PublisherInfo				
PublisherName		BioMed Central		
PublisherLocation		London		
PublisherImprintName		BioMed Central		

Cloning big sheep

ArticleInfo		
ArticleID	:	3986
ArticleDOI	:	10.1186/gb-spotlight-20010221-02
ArticleCitationID	:	spotlight-20010221-02
ArticleSequenceNumber	:	57
ArticleCategory	:	Research news
ArticleFirstPage	:	1
ArticleLastPage	:	2
ArticleHistory	:	RegistrationDate : 2001–02–21 OnlineDate : 2001–02–21
ArticleCopyright	:	BioMed Central Ltd2001
ArticleGrants	:	
ArticleContext	:	130592211

Jonathan B Weitzman

Email: jonathanweitzman@hotmail.com

Cloning and *in vitro* culture of sheep embryos have been associated with bigger livestock and 'large offspring syndrome' (LOS). In the February Nature Genetics Young *et al.* provide a molecular explanation for the observed fetal overgrowth (*Nat Genet* 2001, **27:**153-154). They developed a culture system that consistently results in large offspring (LO) in 25% of births. Young *et al.* measured the levels of several imprinted genes that are associated with fetal overgrowth syndromes in man. The levels of IGFR2 mRNA were reduced by 30-60% in LO embryos and protein levels were diminished by as much as 60-80%. Reduced *IGF2R* expression was associated with loss of methylation of the differentially methylated region from the second intron of the ovine *IGF2R* gene. These results suggest an epigenetic mechanism for the LOS overgrowth phenotype.

References

- 1. Large offspring syndrome in cattle and sheep.
- 2. Nature Genetics, [http://genetics.nature.com]
- 3. Loss of the imprinted IGF2/cation-independent mannose 6-phosphate receptor results in fetal overgrowth and perinatal lethality.

This PDF file was created after publication.