genes

with at least 1×, 10×, and 100× read coverage, 73.3, 94.4, and 99.2% possessed both a

Start and End Tag, respectively.

To assess whether end-labeled reads mark real TSSs and PASs at nucleotide preci-

sion, Bookend was used to assemble all floral bud Smart-seq2 reads either with or with-

out utilizing Start and End Tags. Additionally, three leading short-read transcript

assemblers were used with comparable settings (see “Methods”): StringTie2 [35, 38],

Scallop [39], and Cufflinks [40]. Publicly available Arabidopsis CAGE [36] and Direct

RNA-seq (DRS [30]) datasets were used to validate 5′ and 3′ ends, respectively. All

three of these widely used assemblers output thousands of single-exon unstranded frag-

ments, which were ambiguous with regard to which end is 5′ or 3′ and thus were dis-

carded from further analyses (Additional file 1: Table S2). Bookend-defined TSSs based

on Start/Cap Tags were more likely to have a CAGE peak within 200 nt than 5′ ends

reported either by Bookend without the use of Start Tags, the three leading assemblers,

Threshold read coverage

A B

D F

0

4

3

2

1

sdaer fo tnecre
P

TSS PAS
0

50

40

30

20

10

Position in gene

M
ea

n 
%

 ta
gs

 / 
ge

ne

+100nt-100nt
Start tag
Cap tag
End tag

0 10050 150 200
0

10

20

30

40

50

Distance from CAGE peak (nt)

Bookend
Bookend -tags

TAIR10

StringTie2

Araport11

Scallop
Cufflinks

5' end validation (CAGE)

Distance from DRS peak (nt)

E 3' end validation (DRS)

0 100 15050 200
0

20

40

60

80

0 5 10 15
0

20

40

60

80

100

Matching exon chains (thousands)

Assembly vs. TAIR10

P
re

ci
si

on
 (

%
 m

at
ch

 / 
to

ta
l) Bookend

Bookend -tags
StringTie2
Scallop
Cufflinks

Merged
Reps

Full match
Exon match

Isoform

Antisense
Intergenic
Fragment

Fusion

Reference
(TAIR10)

±100nt±100nt
Gene A Gene B

G

5  tag 3  tag

%
 5

' e
nd

s 
 d

is
ta

nc
e

%
 3

' e
nd

s 
 d

is
ta

nc
e

Percent validated by 

0.
1

0.
2

0.
5 1 52 10 20 10
050

0

20

40

60

80

100
C

%
 g

en
es

 w
ith

 
1 

ta
g

1 PacBio full-length read
0 100

Cufflinks

0 100

Scallop

0 100

StringTie2

0 50 50 50 50100

Bookend

All

Known

Novel

Fig. 2 End-labeled Smart-seq2 reads accurately detect transcript 5′ and 3′ ends. A Percent of reads in three
Smart-seq2 libraries that contained a 5′-labeled or 3′-labeled junction, respectively. B Average signal
strength per gene of Start, End, and Cap Tags along gene bodies in 50 bins with an additional 100 nt
flanking each gene boundary. Start Tag, any 5′ label; Cap Tag, 5′ label with upstream untemplated G (uuG);
End Tag, 3′ label. C Likelihood of a gene to possess ≥1 Start, Cap, or End Tag as a function of aligned read
coverage (average read depth/base). D Cumulative frequency of annotated 5′ ends as a function of
distance from the closest CAGE peak [36]. E Distance of 3′ ends from the nearest DRS peak [30] as in (D). F
Performance of three transcript assemblers, measured by total number of reference-matching exon chains
(x-axis) vs. percent of assembled transcripts that match the reference (y-axis). G (Left) Schematic depicting
classifications of assembled transcripts against the closest TAIR10 reference isoform. (Right) Rate of
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or even the current Arabidopsis reference annotations (Fig. 2D). Likewise, a higher pro-

portion of Bookend-identified PASs were supported by DRS reads than PASs reported

by the other transcript assemblers and Arabidopsis reference annotations (Fig. 2E). At

the nucleotide level, Bookend-defined transcript boundaries were more than twice as

likely to agree with the exact experimentally determined TSS and PAS peak positions

than the most accurate reference annotation (TAIR10), while the other three assem-

blers reported transcript boundaries less accurate than TAIR10 (Additional file 1: Fig.

S2A,B). Strikingly, even the Bookend 5′ and 3′ ends > 100 nt from any reference still

possessed known sequence motifs associated with TSS and PAS, respectively, whereas

sequence content around novel ends from Cufflinks, Scallop, and StringTie2 is largely

incoherent (Additional file 1: Fig. S2C,D). In addition to a dramatic increase in tran-

script boundary accuracy, 16,158 exon chains predicted by Bookend fully matched a

TAIR10 reference transcript, which was higher than when end-labeled reads were ig-

nored (13,660) and exceeded the totals from Scallop (15,785), StringTie2 (15,253), or

Cufflinks (11,051) (Fig. 2F). Therefore, Bookend correctly builds more known tran-

scripts than other assemblers and Bookend-annotated 5′ and 3′ ends were more pre-

cise than even the most accurate Arabidopsis reference annotation.

In addition to known transcripts, Bookend constructed 2979 isoforms not present in

TAIR10, which was 66% fewer than StringTie2 (8,886), 83% fewer than Scallop (17,400),

and 84% fewer than Cufflinks (18,934). An assembled transcript may fail to match TAIR10

either because the assembly is incorrect or because the reference is incomplete. To distin-

guish between these possibilities, two long-read SMRT cells of floral bud RNA were se-

quenced with the PacBio platform to yield 547,910 full-length non-chimeric (FLNC) reads.

