PublisherInfo				
PublisherName		BioMed Central		
PublisherLocation		London		
PublisherImprintName	\Box	BioMed Central		

Mitochondrial mutation associated with hearing loss

ArticleInfo		
ArticleID	:	3985
ArticleDOI		10.1186/gb-spotlight-20010221-01
ArticleCitationID	:	spotlight-20010221-01
ArticleSequenceNumber	\Box	56
ArticleCategory	\Box	Research news
ArticleFirstPage	:	1
ArticleLastPage	\Box	2
ArticleHistory	:	RegistrationDate : 2001–02–21 OnlineDate : 2001–02–21
ArticleCopyright	:	BioMed Central Ltd2001
ArticleGrants	:	
ArticleContext	:	130592211

Jonathan B Weitzman

Email: jonathanweitzman@hotmail.com

The identification of alleles associated with complex hearing defects, such as presbyacusis (agerelated hearing loss, AHL), presents a formidable challenge to geneticists. In the February Nature Genetics Johnson *et al.* describe their use of elegant mouse breeding experiments to identify the first example of a mitochondrial DNA (mtDNA) mutation that acts as a modifier of a nuclear AHL locus (*Nat Genet* 2001, **27:**191-194). They performed a series of reciprocal backcrosses between three hearing-impaired inbred strains and a wild-type strain. Johnson *et al.* identified an mtDNA locus in one of these strains, the A/J strain, which affects hearing loss when mice are homozygous for the nuclear Ahllocus on mouse chromosome 10. Analysis of the A/J mtDNA genome revealed a single adenine nucleotide insertion in the *tRNA-Arg* gene. This unique example of nuclear-mitochondrial interaction will shed light on our understanding of human hearing impairment conditions.

References

- 1. Nature Genetics, [http://genetics.nature.com]
- 2. Assessment of hearing in 80 inbred strains of mice by ABR threshold analyses.
- 3. A major gene affecting age-related hearing loss is common to at least ten inbred strains of mice.
- 4. *Mus musculus* mitochondrion, complete genome , [http://www.ncbi.nlm.nih.gov/cgi-bin/Entrez/framik?db=Genome&gi=10418]
- 5. Mitochondrial deafness mutations reviewed.