PublisherInfo				
PublisherName		BioMed Central		
PublisherLocation		London		
PublisherImprintName	:	BioMed Central		

Death by PARP

ArticleInfo		
ArticleID	:	4532
ArticleDOI	:	10.1186/gb-spotlight-20020717-02
ArticleCitationID	:	spotlight-20020717-02
ArticleSequenceNumber	:	198
ArticleCategory	:	Research news
ArticleFirstPage	:	1
ArticleLastPage	:	2
ArticleHistory	:	RegistrationDate: 2002–7–17OnlineDate: 2002–7–17
ArticleCopyright	:	BioMed Central Ltd2002
ArticleGrants	:	
ArticleContext	:	130593311

Jonathan B Weitzman Email: jonathanweitzman@hotmail.com

PARP-1 (poly(ADP-ribose) polymerase-1) is a nuclear enzyme that is important for genome repair and DNA replication. PARP-1 also induces cell death in a number of physiological contexts. In the July 12 Science, Yu *et al.* describe a mechanism by which nuclear PARP-1 regulates a mitochondrial protein to induce apoptosis (*Science* 2002, **297:**259-263). They studied fibroblasts generated from *parp-1* knockout mice and examined the response to DNA-alkylating agents; they found that cells from the knockout mice failed to undergo apoptosis and lacked nuclear translocation of the mitochondrial flavoprotein apoptosis-inducing factor (AIF). Neutralizing anti-AIF antibodies blocked PARP-1-dependent cell death. Yu *et al.* propose a mechanism in which DNA damage induces PARP-1 activation leading to NAD+ consumption that is sensed by mitochondria and results in AIF translocation to the nucleus, nuclear condensation and death. This study thus provides a molecular link between the integrity of the nuclear genome and activation of mitochondrial killer proteins.

References

- 1. Molecular and biochemical features of poly (ADP-ribose) metabolism.
- 2. Science, [http://www.sciencemag.org]
- 3. Apoptosis-inducing factor (AIF): a ubiquitous mitochondrial oxidoreductase involved in apoptosis.