All short-read assemblies were partitioned into 7 different classifications based on their rela-

tionship to the most similar TAIR10 model (Fig. 2G). A transcript model was considered

experimentally validated if at least one aligned PacBio read fully matched the model (entire

exon chain, ±100 nt ends). Of all Bookend transcripts, 81.2% were supported by PacBio data,

which surpassed the validation of transcripts predicted by StringTie2 (54.7%), Scallop

(35.9%), or Cufflinks (22.3%) (Fig. 2G; Additional file 1: Table S2). Reference-matching tran-

scripts have a higher average estimated abundance than non-reference transcripts, making

the latter more difficult to validate with the limited throughput of long-read sequencing

(Additional file 1: Fig. S2E). Despite this limitation, 42.3% of non-reference Bookend assem-

blies were fully supported by at least one PacBio read, which was substantially higher than

the validation rate of non-reference transcript assemblies generated by StringTie2 (15.9%),

Scallop (11.6%), and Cufflinks (4.3%) (Fig. 2G). Taken together, these results demonstrate

that end-guided assembly using latent RNA end information enables precise transcript re-

construction from end-labeled short-read datasets.

Hybrid assembly refines and complements long-read RNA-seq

Long-read sequencing technologies do not obviate the need for transcript reconstruction.

Various sources of technical and biological noise result in fragmented or improperly spliced

long reads [32, 41]. Long-read approaches also suffer from a higher base-level error rate

compared to short-read platforms [42]. Error correcting methods such as Circular Consen-

sus Sequencing (CCS) require reverse transcription and cDNA amplification, which are sus-

ceptible to mispriming and template-switching artifacts [43, 44]. This has driven the
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ongoing development of tools to refine transcript models derived from long reads [33, 34].

Additionally, StringTie2 was recently repurposed to assemble long reads [35].

To quantify potential sources of error, PacBio FLNC reads were aligned to the gen-

ome and processed by the Bookend pipeline to identify and remove template-switching

artifacts, oligo-d(T) mispriming events at A-rich regions, and exons with a high align-

ment error (Fig. 3A). Across both SMRT cells, 95.4% of reads aligned successfully, and

97.0% of alignments did not contain any high-error exons, defined as the total length of

mismatches, inserts, and deletions exceeding 10% of the exon length. However, 14.1%

of all FLNC 3′ end labels were removed due to alignment failure or the presence of an

A-rich region immediately downstream of the oligo-d(T) junction. If treated as genuine

3′ ends, these reads can cause false annotation of 3′-UTRs or putative transcripts anti-

sense or intergenic to known genes [43] (Additional file 1: Fig. S3A). Direct RNA se-

quencing bypasses oligo-d(T) priming and was used to produce a map of genuine

Arabidopsis PAS [30]. These sites show a distinct pattern of nucleotide enrichment, in-

cluding a C/A dinucleotide motif at the cleavage and polyadenylation site itself, and a

U-rich upstream element (USE) and downstream element (DSE) (Fig. 3B). Three tools

were used to reduce the PacBio FLNC data into a unique set of transcripts: the Iso-

seq3 clustering algorithm from PacBio, assembly by StringTie2, and end-guided assem-

bly by Bookend. All 3 methods could recapitulate known PAS motifs at the set of 3′

ends within 100 nt of a TAIR10-annotated PAS. StringTie2-annotated 3′ ends showed

a slight A-richness at novel 3′ ends, and both Iso-seq3 and StringTie2 annotations con-

tain thousands of putative novel antisense or intergenic RNAs whose 3′ ends are ex-

tremely A-rich (Fig. 3C), which is a hallmark of mispriming artifacts [32]. In contrast,

Bookend-defined 3′ ends at both known and novel locations showed canonical PAS

motifs. Similarly, known and novel Bookend 5′ ends showed features distinct to tran-

scription start sites, including the TATA-box and Y-patch (Additional file 1: Fig. S3B).

Therefore, Bookend retains genuine novelty from long-read datasets by filtering against

known sources of error.

Another major source of transcript assembly error is truncated 5′ ends due to prema-

ture template switching during reverse transcription or amplification of degraded RNA.

Although 79% of FLNC alignments fully matched the exon chain of a TAIR10 or Ara-

port11 transcript, most were copies of a few highly expressed genes. After collapsing

alignments into sets of unique exon chains, full-length reference transcripts accounted

for only 31.4% of all unique chains, and 24.8% of unique chains were fragments of

known transcript models, missing one or more exons (Additional file 1: Table S3).

Clustering by Iso-seq3 removes some fragments, and they can be further reduced after

alignment by collapsing 5′ truncations with Transcript isOforms: Full-length and Unas-

sembled (ToFU) [45] (Fig. 3D). To determine whether precision could be improved

through assembly, the FLNC data was processed by StringTie2 or Bookend. StringTie2

yielded 12% fewer full-length reference matches than ToFU, but also reported 27%

fewer transcripts that failed to match a reference (Fig. 3D,E, Additional file 1: Table

S3). Bookend reported a 1% increase in reference matches over ToFU with a 45% re-

duction in non-matches. Because the Arabidopsis genome is compact with an average

of only 1.5 kilobases (kb) between adjacent genes, assembly algorithms agnostic to 5′

and 3′ end information risk creating “fusions” of adjacent genes due to spurious read-

through transcripts (Additional file 1: Fig. S3A). StringTie2 reported 838 fusion
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transcripts, 41% more than ToFU. By contrast, end-guided assembly of PacBio FLNCs

with Bookend yielded 32% fewer fusions than ToFU and 52% fewer than StringTie2

while reporting more full-length matches than either (Fig. 3D, Additional file 1: Table

