PublisherInfo				
PublisherName	:	BioMed Central		
PublisherLocation		London		
PublisherImprintName	:	BioMed Central		

Profiling and policing

ArticleInfo		
ArticleID	:	4129
ArticleDOI	:	10.1186/gb-spotlight-20010625-01
ArticleCitationID	:	spotlight-20010625-01
ArticleSequenceNumber	:	200
ArticleCategory	÷	Research news
ArticleFirstPage	:	1
ArticleLastPage	:	2
ArticleHistory	:	RegistrationDate: 2001–06–25OnlineDate: 2001–06–25
ArticleCopyright	:	BioMed Central Ltd2001
ArticleGrants	÷	
ArticleContext	:	130592211

Jonathan B Weitzman Email: jonathanweitzman@hotmail.com

Cell lines used in many laboratories are often not what they are claimed to be, resulting in misleading research articles. A well-characterized case of cross-contamination is the widely used human cancer cell line called HeLa. In the Early Edition of the Proceedings of the National Academy of Sciences, Masters *et al.* describe the use of forensic techniques to expose culprit samples. Short tandem repeat (STR) profiling is a simple PCR-based technique that generates results in the form of a standard numerical code for lengths of polymorphic loci. Masters *et al.* analysed 253 human cell lines, collected from international cell banks and cancer research institutes, to demonstrate the feasibility of wide-scale STR profiling to detect cross-contamination. The authors suggest that STR profiling (at a cost of only \$200 per cell line) could be used to create an international reference standard for human cell lines and they propose that a policy of 'authentication prior to publication' would diminish scientific misrepresentation.

References

- 1. Cell contamination leads to inaccurate data: we must take action now
- 2. Widespread intraspecies cross-contamination of human tumor cell lines arising at source.
- 3. Proceedings of the National Academy of Sciences, [http://www.pnas.org]

4. Short tandem repeat profiling provides an international reference standard for human cell lines, [http://www.pnas.org/cgi/doi/10.1073/pnas.121616198]

5. A highly discriminating octoplex short tandem repeat polymerase chain reaction system suitable for human individual identification.

This PDF file was created after publication.