PublisherInfo				
PublisherName	:	BioMed Central		
PublisherLocation	:	London		
PublisherImprintName	:	BioMed Central		

Haematopoietic stem cells

ArticleInfo		
ArticleID	:	4683
ArticleDOI	:	10.1186/gb-spotlight-20030122-01
ArticleCitationID	:	spotlight-20030122-01
ArticleSequenceNumber	:	35
ArticleCategory	:	Research news
ArticleFirstPage	:	1
ArticleLastPage	:	2
ArticleHistory	:	RegistrationDate: 2003–1–22OnlineDate: 2003–1–22
ArticleCopyright	:	BioMed Central Ltd2003
ArticleGrants	:	
ArticleContext	:	130594411

Jonathan B Weitzman Email: jonathanweitzman@hotmail.com

The transcription factor encoded by the stem cell leukemia SCL/tal-1 gene is essential for the embryonic development of haematopoietic stem cells (HSC). In an Advanced Online Publication in Nature Mikkola *et al.* describe analysis of mice with a conditional deletion of the *SCL/tal-1* gene, generated to assess the factor's role in adult haematopoiesis (*Nature* 19 January 2003, doi;10.1038/ nature01345). Mice containing a *loxP*-flanked *SCL/tal-1* allele were bred with the mxCre strain in which Cre protein expression can be induced by polyI-polyC. Deletion of the *SCL/tal-1* gene in adult mice did not affect the differentiation or the maintenance of myeloid or lymphoid lineages. Bone-marrow transplantation experiments demonstrated that *SCL/tal-1* gene deletion did not affect contribution to all haematopoietic organs. The authors conclude that "loss of *SCL/tal-1* does not seem to impair considerably HSC properties, including engraftment, self-renewal and multipotency." These results suggest that transcription factors required for HSC genesis (such as *SCL/tal-1*) may differ from those required for long-term repopulation and multipotency in adults.

References

- 1. Absence of blood formation in mice lacking the T-cell leukaemia oncoprotein tal-1/SCL.
- 2. Nature, [http://www.nature.com]