PublisherInfo				
PublisherName	:	BioMed Central		
PublisherLocation		London		
PublisherImprintName	:	BioMed Central		

Automatable SNP assay

ArticleInfo		
ArticleID	:	3993
ArticleDOI	:	10.1186/gb-spotlight-20010227-01
ArticleCitationID	:	spotlight-20010227-01
ArticleSequenceNumber	:	64
ArticleCategory	:	Research news
ArticleFirstPage	:	1
ArticleLastPage	:	2
ArticleHistory	:	RegistrationDate: 2001–02–27OnlineDate: 2001–02–27
ArticleCopyright	:	BioMed Central Ltd2001
ArticleGrants	:	
ArticleContext	:	130592211

In the February 27 Proceedings of the National Academy of Sciences, Bartlett *et al.* describe a simple technique for single-nucleotide polymorphism (SNP) analysis that could be easily automated for high-throughput SNP typing (*Proc Natl Acad Sci USA* 2001, **98**:2694-2697). The fluorescence technique (which the authors dub ADMI, alkaline-mediated differential interaction) is adapted from the amplification-refractory mutation system (ARMS)-PCR and exploits the double-stranded DNA-specific dye SYBR green I, combined with detection at buffered high pH conditions. The technique is inexpensive, automatable, simple and robust, making it ideal for high-throughput applications. Bartlett *et al.* tested the performance of the assay using 32 sequence-specific primer mixes to identify HLA genotypes of 80 independent lymphoblastoid cell lines.

References

1. Proceedings of the National Academy of Sciences, [http://www.pnas.org]

2. A Database of Single Nucleotide Polymorphisms, [http://www.ncbi.nlm.nih.gov/SNP/index.html]

3. Tissue typing the HLA-A locus from genomic DNA by sequence-specific PCR: comparison of HLA genotype and surface expression on colorectal tumor cell lines.

This PDF file was created after publication.