S3).
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(middle), and novel antisense or intergenic loci (right); colors and scales as in (B). D Classification against
the closest match in TAIR10 or Araport11 of transcripts constructed by four long-read processing strategies:
Iso-seq3 clustering, cluster collapse by ToFU, and FLNC assembly by StringTie2 or Bookend. E Effect of long-
read assembly on the number of transcripts by class (colored as in D) by StringTie2 (left) or Bookend (right)
using hybrid assembly with one or more tissue-matched sequencing libraries. Bars show difference vs.
ToFU-collapsed Iso-seq3 clusters. F UpSet plot depicting the number of overlapping transcript isoforms
present in TAIR10, Araport11, and the Bookend Floral Bud assembly. G UpSet plot for the union of
transcription start site peaks, allowing a ± 50 nt overlap window. H Diagram of floral organs analyzed by
nanoPARE (left) and percent change in the number of TSS-overlapping reads for alternative annotations to
TAIR10 in 15 tissue-specific nanoPARE libraries (right). I Bar chart of the number of enriched TSSs in each
tissue type (≥4-fold mean RPM ingroup vs. outgroup, ANOVA p < 0.01, Benjamini-Hochberg correction).
Shaded portions are TSSs exclusive to Bookend Floral Bud. J IGV browser image depicting Bookend Floral
Bud assemblies for MPK18 (top) and nanoPARE abundance heatmaps for MPK18 sense and antisense TSSs
(bottom). K Architecture and abundance of MPK19 isoforms as in (K). L Full-length and truncated isoforms
of SKM1 assembled by Bookend (top). Heatmaps as in (J–K) for SKM1 TSSs (bottomt). TPM, transcripts per
million; TSS, transcription start site
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Bookend’s assembly model is general enough to combine reads from different se-

quencing strategies to produce a single “hybrid assembly.” We used Bookend to as-

semble combinations of long reads (PacBio FLNCs), short reads (Smart-seq2), and

transcript start site reads [16], and compared all transcript models against their

closest match in either TAIR10 or Araport11 (Additional file 1: Table S3). Assem-

bly was most sensitive when all three read types were combined, and concordance

with reference annotations was higher for all Bookend hybrid assemblies than for

all other methods. When short reads, long reads, and transcript start site reads

were combined, Bookend could identify 2841 more reference-matching transcripts

than ToFU (Fig. 3E). A recent update to StringTie2 implemented hybrid assembly

of short and long reads and reported an improvement over long-read assembly

alone [46]. Consistent with this report, StringTie2 hybrid assembly on the floral

bud libraries was more sensitive than with only long reads, assembling 374 more

matches than ToFU (Fig. 3E). However, StringTie2 also yielded more than twice as

many transcript fragments as ToFU (Fig. 3E). Unlike StringTie2, Bookend can also

integrate information from RNA 5′ ends and requiring Cap Tags at transcript 5′

ends during Bookend hybrid assembly yielded 30,219 transcript models with a

74.6% global concordance with the reference annotations (Additional file 1: Table

S3). We report this hybrid assembly of long, short, and 5′ end reads as the Book-

end Floral Bud annotation (Fig. 3F, Additional file 2: Dataset 1-2) [16].

The Bookend Floral Bud annotation was assembled from RNA-seq of floral buds,

which contain petal, sepal, anther, stigma, and ovule organs. To examine novel

transcript models assembled by Bookend in more detail, we first quantified 15 pre-

viously published tissue-specific nanoPARE libraries (3 biological replicates from

petals, sepals, anthers, stigma, or ovules that comprise floral buds) against TSSs

from TAIR10, Araport11, or Bookend Floral Bud annotations. Although Bookend

Floral Bud full-length isoforms had a greater overlap with Araport11, Bookend

Floral Bud TSSs overlap more closely with TAIR10 (Fig. 3F,G). Araport11 had the

largest set of TSSs, but they could only account for an average of 33.5% fewer

nanoPARE reads than the TSS set from TAIR10 (Fig. 3H). This is consistent with

reports that Araport11 TSSs are systematically placed too far upstream [16, 36].

The Bookend Floral Bud annotation possessed the smallest TSS set, but accounted

for 20.7% more nanoPARE reads than TAIR10 on average.

Tissue-enriched TSSs were then calculated across the union of TAIR10, Araport11,

and Bookend Floral Bud annotations. A tissue-enriched TSS was at least 4-fold more

abundant with an ANOVA Benjamini-Hochberg-adjusted p-value < 0.01 in either se-

pals, petals, anthers, stigma, or ovules relative to the other tissues (Additional file 2:

Dataset 3). Previously unannotated TSSs account for 8.8% of all sites but 16.5% of

tissue-enriched TSSs suggesting that TSSs that vary across tissue types tend to be miss-

ing from reference annotations. Novel TSSs are especially overrepresented in anthers,

where 459 of 1932 anther-enriched TSSs were exclusive to the Bookend annotation

(2.7-fold enrichment, p = 2.54e−90, hypergeometric test, Fig. 3I). Sixty-three of these

anther-enriched TSSs belong to unannotated antisense RNAs, including two transcripts

running antisense to the Mitogen Activated Protein Kinase genes MPK18 and MPK19,

which are both inversely correlated with the abundance of their sense transcript (Fig.

3J,K). Bookend also uncovered a number of striking novel isoforms in anthers,
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including transcripts with a TSS near the 3′ end of the gene. One example is STERIL-

ITY-REGULATING KINASE MEMBER1 (SKM1), a leucine-rich repeat receptor-like

kinase involved in signaling between the pistil and pollen tube during pollination at

high temperatures [47]. While the full-length isoform is detectable at a low level in se-

pals, petals, and ovules, a truncated isoform missing all leucine-rich repeats and the

kinase domain is an order of magnitude more abundant in anthers (Fig. 3L). Therefore,

end-guided assembly with Bookend enables the identification and initial

characterization of tissue-specific transcript isoforms.

