PublisherInfo				
PublisherName	:	BioMed Central		
PublisherLocation		London		
PublisherImprintName	:	BioMed Central		

Wiring up

ArticleInfo		
ArticleID	:	4009
ArticleDOI	:	10.1186/gb-spotlight-20010309-03
ArticleCitationID	:	spotlight-20010309-03
ArticleSequenceNumber	:	80
ArticleCategory	:	Research news
ArticleFirstPage	:	1
ArticleLastPage	:	2
ArticleHistory	:	RegistrationDate: 2001–03–09OnlineDate: 2001–03–09
ArticleCopyright	:	BioMed Central Ltd2001
ArticleGrants	:	
ArticleContext	:	130592211

Jonathan B Weitzman Email: jonathanweitzman@hotmail.com

In March 8 Nature, Philip Leighton and colleagues describe a large-scale screen for molecules that guide axons during the development of the nervous system in mice (*Nature* 2001, **410**:174-179). They developed a gene-trap screening method that incorporates elements of the 'secretory trap' technique combined with an axonal marker (placental alkaline phosphatase) whose translation is driven by an **IRES** (internal ribosome entry site). The method enabled the generation of a large number of mouse lines with diverse patterns of axon labelling in the brain. By comparing the axon tract staining patterns in heterozygous and homozygous mutant mice, Leighton *et al* were able to characterise axon guidance functions for the semaphorin Sema6A and the Eph receptor Eph4A. The results demonstrate that their gene-trap technique offers a powerful approach to scan the mammalian genome for molecules that regulate axon guidance in a cell-autonomous manner.

References

- 1. Nature, [http://www.nature.com/]
- 2. Capturing genes encoding membrane and secreted proteins important for mouse development.
- 3. Internal ribosome entry sites and dicistronic RNAs in mammalian transgenesis.

4. University of California Resource of Gene Trap Insertions., [http://socrates.berkeley.edu/~skarnes/ resource.html]

5. The molecular biology of axon guidance.

This PDF file was created after publication.