PublisherInfo		
PublisherName	$:$	BioMed Central
PublisherLocation	$:$	London
PublisherImprintName	$:$	BioMed Central

Proteome purification

ArticleInfo		
ArticleID	$:$	4418
ArticleDOI	$:$	$10.1186 /$ gb-spotlight-20020308-01
ArticleCitationID	$:$	spotlight-20020308-01
ArticleSequenceNumber	$:$	84
ArticleCategory	$:$	Research news
ArticleFirstPage	$:$	1
ArticleLastPage	$:$	2
	$:$	RegistrationDate $: 2002-3-8$
ArticleHistory	$:$	OnlineDate
ArticleCopyright	$:$	BioMed Central Ltd2002-3-8
ArticleGrants	$:$	
ArticleContext	$:$	130593311

Jonathan B Weitzman

Email: jonathanweitzman@hotmail.com

In the March 5 Proceedings of the National Academy of Sciences, Braun et al. describe a methodology to perform high-throughput purification of human proteins using several affinity-tags (Proc Natl Acad Sci USA2002,99:2654-2659). They exploited the Gateway recombinational cloning system that employs a versatile 'master' vector for easy transfer into different expression vectors. They chose a test set of 32 human genes and expressed them in four different vectors with different affinity tagsL: the His6tag, calmodulin-binding peptide, glutathione-S-transferase or maltose-binding protein. Using different denaturing and nondenaturing purification conditions they were able to isolate around 80% of expressed proteins. Braun et al.demonstrated that the system can be easily scaled-up, and then applied the same approach to a set of 336 human cDNAs with a success rate of around 60%. This approach allows for optimization of protein purification on a proteome-scale.

References

1. Proceedings of the National Academy of Sciences, [http://www.pnas.org]
2. Global efforts in structural genomics.
3. Proteome-scale purification of human proteins from bacteria., [http://www.pnas.org/cgi/content/ abstract/99/5/2654]
4. DNA cloning using in vitro site-specific recombination.