Transcript discovery from single-cell sequencing

Bookend achieved comparable precision assembling Arabidopsis transcriptomes from

either long reads or short reads generated by Smart-seq2, which is a protocol routinely

used for single-cell RNA sequencing (scRNA-seq) (Additional file 1: Fig. S3C). How-

ever, scRNA-seq poses multiple hurdles to accurate assembly. Amplifying the few pico-

grams of RNA in a single cell exacerbates biases and artifacts during reverse

transcription [22], and dropouts from inefficient RNA capture place limits on accurate

isoform quantification from scRNA-seq [48]. Additionally, scRNA-seq has been most

widely adopted in the study of mammalian systems. The mouse genome (and likewise

the human genome) is roughly 30 times larger than the Arabidopsis genome with an

average of twice as many introns per gene and nearly three times the number of anno-

tated isoforms. Additionally, mouse introns can exceed 100 kb and are on average 36

times longer than in Arabidopsis. Many isoforms per gene and large spans of non-genic

sequence make it considerably more challenging both to assemble transcripts and to

validate which assemblies are correct. To evaluate Bookend’s utility on mammalian

scRNA-seq data, we tested it on a dataset designed for single-cell benchmarking [49]

which contains a set of synthetic Spike-In RNA Variants (SIRVs) added prior to cell

lysis. SIRVs were designed to present a challenge to isoform quantification tools by

mimicking complex mammalian genes [50]. The 69 synthetic transcripts map to 7 re-

gions on a hypothetical genome in a way that recapitulates canonical and non-

canonical splicing variation, antisense transcription, and alternative 5′ and 3′ ends with

up to 18 isoforms per gene (Additional file 1: Fig. S4A). SIRV Mix E2 contains mole-

cules in four discrete concentrations so that each locus has major and minor isoforms

that vary in relative abundance by up to 128-fold. SMARTer library preparations from

96 single mouse embryonic stem cells (mESCs) were deeply sequenced, with an average

of 7 million aligned paired-end 100 bp reads per cell (Additional file 1: Table S4) in-

cluding an average of just over 500,000 SIRV-mapping reads per cell. Bookend correctly

reconstructed (full splice match and ≤ 100 nt error on both ends) an average of 22.6

transcripts per cell, which was higher than either Scallop (16.3) or StringTie2 (13) (Fig.

4A,B). Moreover, Bookend assembled fewer false SIRVs than StringTie2 and especially

Scallop (Fig. 4B). To test for a relationship between performance and sequencing depth,

cells were progressively combined into pairs, then sets of 4, 16, 32, and all reads from

the 96 cells. The relative performance of the three assemblers was stable over two or-

ders of magnitude of input with the F-measure (harmonic mean of precision and recall)

slightly rising for Bookend as the sequencing depth increased and slightly decreasing

for the others (Fig. 4B). Importantly, Bookend consistently assigned a higher estimated
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abundance to true transcripts, and false assemblies were more concentrated in the low

abundance regime than for other assemblers (Fig. 4A). Overall precision on SIRVs aver-

aged 55.9% for Bookend (vs. 39.6% StringTie2, 22.5% Scallop), and precision on the

most abundant half of assemblies was 74.2% (vs. 48.2% StringTie2, 28.4% Scallop).

End-labeled reads mapping to the mouse genome were assembled for each cell using

five different assemblers including the paired-end assembler TransComb [51]. Of the

methods examined, StringTie2 was the fastest and most memory efficient, whereas

Bookend had the second-lowest memory footprint and was comparable in processing

time to TransComb (Additional file 1: Fig. S4B). To test assembly quality, transcript

models were compared to RefSeq mm39. All matching exon chains were considered

matches, and precision was measured as the percent of all assemblies that match

RefSeq. Recall was defined by tallying all transcripts correctly assembled at least once

and counting the proportion of this transcript set found per cell. Although recall was

considerably lower for Bookend (average 7.8%) than other methods (StringTie2 13.9%,

Scallop 13.6%, TransComb 11.3%, Cufflinks 12.8%), precision was multiple times higher

(Bookend 71.7%, StringTie2 21.2%, Scallop 18.1%, TransComb 14.6%, Cufflinks 14.5%)

(Additional file 1: Fig. S4C). Most of Bookend’s differences in sensitivity and precision

can be attributed to discarding incomplete transcript models. If Bookend is instructed
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not to discard models that lack 5′ and/or 3′ end tags, then precision is reduced but

sensitivity becomes comparable to other assemblers (Additional file 1: Fig. S4C).

As with TAIR10, RefSeq is almost certainly incomplete, and non-reference-matching as-

semblies could still be valid. To experimentally validate non-RefSeq mESC assemblies,

three validation datasets were used: uuG-containing SLIC-CAGE [17] reads from mESCs

for 5′ end validation, mESC 3P-Seq [52] reads for 3′ end validation, and a database of

long noncoding RNAs identified by intergenic capture long-read sequencing (CLS [53])

for full-length validation of novel intergenic loci. An assembly was considered validated

by a method if at least one read directly supported an assembled transcript’s respective

structure(s). Assemblies with 5′ ends ≤100 nt away from a RefSeq TSS contained “known”

TSSs, and all others possessed “novel” TSSs. Likewise, assemblies with 3′ ends ≤100 nt

from their matching reference polyadenylation sites were considered “known” PASs and

all others were “novel”. An average of 99.7% of Bookend, 83.9% of Scallop, and 79.0% of

