PublisherInfo				
PublisherName		BioMed Central		
PublisherLocation		London		
PublisherImprintName	\Box	BioMed Central		

Chromatin control during the cell cycle

ArticleInfo		
ArticleID	:	4479
ArticleDOI		10.1186/gb-spotlight-20020514-01
ArticleCitationID		spotlight-20020514-01
ArticleSequenceNumber	\Box	145
ArticleCategory	$\begin{bmatrix} \vdots \end{bmatrix}$	Research news
ArticleFirstPage	:	1
ArticleLastPage	\Box	2
ArticleHistory	:	RegistrationDate : 2002–5–14 OnlineDate : 2002–5–14
ArticleCopyright	\vdots	BioMed Central Ltd2002
ArticleGrants	:	
ArticleContext	\Box	130593311

Jonathan B Weitzman

Email: jonathanweitzman@hotmail.com

Maintaining cells in the quiescent G0 phase of the cell division cycle is achieved by suppressing the expression of genes required for cell-cycle progression. In the May 10 Science, Hidesato Ogawa and colleagues at the Dana-Farber Cancer Institute in Boston describe a repressive mechanism in quiescent cells involving the E2F-6 transcription factor (*Science* 2002, **296:**1132-1136). They immunopurified protein complexes that include E2F-6 from human cells and analysed co-purifying protein bands by mass spectrometry. They detected the DP-1, Mga and Max transcription factors and showed that the E2F-6 complex can bind to E2F- and Myc-binding sites on DNA; they also found two associated histone methyltransferase enzymes. In addition, Ogawa *et al.* detected the HP1γ protein that binds to methylated lysine 9 residues in the tails of histone proteins. Finally, they also found evidence for Polycomb-group-like, ring-finger proteins in the same complex. The authors propose that E2F- and Myc-regulated genes are repressed in quiescent cells by E2F-6 and recruitment of a complex that modifies chromatin structure.

References

- 1. Science, [http://www.sciencemag.org]
- 2. Dana-Farber Cancer Institute , [http://www.dfci.harvard.edu]
- 3. Unusual proliferation arrest and transcriptional control properties of a newly discovered E2F family member, E2F-6.

This PDF file was created after publication.