PublisherInfo				
PublisherName	:	BioMed Central		
PublisherLocation	:	London		
PublisherImprintName	:	BioMed Central		

Early introns

ArticleInfo		
ArticleID	:	4585
ArticleDOI	:	10.1186/gb-spotlight-20020919-01
ArticleCitationID	:	spotlight-20020919-01
ArticleSequenceNumber	:	251
ArticleCategory	:	Research news
ArticleFirstPage	:	1
ArticleLastPage	:	2
ArticleHistory	:	RegistrationDate: 2002–9–19OnlineDate: 2002–9–19
ArticleCopyright	:	BioMed Central Ltd2002
ArticleGrants	:	
ArticleContext	:	130593311

Jonathan B Weitzman Email: jonathanweitzman@hotmail.com

The discovery of a single intron with aberrant splice boundaries in the primitive protozoan Giardia raised questions about the origins of splicing. In the September 19 Nature, Simpson *et al.* report the discovery of introns with canonical boundary sequences in the closely-related microbial eukaryote *Carpediemonas membranifera (Nature* 2002, 419:270). They analysed two distinct carbamate kinase genes from *Carpediemonas* and found short introns flanked by characteristic GT and AG sequences, at the 5' and 3' boundaries, respectively. The *Giardia* intron has a non-canonical CT dinucleotide at the 5' boundary. The authors conclude that "there is now every reason to assume that canonical introns were present in the most recent common ancestor of living eukaryotes."

References

- 1. A spliceosomal intron in Giardia lamblia.
- 2. Nature, [http://www.nature.com]