Stringtie2 single-cell assemblies with a known TSS had at least one SLIC-CAGE read

Base assembler Base assembler

Meta-assembler

TACO
None

PsiCLASS
Bookend

S
tr

in
gT

ie
2

P
si

C
LA

S
S

S
ca

llo
p

B
oo

ke
nd

B
oo

ke
nd

hy
br

id

S
tr

in
gT

ie
2

P
si

C
LA

S
S

S
ca

llo
p

B
oo

ke
nd

B
oo

ke
nd

hy
br

id

Recall (% all matches)

P
re

ci
si

on
 (

%
 m

at
ch

 / 
to

ta
l)

0 20 40 60 80
0

10

20

30

40

50

60

0

50,000

100,000

150,000

200,000

Meta-assembly
performance

A

C D

B

# 
A

ss
em

bl
ie

s

0

5,000

10,000

15,000

20,000

Meta-assembly vs. RefSeq (96 cells)

Standard assembly vs. RefSeq

Bookend hybrid
(+CAGE, 3P-seq)

# cells
1 2 4 8 16 32 96

# cells
1 2 4 8 16 32 96

# cells
1 2 4 8 16 32 96

200

1,000
2,000

10,000
20,000

100,000
200,000

Standard assembly
performance

F
-m

ea
su

re
Matches

Matches

# 
A

ss
em

bl
ie

s

Non-matches

Non-matches

0

.1

.2

.3

.4

.5

200

1,000
2,000

10,000
20,000

100,000
200,000

Full match
Exon match

RefSeq

Gencode

Bookend mESC

mESC
single-cell
SMARTer

condensed
(96 cells)

242mESC 3P-seq

141
Max depthmESC SLIC-CAGE

1kb

End Tag

Start Tag

Cap + End

Cap Tag

Unlabeled

Start + End

Mouse Commd8 (chr5:72,310,000-72,326,000 reverse)
Curated
Predicted

Support level

T1
T3
T5

E

Bookend
Assembler

Scallop
StringTie2

Base assembler

Meta-assembler

TACO
None

PsiCLASS
Bookend

Bookend
hybrid

Bookend

Scallop
PsiCLASS

StringTie2

Fig. 5 End-guided meta-assembly accurately integrates single-cell data. A Performance of assemblers with input from
increasing numbers of single mESC cells. Assemblies with a matching exon chain to a RefSeq transcript (left) or no
match to a RefSeq transcript (right). B F-measure of assemblies, where recall is the proportion of all transcripts
assembled by ≥1 strategy and precision is matches/total assemblies. C Comparison of Bookend meta-assembly to
standard assembly and other meta-assemblers. Number of RefSeq-matching transcripts assembled (left) or the number
of non-matches (right). D Precision/recall plot of the 12 assemblies from C; recall and precision calculated as in (B). E IGV
browser image of the Commd8 gene. From top to bottom: RefSeq, Gencode, and Bookend mESC annotations, 5′ ends
from mESC SLIC-CAGE, 3′ ends from mESC 3P-seq, Bookend-condensed partial assemblies from 96 single mESCs

Schon et al. Genome Biology          (2022) 23:143 Page 12 of 21



within 100 nt (Fig. 5C). Moreover, the majority of novel, antisense, and intergenic TSSs

from Bookend transcripts were supported by at least 1 capped SLIC-CAGE read, whereas

no novel group from StringTie2 or Scallop surpassed a 25% validation rate. The 3P-Seq

dataset had fewer total reads and was less sensitive overall, but it still supported 19.9% of

intergenic Bookend assembly 3′ ends, compared to 1.4% for Scallop and 0.8% for String-

Tie2 (Fig. 5D). By comparing against the CLS atlas, we could validate the full structure of

intergenic mESC assemblies. Bookend assembled a very small number of novel intergenic

transcripts per cell (average 33 vs. 1209 by StringTie2 and 1073 by Scallop), but 49% of

these were supported by one or more reads from the CLS atlas, compared to just 3% for

Scallop intergenic assemblies and 0.3% for StringTie2 (Fig. 5E). Finally, because Cap and

End Tags were extremely sparse in Droevendaalsesteeg 1, 6708 PB Wageningen, Nether-

landseach cell (Additional file 1: Table S4), we hypothesized that the lower sensitivity

could be explained by dropout of end labels. Supplying the mESC SLIC-CAGE (5′ end)

and 3P-seq (3′ end) datasets to a Bookend hybrid assembly raised recall from 7.8 to 18.2%

and retained a precision of 67.2% (Additional file 1: Fig. S4D). Assemblies were repeated

for two replicates of Smart-seq2 data from the same experiment with comparable results,

which demonstrates that end-guided assembly is consistent between two different full-

length single-cell sequencing protocols (Additional file 1: Fig. S4D). Therefore, end-

guided assembly of single-cell RNA-seq data can be used to identify genuine transcrip-

tional novelty that is otherwise masked by noise.

