PublisherInfo				
PublisherName	:	BioMed Central		
PublisherLocation	:	London		
PublisherImprintName	:	BioMed Central		

Shedding light on gene regulation

ArticleInfo		
ArticleID	:	4573
ArticleDOI	:	10.1186/gb-spotlight-20020906-02
ArticleCitationID	:	spotlight-20020906-02
ArticleSequenceNumber	:	239
ArticleCategory	:	Research news
ArticleFirstPage	:	1
ArticleLastPage	:	2
ArticleHistory	:	RegistrationDate: 2002–9–6OnlineDate: 2002–9–6
ArticleCopyright	:	BioMed Central Ltd2002
ArticleGrants	:	
ArticleContext	:	130593311

Jonathan B Weitzman Email: jonathanweitzman@hotmail.com

Experimental systems in which gene expression can be carefully regulated are powerful tools for investigating gene function. In an Advanced Online Publication in Nature Biotechnology, Shimizu-Sato and colleagues describe an ingenious gene expression system that exploits a light-sensitive protein from plants.

The system is binary, like the classical yeast two-hybrid system, and is based on a light-induced interaction between two fusion proteins. One is a fusion between the plant PhyB phytochrome and the DNA-binding domain of the yeast transcriptional activator Gal4, while the other contains the plant Pif3 basic helix-loop-helix protein fused to the Gal4 activation domain. A controlled transgene can be 'turned on' by red light, and 'turned off' again by far-red light. The findings demonstrate that their system works well in yeast, and they predict that it could be used in any light-accessible eukaryotic cell to offer a non-invasive, inexpensive and non-toxic gene induction system.

References

- 1. Conditional control of gene expression in the mouse.
- 2. Nature Biotechnology, [http://www.nature.com/nbt/]