PublisherInfo				
PublisherName	:	BioMed Central		
PublisherLocation		London		
PublisherImprintName	:	BioMed Central		

Hypervirulent knockout

ArticleInfo		
ArticleID	:	4052
ArticleDOI	:	10.1186/gb-spotlight-20010417-02
ArticleCitationID	:	spotlight-20010417-02
ArticleSequenceNumber	:	123
ArticleCategory	:	Research news
ArticleFirstPage	:	1
ArticleLastPage	:	2
ArticleHistory	:	RegistrationDate: 2001–04–17OnlineDate: 2001–04–17
ArticleCopyright	:	BioMed Central Ltd2001
ArticleGrants	:	
ArticleContext	$\overline{\left \cdot \right }$	130592211

Jonathan B Weitzman Email: jonathanweitzman@hotmail.com

Most studies of parasite virulence have focused on identifying genes whose loss causes decreased virulence or infectivity. In the April 13 Science, Cunningham *et al.* report the characterization of two genes in the protozoan parasite Leishmania, mutation of which causes hypervirulence (*Science* 2001, **292:**285-287). Stephen Beverley and colleagues at Washington University demonstrate that *Leishmania* mutants lacking the genes for pteridine reductase 1 (PTR1) or biopterin transporter BT1 exhibit increased virulence, lesion formation and parasite burden when inoculated into mice. The *ptr1-* and *bt1-* lines had lower levels of tetrahydrobiopterin (H4B) which caused increased metacyclogenesis, differentiation to the infective form. Hence, genes regulating pteridine metabolism have evolved to control parasite differentiation and virulence.

References

- 1. Science, [http://www.sciencemag.org]
- 2. Leishmania genome network, [http://www.ebi.ac.uk/parasites/leish.html]
- 3. Stephen M Beverley, [http://www.microbiology.wustl.edu/dept/fac/beverley.html]
- 4. Washington University, [http://www.wustl.edu/]

5. PTR1: a reductase mediating salvage of oxidized pteridines and methotrexate resistance in the protozoan parasite Leishmania major.

6. The Leishmania donovani LD1 locus gene ORFG encodes a biopterin transporter (BT1).

7. Identification of an infective stage of Leishmania promastigotes.

This PDF file was created after publication.