Condensed assembly and meta-assembly

A defining feature of single-cell experiments is that many individual cells are profiled in

parallel. While sensitivity in an individual cell is low, information across multiple cells can

be combined to achieve a more complete view of the experiment. Tools have been devel-

oped for transcript “meta-assembly” of reads from multiple sources. By modeling for vari-

ation across samples, meta-assemblers achieve higher precision than standard assembly

on the same set of reads [54, 55]. To measure the impact of meta-assembly, a series of as-

semblies on subsamples of all 706 million aligned single-cell mESC reads was first per-

formed with StringTie2 and Scallop, as well as Bookend with and without the addition of

mESC SLIC-CAGE and 3P-seq libraries (Fig. 4A). The mean number of reference-

matching transcripts varied greatly across assemblers on single cells (1656 Bookend, 3711

Bookend hybrid, 2904 StringTie2, 2831 Scallop), but the magnitude of difference de-

creased with progressive doublings, up to the full set of 96 cells (12,794 Bookend, 13,762

Bookend hybrid, 13,524 StringTie2, 15,611 Scallop). By contrast, non-matches grew

linearly with input. Bookend consistently assembled roughly an order of magnitude fewer

non-matching transcripts than other assemblers across all input levels. Scallop identified

the most matches from the full 96-cell dataset, but this was dwarfed by nearly 13 times

the number of assemblies that failed to match RefSeq (201,631 Scallop, 100,646 String-

Tie2, 14,301 Bookend, 15,711 Bookend hybrid). By assuming non-matches to be mostly

false, we calculated recall and precision as before and combined them to track the rela-

tionship between overall performance (F-measure) and input. F-measure of Bookend and

Bookend hybrid assembly continued to improve with increasing input, but Scallop and

StringTie2 began to decline above 4 and 16 cells, respectively, due to the growth of non-
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matches outpacing matches (Fig. 4B). Consistent with previous reports, we see that stand-

ard assemblers suffer from an input-dependent decay in precision [54, 55].

As an alternative approach, two published meta-assemblers were used to process the

96-cell dataset. TACO builds a consensus annotation by re-defining transcript bound-

aries through “change-point detection” on a set of files from any standard assembler

[54], whereas PsiCLASS generates the individual assemblies and performs meta-

assembly through a consensus voting system [55]. The flexibility of Bookend’s frame-

work allows its assembly algorithm to be run on assemblies, including its own output.

To test the efficacy of meta-assembly with Bookend, each of the 96 single mESC data-

sets were “condensed” by a first pass through Bookend Assemble in which no incom-

plete transcripts were discarded (Additional file 1: Fig. S5A; “Path Filtering” section of

Additional file 1: Supporting notes). Assembly was run again on the 96 condensed files,

only retaining complete transcript models during the second pass. Bookend was also

used to meta-assemble the 96 single-cell assemblies by StringTie2 and Scallop. Com-

pared to standard assembly by StringTie2 or Scallop, all meta-assemblies produced

substantially fewer non-matching transcripts (Fig. 4C). However, single-cell meta-

assemblies surprisingly also recalled fewer RefSeq matches than standard assembly,

with the exception of Bookend-to-Bookend and hybrid Bookend-to-Bookend meta-

assemblies. PsiCLASS and TACO both showed somewhat higher precision than stand-

ard assembly, but at the expense of a severe drop in recall (Fig. 4D). PsiCLASS had the

lowest recall of any method, but higher precision than StringTie2-to-TACO or Scallop-

to-TACO meta-assembly. Bookend-to-Bookend meta-assembly considerably outper-

formed PsiCLASS in both recall (relative increase of 72%) and precision (relative in-

crease of 253%). PsiCLASS produced an unusually large number of partial transcript

fragments, likely due to the fact that scRNA-seq often has substantial 3′ bias that is not

adequately accounted for (Additional file 1: Fig. S5A,B). Notably, when TACO was ap-

plied to single-cell Bookend assemblies, it showed both a 23% relative reduction in re-

call and a 25% relative reduction in precision compared to standard Bookend assembly.

In contrast, Bookend-to-Bookend meta-assembly increased recall by 22% and precision

by 7% (+ 58% recall and + 42% precision vs. Bookend-to-TACO). Across all three base

assemblers, TACO reported fewer full reference matches than the standard assembly,

while Bookend reported the same number or more full matches with a greater reduc-

tion in all non-matching classes than TACO (Additional file 1: Fig. S5C). Of all combi-

nations tested, both sensitivity and precision were highest at the intron chain and full

transcript level in a Bookend-to-Bookend hybrid meta-assembly in which SLIC-CAGE

and 3P-seq data were supplied alongside the single-cell condensed assemblies [56]

(Additional file 1: Table S5). We report this assembly as the “Bookend mESC” annota-

tion (Additional file 2: Datasets 4,5). Requiring that both transcript ends are replicable

across at least two different samples raised the transcript-level concordance with

RefSeq to 54.1%, a relative increase of 271% over the most precise non-Bookend

method (PsiCLASS), and a substantially higher agreement than even Gencode, an alter-

native mouse reference annotation that only shares 31.7% of its transcripts at assem-

bled loci with RefSeq (Additional file 1: Fig. S5D). While Gencode isoforms contain a

broader set of alternative TSS and PAS than RefSeq, we noticed that they can be con-

tained in low-confidence or fragmented transcript models, as in the gene Commd8

(Fig. 4E). By combining multiple unique advantages of end-guided assembly, Bookend
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could assemble more reference matches than any other strategy while maintaining a

majority concordance with known annotations.

Discussion
Computational gene annotation pipelines have long struggled to produce a reliable

picture of plant and animal transcriptomes at the isoform level [11, 31, 57]. Studying

the details of gene regulation and isoform usage remains restricted to a small number

of model organisms in which manually curated accurate transcript models are available.

Even with specialized methods for sequencing RNA ends, connecting those ends to a

gene model can be computationally challenging, especially for noncoding RNAs [37].

By generating accurate end-to-end transcript assemblies from a range of widely access-

ible sequencing methods, Bookend enables the automated annotation of promoter

architecture, alternative polyadenylation, and splicing dynamics in tissues in response

to developmental, environmental, and disease state cues.

