PublisherInfo				
PublisherName	:	BioMed Central		
PublisherLocation	:	London		
PublisherImprintName	:	BioMed Central		

Sequence of a symbiont

ArticleInfo		
ArticleID	:	4575
ArticleDOI	:	10.1186/gb-spotlight-20020910-01
ArticleCitationID	:	spotlight-20020910-01
ArticleSequenceNumber	:	241
ArticleCategory	:	Research news
ArticleFirstPage	:	1
ArticleLastPage	:	2
ArticleHistory	:	RegistrationDate: 2002–9–10OnlineDate: 2002–9–10
ArticleCopyright	:	BioMed Central Ltd2002
ArticleGrants	:	
ArticleContext	:	130593311

Jonathan B Weitzman Email: jonathanweitzman@hotmail.com

Tsetse flies, the vectors of African trypanosomes, feed exclusively on blood and require intracellular microorganisms to provide additional nutrients. In an Advanced Online Publication in Nature Genetics, Akman *et al.* report the genome sequence of *Wigglesworthia glossinidia brevipalpis*, the obligate symbiont of the tsetse fly (*Nature Genetics*, 3 September 2002, DOI:10.1038/ng986). The *Wigglesworthia* genome consists of a single chromosome of almost 700 kb and a small plasmid, pWig1, of 5,200 bp. The coding content is around 89%, with 621 predicted coding sequences. Notably, the genome lacks a gene encoding the DNA replication initiation protein DnaA, whose function may be provided by the host. Akman *et al.* assigned potential functions to a large number of the coding sequences, including those implicated in the biosynthesis of cellular structures, and fatty acid metabolism and the synthesis of vitamin metabolites (required for host nutrition). The *Wigglesworthia* genome provides an opportunity to study the genetics of symbiotic relationships.

References

- 1. Tsetse A haven for microorganisms.
- 2. Nature Genetics, [http://genetics.nature.com]