PublisherInfo				
PublisherName		BioMed Central		
PublisherLocation		London		
PublisherImprintName		BioMed Central		

*Dictyostelium*chromosome

ArticleInfo		
ArticleID		4521
ArticleDOI	:	10.1186/gb-spotlight-20020704-01
ArticleCitationID	:	spotlight-20020704-01
ArticleSequenceNumber	:	187
ArticleCategory	:	Research news
ArticleFirstPage	:	1
ArticleLastPage	:	2
ArticleHistory	:	RegistrationDate : 2002–7–4 OnlineDate : 2002–7–4
ArticleCopyright	:	BioMed Central Ltd2002
ArticleGrants	:	
ArticleContext	:	130593311

Jonathan B Weitzman

Email: jonathanweitzman@hotmail.com

Dictyostelium discoideum occupies a unique position at the border between free-living cells and multicellular organisms. In the July 4 Nature, the *Dictyostelium* Genome Sequencing Consortium reports the sequencing of the largest chromosome, chromosome 2, from the D. discoideumgenome (*Nature* 2002, **418**:79-85). The chromosome is approximately 8 megabases long, representing about a quarter of the genome. The sequence is extremely A+T rich, averaging 86% in intergenic regions. The researchers predicted 2,799 coding genes and 73 tRNA genes, and extrapolate to estimate a total gene number of 11,000 *Dictyostelium* genes. About 35% of genes had a match in other eukaryote genomes. The high gene density is similar to that found in yeast. The Consortium notes that the *Dictyostelium* genome appears more similar to metazoa than to plants or fungi. Further analysis of the *Dictyostelium* genome will undoubtedly provide insights into how it has evolved for unicellular and multicellular life.

References

- 1. Genetic networks that regulate development in *Dictyostelium* cells.
- 2. *Nature*, [http://www.nature.com]
- 3. Dictyostelium discoideum genome project, [http://genome.imb-jena.de/dictyostelium]

This PDF file was created after publication.