The utility of Bookend is limited by the availability of end-labeled RNA-seq data,

which is only produced by a subset of all RNA-seq protocols. Fortunately, large-scale

projects have been undertaken to catalog RNA ends, including thousands of human

and mouse tissue-specific CAGE datasets from the FANTOM5 consortium [58]. Book-

end assembly of unlabeled RNA-seq can be augmented by providing tissue-matched

datasets of RNA ends. If 5′ end data for a tissue of interest is missing, template switch-

ing protocols are straightforward alternatives to standard RNA-seq, and Smart-seq3

was developed to yield a far higher ratio of 5′ labeled reads than Smart-seq2 [23].

Conclusion
Despite rapid advancements in scale and sensitivity of single-cell RNA sequencing, the

accurate detection of transcript isoforms is still an outstanding challenge [48]. Multiple

approaches to apply long-read sequencing to single cells have been developed, but

limits on throughput, error rate, and cost restrict their use [59–61]. Notably, large-scale

Smart-seq2 experiments across multiple organisms have already been sequenced, in-

cluding tens of thousands of cells from 20 mouse tissues and 24 human tissues by the

Tabula Muris and Tabula Sapiens Consortia, respectively [62, 63]. Through meta-

assembly of existing and future scRNA-seq datasets, we envision that Bookend will en-

able the comprehensive reannotation of transcriptomes at single-cell resolution.

Methods
PacBio sequencing

Two PacBio Iso-seq libraries were generated each using 10 μg of total RNA from Arabi-

dopsis inflorescences containing unopened floral buds. Total RNA was extracted with

TRIzol following the method described in Schon et al. [16] to yield two biological

replicates with an RNA integrity number (RIN) of 9.0 and 9.2, respectively. SMRTbell

libraries were constructed by the Vienna BioCenter Core Facilities (VBCF) and

sequenced on a Sequel SMRT Cell 1M.
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Published RNA sequencing data

Smart-seq2 datasets from 5 ng Arabidopsis floral bud RNA and tissue-matched nano-

PARE libraries from 10 μg total RNA were downloaded from the NCBI Gene Expres-

sion Omnibus (GEO), series accession GSE112869. Single-cell RNA-seq datasets of

mouse embryonic stem cells and SIRVs from Natarajan et al. [49] were downloaded

from EMBL-EBI ArrayExpress, accession E-MTAB-7239. SLIC-CAGE datasets from

100 ng mESC total RNA were downloaded from ArrayExpress, accession E-MTAB-

6519. One 3P-Seq dataset from 75 μg mESC RNA was downloaded from GEO, sample

accession GSM1268958.

Short-read data processing

Prior to alignment, reads were preprocessed with cutadapt [64] to remove sequencing

adapters. End labels were identified and trimmed using the utility bookend label, with settings

tailored to each library. For Arabidopsis single-end Smart-seq2 reads, the following argu-

ments were used: --strand unstranded -S AAGCAGTGGTATCAACGCAGAGTACGGG -E

AAGCAGTGGTATCAACGCAGAGTACTTTTTTTTTTTTTTTTTTTT+ --min_start 7

--min_end 9 --minlen 18 --minqual 25 --qualmask 16 --mismatch_rate 0.06. Paired-end

mouse SMARTer reads used the same arguments except for -S AAGCAGTGGTATCAAC

GCAGAGTACATGGG. 5′ end reads from nanoPARE libraries were labeled with the argu-

ments --strand forward --minstart 20. After end labeling, short reads were aligned using

STAR [65]. Arabidopsis reads were aligned to the TAIR10 genome, and mouse reads were

aligned to mm39 (GRCm39). Short reads in both species were aligned using an identical

two-pass alignment strategy except for allowed intron lengths. First, reads were aligned with

the command STAR --runMode alignReads --alignEndsType EndToEnd --outFilterMatchN-

min 20 --outFilterMismatchNmax 6 --outFilterMismatchNoverLmax .05 --outFilterIntronMo-

tifs RemoveNoncanonicalUnannotated --alignSJoverhangMin 20 --alignSJDBoverhangMin 1

--outFilterMultimapNmax 2 --outSJfilterOverhangMin -1 15 20 20 --outSJfilterCountUnique-

Min -1 2 3 3 --outSJfilterCountTotalMin -1 2 3 3. Arabidopsis alignments used the additional

arguments --alignIntronMax 5000 --alignMatesGapMax 5100, and mouse alignments in-

stead used --alignIntronMax 100000 --alignMatesGapMax 100100. Splice junctions from all

samples were aggregated across all samples for each species with bookend sj-merge --new

--min_reps 2 to retain only novel splice junctions that were detected in multiple samples. Sec-

ond pass mapping was performed with the settings above, except the merged splice junction

file was provided with --sjdbFileChrStartEnd, and the following arguments were modified:

--alignEndsType Local --outFilterMatchNminOverLread 0.9 --outFilterType BySJout --outFil-

terMultimapNmax 10 --outSAMtype BAM Unsorted --outSAMorder Paired --outSAMpri-

maryFlag AllBestScore --outSAMattributes NH HI AS nM NM MD jM jI XS. Unsorted BAM

files were converted to End-Labeled Read (ELR) files with the command bookend elr --gen-

ome [genome.fa] with library-specific settings. Arabidopsis Smart-seq2: --start_seq ACGGG

--end_seq RRRRRRRRRRRRRRRRRRRRRRRRRRRRRR --mismatch_rate .2; Arabidopsis nano-

PARE: --stranded -s --start_seq ACGGG --mismatch_rate .2; mouse SMARTer: --start_seq

ACATGGG --end_seq AAAAARRRRRRRRRRRRRRRRRRRRRRRRR --mismatch_rate .25.
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Long-read data processing

Raw Arabidopsis PacBio reads were converted to Circular Consensus Sequences using

Iso-seq3 software (https://github.com/PacificBiosciences/IsoSeq) with the command ccs

