PublisherInfo				
PublisherName	:	BioMed Central		
PublisherLocation	:	London		
PublisherImprintName	:	BioMed Central		

Chipping away at GATA

ArticleInfo		
ArticleID	:	4415
ArticleDOI	:	10.1186/gb-spotlight-20020305-01
ArticleCitationID	:	spotlight-20020305-01
ArticleSequenceNumber	:	81
ArticleCategory	:	Research news
ArticleFirstPage	:	1
ArticleLastPage	:	2
ArticleHistory	:	RegistrationDate: 2002–3–5OnlineDate: 2002–3–5
ArticleCopyright	:	BioMed Central Ltd2002
ArticleGrants	:	
ArticleContext	:	130593311

Jonathan B Weitzman Email: jonathanweitzman@hotmail.com

GATA-1 is a hematopoietic lineage-specific transcription factor that is important for erythroidspecific gene expression patterns. In the March 5 Proceedings of the National Academy of Sciences, Christine Horak and colleagues at Yale University describe an approach to mapping transcription factor binding sites in mammalian genomes (*Proc Natl Acad Sci USA* 2002, **99:**2924-2929). They looked at GATA-1 binding to the β -globin locus in human K562 erythroleukemia cells using chromatin immunoprecipitation (ChIP) combined with microarray analysis (ChIP-chip). They immunoprecipitated GATA-1 using three different antibodies and hybridized immunopurified genomic DNA to arrays containing fragments of the 75 kb β -globin locus. Two β -globin regions were consistently enriched, the HS2 core-element region known to bind GATA-1 and a region upstream of the gammaG gene. They then used PCR analysis to confirm and further define the GATA-binding region. These results demonstrate the feasibility of applying ChIP-chip methodology to comprehensive analysis of an entire mammalian locus.

References

- 1. Transcriptional activation and DNA binding by the erythroid factor GF-1/NF-E1/Eryf 1.
- 2. Proceedings of the National Academy of Sciences, [http://www.pnas.org]
- 3. Yale University, [http://www.yale.edu]
- 4. Genomic binding sites of the yeast cell-cycle transcription factors SBF and MBF.