--min-passes 2 --min-rq .9, and CCS reads were converted to full-length non-chimeric

(FLNC) reads using lima and isoseq3 refine --require-polya --min-rq -1 --min-polya-

length 10. FLNC reads were aligned to the Arabidopsis genome with the command

minimap2 -G 5000 -H -ax splice --MD -C 5 -u f -p 0.9 --junc-bed [TAIR10 transcript

BED12]. For cluster collapse, ToFU was installed with the cDNA_Cupcake package

(https://github.com/Magdoll/cDNA_Cupcake), and the function collapse_isoforms_by_

sam.py was run on a sorted BAM file of all FLNC reads with the arguments –flnc_

coverage 2 –max_5_diff 200 –max_3_diff 200. Additionally, aligned unsorted SAM files

were converted to ELR with the command bookend elr --stranded -s -e --start_seq

ATGGG --genome [TAIR10.fa].

Assembly

To make assembly setting maximally uniform across Bookend, StringTie2, Scallop, and

Cufflinks, the following arguments were used. For Arabidopsis assemblies: bookend as-

semble --max_gap 50 --min_cov 2 --min_len 60 --min_proportion 0.02 --min_overhang

3 --cap_bonus 5 --cap_filter 0.02; stringtie -g 50 -c 2 -m 60 -f 0.02 -a 3 -M 1 -s 5; scallop

--min_bundle_gap 50 --min_transcript_coverage 2 --min_transcript_length_base 60

--min_flank_length 3 --min_single_exon_coverage 5 --min_transcript_length increase 50;

cufflinks -F 0.02 --overhang-tolerance 3 --min-frags-per-transfrag 10 -j 0.15 -A 0.06. For

mouse assemblies, the same settings were used with the following exceptions: --min_

proportion was set to 0.01, --min_len to 200, and --require_cap was enforced on mouse

assemblies except when assembling spike-in transcripts, which do not possess caps. For

meta-assembly, Bookend was run with the same settings as above for mouse. TACO

was run with the arguments --filter-min-expr 2 --filter-min-length 200 --isoform-frac

0.01, and PsiCLASS was run with default settings

Assembly algorithms

A brief overview of the end-guided assembly process implemented in Bookend is below.

For a full breakdown of the algorithms used, see the “Bookend Algorithms” section of

Additional file 1: Supporting notes. For detailed instructions on using the Bookend

software package, see Additional file 3: Bookend user guide.

(Generate Chunks) First, reads are streamed in from an ELR file in sorted order and

separated into overlapping chunks. (Tag Clustering) In each chunk, Start Tags and End

Tags are clustered on each strand by grouping tags by genomic position and assigning

each position a signal score of counts × proportion of total coverage. A signal threshold

is set and positions below the threshold are discarded. Remaining positions are grouped

within a user-specified distance to yield Start and End clusters on each strand. (Calcu-

late Membership Matrix) Start/End clusters are added to a catalog of boundaries, which

include splice donor/acceptor sites that are also filtered by a threshold of total overlap-

ping coverage. Adjacent boundary pairs define a “frag”, and each read is assigned a

Membership array that describes whether the read overlaps or excludes each frag. Re-

dundant membership arrays are combined, and the unique set of elements is stored as
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the Membership Matrix. (Calculate Overlap Matrix) A matrix describing the relation-

ship between each element pair 1 and 2 is generated by asking (from left to right in

genomic coordinates): can 1 extend into 2? Can 2 extend into 1? More formally, 2 ex-

tends 1 if they disagree in no column of the Membership Matrix and there exists at

least one instance of a run of non-zero membership in 2 that ends at a higher index

than the overlapping run in 1. Each comparison returns a pair of Overlaps, O1,2 and

O2,1, respectively: 1 = extends, −1 = excludes, 2 = is contained by, 0 = does not overlap.

The values −1 and 0 are symmetric, but 1 and 2 are directed relationships that can be

used as edges in a directed graph. (Collapse Linear Chains) It is possible to identify and

collapse non-branching sets of elements (“linear chains”) prior to assembly. Two graphs

are constructed with elements as nodes: a directed graph with extensions as edges, and

an undirected graph with exclusions as edges. A depth-first search is conducted by vis-

iting each element in increasing order of information content (number of non-zero

memberships). During a visit, the element’s edges are traversed recursively to record all

traversed nodes’ exclusions. An element with no edges is assigned to a new chain.

Otherwise, when an element’s edges are all traversed, the element is compared against

its outgroup, the set of all elements reached. If all outgroup elements belong to one

chain and the element and outgroup have the same set of exclusions, then the element

is added to the same chain. If the element’s outgroup is assigned to multiple chains, the

element begins a new chain. After completion of the search, each chain is combined to

form a single reduced element. (Generate Overlap Graph) From the set of reduced ele-

ments, a second directed graph is constructed with a global source (Start+/End−) and

sink (Start−/End+), where each node records the element weight (sequenced bases /

genomic length), outgroup (extends to), ingroup (extends from), containments and

exclusions. (Resolve Containment) All elements contained by one or more longer ele-

ments have their weight redistributed proportionally to their containers as long as not

all containers exclude any single node the element does not already exclude. (Greedy

Paths) All elements begin unassigned. Starting with the heaviest unassigned element,

choose an extension (ingroup/outgroup pair) that maximizes a score that equally com-

bines the following: maximal weight of the extension, maximal similarity of coverage

distribution across samples between element and extension, minimal coverage variance

across covered frags, and does not cause the source or sink to become unreachable.

The highest-scoring extension is iteratively added to a path until both source and sink

are reached or no further extensions are possible. Paths are generated in this manner

until the total weight of unassigned elements falls below a given signal threshold.
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